Ремонт рабочего колеса центробежного насоса - Геология, гидрология и геодезия курсовая работа

Ремонт рабочего колеса центробежного насоса - Геология, гидрология и геодезия курсовая работа




































Главная

Геология, гидрология и геодезия
Ремонт рабочего колеса центробежного насоса

Конструкция, условия и принцип работы насосного агрегата. Структура техпроцесса его капитального ремонта. Особенности разборки деталей. Технология восстановления и контроль вала. Сборка и испытание отремонтированного насоса. Его защита от коррозии.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Филиал федерального государственного бюджетного образовательного
учреждения высшего профессионального образования
«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Кафедра нефтепромысловых машин и оборудования
Ремонт рабочего колеса центробежного насоса
по дисциплине: «Эксплуатация и ремонт машин и оборудования нефтяных и газовых промыслов»
Выполнил: ст.гр. МП-06-11 Р.Р. Шарифуллин
1. Конструкция, назначение и условия работы насосного агрегата типа НПВ-1250-60
1.1 Техническая характеристика насосного агрегата
1.2 Устройство и принцип работы насосного агрегата
2. Структура технологического процесса капитального ремонта Насосного агрегата типа НПВ-1250-60
2.1 Организация ремонта насосного агрегата. Особенности ремонтных работ
2.2 Централизация и специализация ремонтных работ
3. Технология разборки насоса и контроль вала
5. Сборка насосного агрегата ,регулировка основных узлов и деталей вала
5.2.1 Сборка прессовых соединений вала
5.2.2 Сборка шпоночных соединений вала
5.2.3 Сборка конусных соединений (насадка полумуфты насоса)
5.2.5 Сборка резьбовых соединений вала
6. Испытание и приработка насосного агрегата и узлов с описанием испытательного стенда
7. Защита насосного агрегата типа НПА-1250-60 от коррозии
8. Техническое обслуживание и правила эксплуатации насосного агрегата типа НПВ-1250-60
В различных технологических процессах нефтяной и газовой промышленности добыче, сборе, подготовке и транспорте продукции нефтяных скважин, магистральном транспорте нефти, процессах повышения нефтеотдачи пластов, поддержании пластового давления и водоснабжении, а также в различных технологических установках газоперерабатывающих заводов и компрессорных станциях применяется разнообразное насосное оборудование, различающееся по принципу действия, конструктивному исполнению, приводу и характеристикам перекачиваемой жидкости.
Нефтяные центробежные насосы, рассчитанные на работу в условиях возможного образования взрывоопасных смесей газов и паров с воздухом, применяют в промысловых системах сбора, подготовке и транспорте нефти, технологических установках нефтеперерабатывающих и нефтехимических производств для перекачивания нефти, сжиженных углеводородных газов, нефтепродуктов и других жидкостей, сходных с указанными по физическим свойствам (плотности, вязкости и др.) и коррозионному воздействию на материал деталей насосов. Максимальное содержание твердых взвешенных частиц в перекачиваемой жидкости не должно превышать 0,2 % (по массе). Размеры частиц должны составлять не более 0,2 мм.
Изготовляют насосы следующих типов: К консольные горизонтальные одно- и двухступенчатые; С горизонтальные секционные межопорные с осевым разъемом корпуса; СД горизонтальные секционные межопорные двухкорпусные; ВМ вертикальные, встраиваемые в трубопровод.
Предусмотрено изготовление следующих типов: НСУ нефтяные для откачки утечек; НПВ нефтяные подпорные вертикальные; НМ нефтяные магистральные.
Насосы нефтяные подпорные вертикальные типа НПВ предназначены для подачи нефти с температурой от минус 5 0 С до плюс 80 0 С, кинематической вязкостью 1-3x10 -4 см 2 /с, плотностью 830-900 кг/м 3 .
1. Конструкция, назначение и условия работы насосного агрегата типа НПВ-1250-60
Кавитацией называется нарушение сплошности потока жидкости, обусловленное появлением в ней пузырьков или полостей, заполненных паром или газом. Кавитация возникает при понижении давления, в результате чего жидкость закипает или из нее выделяется растворенный газ. В потоке жидкости такое падение давления происходит обычно в области повышенных скоростей. В большинстве случаев выделение газа, из раствора не играет существующей роли. В этом, случае кавитацию часто называют паровой. Паровую кавитацию сопровождают следующие основные явления:
1) Конденсация пузырьков пара, который увлекается потоком в область повышенного давления.
2) Эрозия металла стенок канала. При конденсации пузырьков пара давление внутри пузырька остается постоянным и равным упругости насыщенного пара, давление же жидкости повышается по мере продвижения пузырька. Частицы жидкости, окружающие пузырек, находятся под действием разности давления жидкости и давления внутри пузырька и движутся к его центру ускоренно. При полной конденсации пузырька происходит столкновение частиц жидкости, сопровождающееся мгновенным местным повышением давления, достигающем тысяч атмосфер. Это приводит к выщербливанию материала стенок каналов, вызванному, по-видимому, усталостными явлениями. Описанный механический процесс разрушения стенок каналов называется эрозией и является наиболее опасным следствием кавитации.
3) Звуковые явления (шум, треск, удары) и вибрация установки, являющиеся следствием колебаний жидкости, которые вызваны замыканием полостей, заполненных паром.
4) В лопастных насосах кавитация сопровождается падением подачи, напора, мощности и к. п. д.
В лопастном насосе паровая кавитация возникает на лопатке рабочего колеса обычно вблизи ее входной кромки. Давление здесь значительно ниже, чем давление во входном патрубке насоса из-за местного возрастания скорости при натекании на лопатку и из-за гидравлических потерь в подводе.
Для исключения явления кавитации на магистральных центробежных секционных насосах при перекачке нефтепродуктов из товарного парка на НПЗ применяют подпорные насосы, создающие давление на входном патрубке магистрального насоса.
Рисунок 1 Насосный агрегат НПВ-1250-60 1 электродвигатель; 2 фонарь; 3 напорный патрубок; 4 входной патрубок; 5 стакан с насосом
Агрегаты электрические насосные нефтяные подпорные вертикальные (рисунок 1) предназначены для подачи нефти с температурой 268..353К (-5..+80С), плотностью =830..900 кг/м2 к нефтяным магистральным насосам по ГОСТ 12124-80 и создания необходимого подпора для их безкавитационной работы.
Агрегаты предназначены для эксплуатации во взрывоопасных зонах класса В-1Г (в соответствии с правилами устройства электроустановок) и перекачивания нефти, пары которой образуют взрывоопасные смеси с воздухом категории II А и группы Т3 по ГОСТ 12.1.011-78.
Насосы изготовлены по первой группе надёжности ГОСТ 6134-71 в климатическом исполнении V категории размещения I по ГОСТ 15150-69, и предназначены для эксплуатации на открытых площадках при нижнем значении предельной температуры окружающей среды -50С.
В условном обозначении электронасосного агрегата (насоса) цифры и буквы обозначают:
НПВ нефтяной подпорный вертикальный
Агрегаты изготавливаются в исполнении для взрывоопасных и пожароопасных производств.
Насос НПВ-1250-60 имеет следующие технические характеристики:
Частота вращения ротора 1500 об/мин
Допускаемый кавитационный запас на оси рабочего колеса (на воде), не более 2,2 м
Внешняя утечка через уплотнение насоса 0,3*10
Допускается обточка рабочих колёс по наружному диаметру на 5 и 10% от номинального значения по рекомендациям предприятия изготовителя.
Каждый электронасосный агрегат состоит из нефтяного вертикального подпорного насоса, вертикального асинхронного взрывозащищённого электродвигателя, типа ВАОВ, соединительной муфты, системы автоматики и контрольно-измерительных приборов.
Насос центробежный, вертикальный, одноступенчатый с осевым подводом жидкости. Рабочее колесо двустороннего входа, для повышения всасывающей способности колеса, применены предвключенные колёса.
Статорная часть насоса состоит из двух осевых подводов, отвода, переводных каналов, двух напорных секций, крышки с напорным патрубком и контрфланцем и фонаря под электродвигатель.
Нижней частью насос помещён в металлический стакан с приварным днищем, входным патрубком и опорной плитой. Стакан опорной частью плиты устанавливается на фундамент и крепится к нему фундаментными болтами. Для выпуска воздуха при заполнении для опорожнения насоса в стакане предусмотрены патрубок и трубка. Крышка устанавливается на опорную плиту стакана. На верхний фланец крышки устанавливается фонарь для монтажа электродвигателя.
Ротор насоса состоит из вала рабочего и предвключенных колёс, втулок уплотнения, шпонок и т.д. Направление вращения ротора по часовой стрелке, если смотреть со стороны приводного конца вала.
Гидравлическое осевое усилие ротора разгружается применением рабочего колеса двухстороннего входа.
Масса ротора и остаточное гидравлическое осевое усилие ротора воспринимается сдвоенным радиально-упорным шариковым подшипником, являющимся верхней опорой. Смазка шарикового подшипника консистентная ЦИАТИМ-202 ГОСТ11110-75 или Литол-24 ТУ 38-101139-71.
Для восприятия радиальных усилий в конструкции насоса предусмотрены два радиальных подшипника скольжения концевой (на нижнем конце вала) и промежуточный, смазываемых перекачиваемым нефтепродуктом.
Концевое уплотнение ротора торцевого типа ТМ120М ТУ 26-06-968-75. В полости крышки организован сборник утечек нефти из торцевого уплотнения. Для обогрева торцевого уплотнения и сборника утечек нефти при низких температурах окружающего воздуха, крышка насоса оснащена электрическим обогревателем. Во избежание больших потерь тепла, внешняя поверхность крышки насоса на месте эксплуатации насоса должна быть теплоизолирована.
Сборник утечек нефти опорожняться раз в 1,5..2 месяца при нормальной утечке из торцевого уплотнения. Для контроля уровня применяются сигнализаторы уровня жидкости СУЖ-3.
2. Структура технологического процесса капитального ремонта насосного агрегата типа НПВ-1250-60
Технологический процесс капитального ремонта представляет собой комплекс технологических и вспомогательных операций по восстановлению работоспособности оборудования, выполняемых в определенной последовательности, и включает в себя приемку оборудования в ремонт, моечно-очистные операции, разборку оборудования на агрегаты, сборочные единицы и детали, контроль сортировку деталей и ремонт деталей, их комплектацию, сборку сборочных единиц, агрегатов и оборудования в целом, обкатку и испытание оборудования после сборки, окраску и сдачу оборудования из ремонта.
На ремонтных предприятиях нефтяной и газовой промышленности в зависимости от количества однотипного оборудования и условий ремонта применяют два основных метода ремонта: индивидуальный и агрегатный (узловой). В зависимости от применяемого метода изменяются содержание и последовательность операций технологического процесса ремонта. При индивидуальном методе ремонта детали, сборочные единицы и агрегаты оборудования маркируют и после ремонта устанавливают на том же оборудовании. Следовательно, сборку оборудования начинают только тогда, когда отремонтированы все детали, что значительно удлиняет общее время ремонта.
Индивидуальный метод ремонта применяется в тех случаях, когда на ремонтное предприятие поступает мало однотипного оборудования. При индивидуальном методе ремонта машину или механизм ремонтирует одна комплексная бригада, состоящая из рабочих высокой квалификации.
Индивидуальный метод ремонта имеет следующие недостатки:
1) отсутствует специализация ремонтных работ и ограничена возможность внедрения механизации, что значительно снижает производительность труда;
2) оборудование длительно находится в ремонте, так как готовые детали простаивают, пока все детали не будут отремонтированы;
Рисунок 2 - Схема технологического процесса капитального ремонта оборудования индивидуальным методом.
При агрегатном методе ремонта должно соблюдаться следующее неравенство:
Следовательно, Естественно что длительность ремонта в этом случае значительно сокращается.
Ремонт насосов должен производиться на ремонтных базах. Технология ремонта насосов зависит от метода подготовки и планирования ремонта:
а) индивидуальный метод ремонта насосов, при условии восстановления изношенных деталей;
б) индивидуальный метод ремонта насосов, при условии замены изношенных деталей новыми из запаса, хранящегося на складе;
При капитальном ремонте индивидуальным методом, поступившие в ремонт насосы подвергают наружной мойке, последовательной разборке на узлы и детали, повторной мойке деталей, контролю, сортировке (годные в сопряжении с восстановленной до ремонтного размера или новой деталью, нуждающиеся в ремонте и негодные), маркировке и дефектации деталей. Годные детали транспортируются непосредственно на склад комплектации, а детали, не подлежащие восстановлению, в металлолом.
При наличии запасных частей капитальный ремонт в основном сводится к слесарно-сборочным операциям и небольшому количеству станочных и сварочных работ, требующих универсального оборудования и средней квалификации ремонтного персонала.
Все детали, требующие ремонта и восстановления, проходят согласно технологическому процессу ремонта различные цехи предприятия и в - результате, также, поступают на склад комплектации, где комплектуются узлы, подлежащие сборке, а затем производятся собственно сборка и испытание.
Параллельно ремонтируется базовая деталь, а затем производится общая сборка, испытание, обкатка, окраска и сдача потребителю отремонтированной машины.
Сборку насоса можно начинать только после восстановления последней детали.
Требование к сборке и испытанию капитально отремонтированного наcoca не должны отличаться от аналогичных требований, которые предъявляются к новому насосу.
Централизация и специализация создает условия для организации промышленного ремонта, а следовательно и для применения наиболее прогрессивных технологических и организационных решений. Полностью централизованный капитальный ремонт насосов на специализированных заводах, эффективен при масштабах выпуска, обеспечивающих возможность организации поточного обезличенного ремонта и при наличии обменного фонда.
Создание обменного фонда позволит потребителю, сдавая в ремонт насос, получить отремонтированный экземпляр такой же марки. Число зарезервированных для обмена насосов на ремонтном предприятии должно составлять - 4% от числа ежегодно ремонтируемых насосов. Основными преимуществами централизованного капитального ремонта являются снижение его трудоемкости и себестоимости в 1,5 - 2 раза, повышение качества за счет специализации и лучшего технического оснащения, а, следовательно, увеличение межремонтных периодов и повышение коэффициента использования оборудования в эксплуатации. При централизованном ремонте повышается культура и техника ремонтного производства, снижается численность ремонтного персонала, экономится металл, сокращается количество технологического оборудования, занятого на ремонте, повышается коэффициент его загрузки, улучшается технологическая дисциплина, сокращается производственный цикл ремонта насосов в 2 - 3 раза.
В любом случае стоимость капитального ремонта должна составлять
25 … 35% от стоимости нового насоса и в крайнем случае не превышать 60 … 70% ее величины.
3. Технология разборки насоса и контроль вала
Учитывая условие работы и виды износа вала, дефект будем устранять наплавкой в среде углекислого газа. Наплавка проводится без последующей термической обработки, и без предварительной механической обработки. Для наплавки используется проволока 1,2 Нм-30ХГСА ГОСТ 10543-82. Рассматриваем режимы при наплавке в среде углекислого газа.Выбираем силу тока в зависимости от диаметра электрода и диаметра детали.Диаметр проволоки 1,1-1,2 мм.Сила тока .Напряжение
где б Н - коэффициент наплавки, г/А . ч,
h - толщина наплавляемого слоя, мм;
г - плотность электродной проволоки, г/см 3 (г =7,85).
Где Dн - диаметр наплавки, Dп - диаметр проволоки.
S=(1,6ч2,2) . d пр =1,8 . 1,2=2,16 мм
где Uн-скорость наплавки;d-диаметр вала
Скорость подачи проволоки U пр , м/ч:
где б Н - коэффициент наплавки, г/А . ч,
г - плотность электродной проволоки, г/см 3 (г =7,85).
Расход углекислого газа составляет 12 л/мин.
T0=3.14·97·28/1000·82.6·2.16=0.022ч
Т ВС =(2ч4) мин - вспомогательное время
где к - коэффициент, учитывающий долю дополнительного времени от основного и вспомогательного, %:
Используемая марка проволоки 1,2 Н П -30 ХГСА.
Выработка и выход из строя подшипников скольжения или качения, а также, коррозионные оспины, появление рисок и надиров при попадании мелких посторонних частиц во вкладыши подшипников вместе со смазкой приводят к износу шеек валов.
Шейки вала, работающего в подшипниках скольжения, обычно вырабатываются неравномерно и в продольном сечении принимают форму конуса, в поперечном - эллипса. Шейки вала, работающего в подшипниках качения, изнашиваются при протачивании внутренней обоймы подшипника на валу вследствие послабления при изготовлении или выработке посадочных мест в процессе эксплуатации насоса.
В зависимости от износа посадочных мест валов применяют следующие методы восстановления: хромирование при износе посадочных мест до 0,3 мм; осталивание (железнение) с последующим шлифованием при износе посадочных мест до 0,8 мм; наплавку при износе посадочных мест более 0,8 мм.
Восстановление и упрочнение валов наплавкой значительно увеличивают срок их службы, обеспечивают большую экономию запасных частей, сокращение затрат на ремонт оборудования. Известны различные способы наплавки - электродуговая, электрошлаковая, газовая, термитная, трением, электронно-лучевая и др. Валы восстанавливают обычно электродуговой наплавкой, не вызывающей деформации обрабатываемых изделий. Для восстановления изношенных валов можно также использовать наплавку трением. Этот процесс по затратам электроэнергии значительно экономичнее электродугового.
В ремонтном производстве для восстановления валов часто применяют электродуговую наплавку под слоем флюса, в среде диоксида углерода, в струе охлаждающей жидкости, с комбинированной защитой дуги, порошковой лентой и др. Автоматическую электродуговую наплавку под слоем флюса широко применяют для наплавки валов, изготовленных из нормализованных и закаленных среднеуглеродистых и низколегированных сталей, а также из малоуглеродистых сталей, не подвергающихся термической обработке, имеющих износ от 0,3 до 4,0 мм при однослойной наплавке и свыше 4 мм - при многослойной. Производительность процесса очень высока. Валы диаметром до 50 мм этим способом восстанавливать сложно, так как шлак, не успев затвердеть, стекает с наплавляемого изделия.
Электродуговая наплавка в среде диоксида углерода широко распространена в ремонтном производстве для восстановления валов диаметром до 40 мм.
Вибродуговую наплавку используют при восстановлении валов диаметром до 40 мм, когда требуется нанести равномерный и сравнительно тонкий слой металла при минимальной деформации изделия, а наличие мелких дефектов не имеет существенного значения. Этот процесс протекает при пониженной мощности дуг, высокоэкономичен и обеспечивает высокую твердость наплавленного металла.
Однако получаемые покрытия насыщены газами и имеют большие внутренние напряжения. Поэтому вибродуговая наплавка не рекомендуется для ремонта деталей, работающих при знакопеременных нагрузках.
Автоматическая наплавка порошковой проволокой, которая позволяет наносить слой металла любого химического состава и получать закалочные структуры различной твердости, получила широкое распространение в последнее время.
Автоматическая наплавка ленточным электродом и порошковой лентой в 2-3 раза производительнее, чем обычной электродной проволокой, и дает возможность за один ход аппарата наносить слой металла шириной до 100 мм, толщиной 2-8 мм. Этим способом нельзя наплавлять валы малого диаметра. Тугоплавкие сплавы наплавляют плазменным способом, который производительнее других способов.
В последние годы разработаны новые способы наплавки с комбинированной защитой дуги и сварочной ванны для устранения отдельных недостатков того или иного способа восстановления.
При восстановлении посадочных мест вала ручной электродуговой наплавкой поврежденное место вала протачивают на станке на величину наиболее глубоких повреждений. Затем наплавляют вал до нужных размеров с учетом последующей проточки и шлифовки. Наиболее ответственная операция - наплавка вала.
На Уфимском заводе синтетического спирта разработано приспособление, позволяющее качественно провести наплавку. Приспособление, показанное на рисунке 4, состоит из рамы 4, на которую крепят неподвижную 7 и передвижную 3 стойки, что позволяет наплавлять валы различной длины. Вал 1 помещается между четырьмя роликами 5 и может свободно вращаться вокруг своей оси. Расстояние между роликами в зависимости от диаметра вала регулируют пазом 8 и гайкой 6. При наплавке шеек валов, расположенных на значительном расстоянии от конца вала, в результате неравномерного нагрева вал деформируется.
Рисунок 3 - Приспособление для восстановления валов электродуговой наплавкой разработанное на Уфимском заводе синтетического спирта1-вал; 2-место наплавки; 3-передвижная стойка; 4-рама; 5-ролик; 6-гайка; 7-неподвижная стойка; 8-паз.
На рисунке 5 показано приспособление, внедренное на Уфимском нефтеперерабатывающем заводе. Оно позволяет вести наплавку спиральным валиком вдоль оси вала, что обеспечивает равномерный нагрев поверхности вала и исключает его коробление. На рисунке вал 2 фиксируют в центрах между планкой 1 и плитой 3. Планка с центром может передвигаться по стойке 4, и это позволяет вести наплавку валов различной длины. Однако установка валов на рассмотренное приспособление сопровождается неизбежной их деформацией.
Кроме ручной применяют автоматическую электродуговую наплавку вибрирующим электродом. Головки для наплавки ГВМК-1 выпускают с вылетом мундштука до 50 мм. Иногда наплавку вала целесообразно проводить без снятия рабочих колес. В этих случаях для головки изготовляют мундштук длиной 250 - 300 мм. Восстановление валов вибродуговой наплавкой показано на рисунке 6.
Рисунок 4 - Приспособления для наплавки валов спиральным валиком 1- планка; 2 - вал; 3- плита; 4 - стойка; 5 - барашек.
Рисунок 5 - Восстановление валов автоматической электродуговой наплавкой вибрирующим электродом 1-рабочие колеса; 2- вал; 3- головка для наплавки.
При наплавке лентой от проплавления основного металла зависит степень его перемешивания с наплавленным. Благодаря постоянному перемещению дуги глубина проплавления основного металла при наплавке лентой меньше, чем при наплавке проволокой. Наибольшее влияние на глубину проплавления и перемешивания основного металла с наплавленным оказывает скорость наплавки. С ее ростом увеличивается глубина проплавления, уменьшаются ширина и толщина наплавляемого валика.
При малых скоростях наплавки снижается проплавление основного металла.
Для наплавки холоднокатаной электродной лентой используют сварочные аппараты АДС-1000-2, А-384, А-874, ТС-3.5, головку АБС, сварочные преобразователи постоянного тока ПС-500, ПТС-500, ПС-1000, ПСМ-1000-4 и выпрямители ВС-600, ВС-1000, ВКСМ-1000, ВКСМ-2000. Наплавку осуществляют лентами из стали 08кп и коррозионно-стойких сталей. Широкое применение получили металлокерамические ленты ЛМ-70ХЗНМ, ЛМ-20ХЮПОТ, ЛМ-1Х14НЗ, ЛМ-5Х4ВЗФС, разработанные в Институте электросварки им. Е. О. Патона.
Наплавку металлокерамическими лентами ведут постоянным током обратной полярности. Плотность тока на электроде 10 -20 А/мм 2 , напряжение дуги 28 - 32 В, скорость наплавки 0,16 -0,55 м/с, скорость подачи ленты 15 - 150 м/ч.
Таблица 2 Сила тока в зависимости от ширины ленты следующая:
Восстановление деталей контактным электроимпульсным покрытием заключается в приварке металлической ленты под воздействием сварочных импульсов. Чтобы исключить нагрев детали и улучшить условия закалки приварного слоя, в зону сварки подают охлаждающую жидкость.
При приварке ленты толщиной 0,3 - 0,4 мм рекомендуемая емкость батареи конденсаторов 6400 мкФ. Напряжение заряда конденсаторов регулируют в пределах 260 - 425 В. Ленту приваривают при напряжении 325 - 380 В. Чем больше диаметр восстанавливаемой детали и толщина привариваемой ленты, тем выше требуемое напряжение заряда конденсаторов. Свариваемость ленты с основным материалом в зависимости от амплитуды и длительности импульса тока определяют по глубине вмятин сварной точки, числу пор на поверхности деталей, прошлифованных до номинального размера, и шелушению приварного слоя толщиной 0,15 - 0,02 мм.
5. Сборка насосного агрегата ,регулировка основных узлов и деталей вала
Полная взаимозаменяемость, при которой любая деталь и узел могут быть использованы для любого насоса при сборке без дополнительной пригонки. В этом случае сборка заключается только, в соединении деталей узлов, при этом обеспечиваются заданные посадки, (рабочие колеса корпуса секций, направляющие аппараты);
Сборка с применением компенсаторов, при которой в результате изменения величины одного из звеньев обеспечивается заданная точность размерной цепи; все остальные звенья изготавливается с точностью, допустимой условиями производства. Практически этот метод сборки осуществляется введением прокладок, колец, втулок (сборка ротора с компенсирующими кольцами между рабочими колесами).
Применение пригонки деталей по месту обеспечивают заданную точность сборки изменением размера или получением размера по месту в результате снятия стружки (диск разгрузочный...).
К прессовым соединениям, относятся посадки наплавляющего аппарата в корпус секции, соединение секций между собой. При сборке прессовых соединений посадка деталей всегда производится с натягом. Перед сборкой детали должны быть тщательно очищены от стружки; эмульсии и других загрязнений и покрыты тонким слоем смазки. Основным оборудованием для выполнения прессовых посадок служат прессы различных типов: ручного действия с механическим приводом, пневматические и гидравлические.
Запрессовку деталей необходимо производить плавно, с постоянным нарастанием усилия, не допуская перекоса.
Если по условиям сборки установка детали производится ударом молотка по обработанной поверхности, необходимо применять оправки и молотки из цветных металлов, пластмасс. При, этом запрессовку необходимо производить легкими ударами молотка по головке оправки или по специальной подставке, причем, чтобы деталь плотно села на месте своим буртиком или упором, причем последний удар должен быть сильным и резким.
5.2.2 Сборка шпоночных соединений вала
Сборку шпоночного соединения начинают с проверки паза на валу. Дно паза должно быть параллельно оси вала, острые кромки паза закругляют. Шпонку пригоняют по пазу, смазывают жидкой смазкой и запрессовывают в паз. Правильность прилегания шпонки к боковым стенкам проверяют шумом или по окраске. Затем выверяют паз в ступице, производят пригонку паза по шпонке и после этого ступицу насаживают на вал.
5.2.3 Сборка конусных соединений (насадка полумуфты насоса)
Перед сборкой конусного соединения необходимо проверить плотность прилегания конических поверхностей вала и втулки по краске. Плотность прилегания должна бать не менее, 80%.
Конусное соединение для надежности дополнения шпонкой; полумуфта насаженная на вал крепится на нем гайкой и шайбой.
Нормальная работа подшипников во многом зависит от соблюдения технологического процесса посадки подшипника.
При посадке подшипника в корпус усилия запрессовки прилагают к наружному кольцу, предварительно смазав место посадки жидкой смазкой.
Следует стремиться запрессовать кольцо под прессом или при отсутствии пресса, молотком с использованием монтажной отправки. Правильно смонтированный подшипник при проворачивании от руки должен работать ровно без шума, стука и толчков.
Качество сборки резьбовых, соединений определяется правильностью затяжки болтов и гаек, достижением необходимых посадок, отсутствием перекосов в соединениях, надежностью стопорных устройств.
При затяжке болтовых соединений важно осуществлять постоянное усилие, достаточное для создания необходимой плотности соединения. Слишком сильная затяжка может привести к недопустимым дёформациям пли перенапряжению соединения. Приступая к затяжке болтового соединения необходимо проверить резьбу болта и гайки. Гайка должна от усилия руки навертываться на резьбу до конца и не иметь качания.
Особенное внимание обратить на стяжные шпильки - для которых нужно обеспечить равномерную затяжку по всей окружности, завинчивая гайки поочередно "крест-накрест".
Момент затяжки (указан в сборочных чертах) получить не менее, чем за 5 обходов гаек по окружности.
Для более качественного соединения секций рекомендуется применять гидрозатяжку шпилек с гарантируемым усилием затяжки.
Концы болтов и шпилек резьбовых соединений должны выступать из гаек на 1..4 витка резьбы.
Допускается при необходимости поставка ступенчатых шпилек в гнезда ремонтного размера и увеличение диаметров шпилек, при износе гнезд.
При окончании необходимого ремонта всех деталей проводится сборка всех узлов, входящих в насос: ротор, секции, концевое уплотнение, крышка насоса.
Сборка ротора осуществляется в два этапа: предварительная и окончательная сборка совместно с насосом. Детали, поступающие на предварительную сборку (рабочие колеса, полумуфты,) должны быть статически сбалансированы.
Предварительная сборка ротора осуществляется в следующем порядке. На вал одевается рабочее колесо первой ступени до упора в буртик, предварительно вложив шпонку в паз вала. Затем поочередно одеваются рабочие колеса промежуточной ступени, причем необходимо обратить внимание, что шпонки под колеса (через ступень) находятся на диаметрально противоположных поверхностях вала.
После рабочего колеса последней ступени одеваются диск разгрузочный, рубашка и с двух сторон проводят стяжку всех деталей с помощью гаек.
В процессе этой сборки проводится проверка размеров 95 мм и 98,5 мм между осями рабочих колес, и при необходимости устанавливаются прокладочные кольца из материалов, стойких по отношению к перекачиваемой среде. Кроме этого должно быть обеспечено прилегание торцов сопрягаемых деталей. При проверке по краске распределение пятен должно быть равномерным по площади торцов.
Предварительная сборка позволяет путем соответствующих замеров обеспечить правильную взаимную осевую установку всех вращающихся деталей и их остановку по отношению к неподвижным частям корпуса.
После сборки готовый ротор подлежит проверке на биение.
Проверка ротора на биение производится на стенке в центрах или специальных отправ
Ремонт рабочего колеса центробежного насоса курсовая работа. Геология, гидрология и геодезия.
Реферат Социально Психологические Характеристики Больших Социальных Групп
Дипломная Работа Старший Дошкольник
Эссе На Тему Современный Облик Казахстанского Кино
Курсовая работа: Политика "украинизации" и ее влияние на развитие национальной культуры: историография вопроса. Скачать бесплатно и без регистрации
Курсовая Работа На Тему Технологический Процесс Обработки Шестерен Из Стали 12хн3а
Пример Отчета О Научно Исследовательской Практики Аспиранта
Антропогенные Опасности Реферат Бжд
Как Написать Сочинение План 11 Класс
Отчет по практике по теме Технология строительного производства. Строительные машины. Контроль бетонирования
Курсовая работа: Расчет элементов резервуара. Скачать бесплатно и без регистрации
Реферат: Боррелиозы
Реферат: Логистические центры фирм. Скачать бесплатно и без регистрации
Пособие по теме Статистическое изучение взаимосвязи социально-экономических явлений и процессов
Дипломная работа по теме Комп’ютеризація обліку ресурсів в складських приміщеннях
Сочинение Барышня Крестьянка Пушкин 6 Класс
Контрольная Работа Слово О Полку
Реферат по теме Психология допроса подозреваемого
Контрольная работа по теме Управление контрразведки "СМЕРШ" – история создания и деятельности
Контрольная Работа Номер 8 Рациональные Числа
Курсовая Норма Права Заключение
Система обеспечения пожарной безопасности - Безопасность жизнедеятельности и охрана труда реферат
Плесневые грибы памятников культуры Астраханской области - Биология и естествознание курсовая работа
Аудит - Бухгалтерский учет и аудит шпаргалка


Report Page