Реферат Волновые Передачи

Реферат Волновые Передачи



➡➡➡ ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ!






























Реферат Волновые Передачи
Волновые передачи кинематически представляют собой планетарные передачи с одним из колес в виде гибкого венца. Гиб­кий венец 1 (рис. 1) деформируется генератором волн 3 и входит в зацепление с центральным колесом 2 в двух зонах.
Принцип волновых передач заключается в многопарности зацепления зубьев, которая определяет все положительные каче­ства этих передач по сравнению с другими.
Волновые передачи в сравнении с обычными зубчатыми имеют меньшую массу и меньшие габариты, обеспечивают более высокую кинематическую точность, имеют меньший мертвый ход, обладают высокой демпфирующей способностью (в 4—5 раз большей, чем у обычных), работают с мень­шим шумом.
При необходимости волновые передачи позволяют передавать движение в гермети­зированное пространство без применения сальников.
Волновые передачи позволяют осущест­влять большие передаточные отношения в одной ступени; при зубчатых колесах из стали Umin= 60 (ограничивается проч­ностью при изгибе гибкого колеса) и Umax= 300 (ограничивается минимально допустимой величиной модуля, равной 0,2...0,15 мм). При этом КПД равен 80...90 %, как и в планетарных передачах с тем же передаточным отношением.
К недостаткам волновых передач можно отнести ограниченные частоты вращения ведущего вала генератора волн при боль­ших диаметрах колес (во избежание боль­ших окружных скоростей генератора), мелкие модули зубчатых колес (0,15... 2 мм). При серийном изготовлении в специализированном производстве вол­новые передачи дешевле планетарных. Крутильная жесткость волновых передач несколько меньше простых зубчатых, но обычно является достаточной.
На рис. 1 гибкий венец 1 нарезан на деформируемом конце тонкой цилиндрической оболочки 5, другой конец которой через тонкое дно соединяется с выходным валом 4.
Генератор волн 3 состоит из овального кулачка соответствующего профиля и спе­циального шарикоподшипника 6 с гибкими кольцами. Иногда выполняют генератор волн в виде двух дисков (роликов), распо­ложенных на валу или в виде четырех ро­ликов. Сборку зацепления можно осуще­ствить только после деформации гибкого колеса.
На концах большой оси вала зубья зацепляются по всей высоте, на малой оси зубья не зацепляются. Между этими участ­ками зубья гибкого колеса погружены во впадины жесткого колеса на разную глу­бину. Зацепление напоминает шлицевое соединение.
При вращении генератора волн гибкий зубчатый венец обкатывается по неподвижному колесу, вращая оболочку и вал. Радиальные перемещения w гибкого ко­леса по окружности имеют два максимума и два минимума, т. е. две волны. Поэтому передачу называют двухволновой. Возможны трехволновые передачи, но их при­меняют редко, так как в трехволновой передаче выше напряжения изгиба в гиб­ком колесе.
Если оболочка неподвижно соединена с корпусом, то вращение от генератора передается жесткому колесу с внутренними зубьями. В схеме (рис. 2) для передачи движения в герметизированное простран­ство гибкое колесо имеет зубчатый венец, расположенный в середине удлиненного цилиндрического стакана, левый фланец которого герметично соединен с корпусом. Вращение передается от генератора волн к жесткому колесу г 2
, выполненному в ви­де стакана, охватывающего часть гибкого колеса.
Передачи (см. рис. 1) могут рабо­тать в качестве редуктора (КПД 80... 90 %) и мультипликатора (КПД 60... 70 %). В первом случае ведущим звеном является генератор волн, во втором — вал гибкого или жесткого колеса.
Передаточное отношение волновых пе­редач определяется так же, как и для пла­нетарных, по уравнению Виллиса.
При неподвижном жестком колесе 2 (см. рис. 1)
знак минус указывает на разные направ­ления вращения ведущего и ведомого звеньев.
При неподвижном гибком колесе (см. рис. 2)
где n 0
, n 1
(n 2
) — частоты вращения веду­щего и ведомых звеньев; z 1
, z 2
— числа зубьев колес гибкого и жесткого соот­ветственно.
Разность зубьев колес должна быть равна или кратна числу волн, т. е. где — число волн, обычно равное 2; — коэффициент кратности, обычно рав­ный единице; при u< 45 = 3; при u< 45 = 3.
Необходимое максимальное радиальное перемещение при отсутствии боковых зазоров должно равняться полуразности диаметров начальных окружностей:
Для эвольвентного зацепления диамет­ры начальных окружностей можно выра­зить через диаметры делительных окруж­ностей:
где т — модуль зацепления; а и а w
— углы профиля исходного контура и зацепления.
Следовательно, величина максимально­го упругого перемещения равна межосевому расстоянию обычной передачи внутреннего зацепления.
Если зубчатые венцы нарезаны без сме­щения производящего исходного контура (х 1
= х 2
= 0) или с одинаковыми смеще­ниями (для внутреннего зацепления x 1
= х 2
), то а = а w
и
Минимально допустимое радиальное упругое перемещение . При α = 20° относительное радиальное пере­мещение , при α = 30° .
Чем меньше передатoчное отношение в одной ступени, тем больше потребная величина :
Применяют также волновую передачу с двумя зубчатыми венцами на гибкой обо­лочке (как кинематическую. В этом случае пе­редаточные отношения u = 3600...90 000, КПД 2...5%.
В качестве наглядной иллюстрации рассмотрим одну конкретную модель волнового редуктора, использующегося в практических целях.
Конструкция волнового зубчатого редуктора, разработанная фирмой USМ (США), показана на рис. 3. Генератор волн, включающий кулачок 7 овальной формы и шарикоподшипник 6 с гибкими кольцами, посажен на быстроходный вал 1 на привулканизированной резиновой прокладке 8. Генератор волн деформирует зубчатый венец 4 гибкого колеса, выпол­ненного в виде цилиндрической оболочки и соединенного сваркой с тихоходным ва­лом 9. Жесткое колесо 5 выполнено заодно с корпусом. Крышка 3 выполнена с радиальными ребрами, которые охлаждаются потоком воздуха от вентилятора 2.
Для нормальной работы передачи требуется высокая степень соосности генератора волн, гибкого и жесткого колес. Рези­новая прокладка 8 до некоторой степени компенсирует несоосность.
В США, Японии налажено серийное про­изводство волновых редукторов общего назначения.
Разработан стандартный ряд редукторов в СССР. Стандартный ряд содержит 11 типоразмеров (диаметры делительных окружностей гибкого элемента находятся в диапазоне 50,8—508 мм). В каждом ти­поразмере редукторы имеют четыре или в среднем диапазоне (80—320 мм) семь пе­редаточных отношений, получаемых за счет изменения модуля и числа зубьев.
Максимальная частота вращения ге­нератора волн с шарикоподшипником 3500 мин -1
для диаметров гибких колес 50,8...203 мм и 1750 мин -1
для диаметров 254...407 мм. Частота вращения ограничи­вается температурой нагрева и работоспо­собностью подшипника генератора волн.
Диапазон передаваемых вращающих моментов 30...30 000 Н-м, мощностей 0,095..,48 кВт.
В нашей стране разработаны и испытаны редукторы с передаваемым моментом 150 000 Н-м.
Расчет волновых зубчатых передач отличается от расчета обычных зубчатых передач тем, что учитывает изменения первоначальной формы зубчатых венцов и генератора волн от упругих деформаций.
Экспериментальные исследования показывают, что волновые передачи становятся неработоспособными по следующим причинам.
1. Разрушение подшипников генератора волн от нагрузки в зацеплении или из-за значительного повышения температуры.
Повышение температуры может вызвать недопустимое уменьшение зазора между генератором и гибким зубчатым венцом. Номинальный зазор на диаметр примерно равен 0,00015 диаметра оболочки. Возрас­тание нагрузки и температуры в некото­рых случаях связано с интерференцией вершин зубьев на входе в зацепление, появляющейся при больших изменениях первоначальной формы генератора волн, гибкого и жесткого зубчатых венцов.
2. Проскок генератора волн при боль­ших крутящих моментах (по аналогии с предохранительной муфтой). Проскок связан с изменением формы генератора волн, гибкого и жесткого зубчатых венцов под нагрузкой вследствие их недостаточ­ной радиальной жесткости или при боль­ших отклонениях радиальных размеров ге­нератора. Проскок наступает тогда, когда зубья на входе в зацепление упираются один в другой поверхностями вершин. При этом генератор волн сжимается, а жесткое колесо распирается в радиальном направ­лении, что приводит к проскоку.
Для предотвращения проскока радиаль­ное упругое перемещение гибкого колеса предусматривают больше номинального, а зацепление собирают с натягом или уве­личивают размеры передачи.
3. Поломка гибкого колеса от трещин усталости, появляющихся вдоль впадин зубчатого венца при напряжениях, превы­шающих предел выносливости. С увеличе­нием толщины гибкого колеса напряжения в нем от полезного передаваемого момен­та уменьшаются, а от деформирования генератором волн увеличиваются. Поэтому есть оптимальная толщина.
Долговечность гибкого элемента легко обеспечивается при передаточном отноше­нии в ступени и > 120 и чрезвычайно трудно при u< 80, так как потребная вели­чина радиального упругого перемещения увеличивается с уменьшением передаточ­ного отношения.
4. Износ зубьев, наблюдаемый на кон­цах, обращенных к заделке гибкого колеса. Износ в первую очередь зависит от напря­жений смятия на боковых поверхностях от полезной нагрузки.
Часто возникает износ при сравнительно небольших нагрузках, связанный с интер­ференцией вершин зубьев от упругих де­формаций звеньев под нагрузкой. Во из­бежание этого геометрические параметры зацепления следует выбирать так, чтобы в ненагруженнои передаче в одновремен­ном зацеплении находилось 15...20 % зубьев. Между остальными зубьями в номинальной зоне зацепления должен быть боковой зазор.
При увеличении крутящего момента зазор выбирается и число одновременно зацепляющихся зубьев увеличивается из-за перекашивания зубьев гибкого ко­леса во впадинах жесткого колеса от закрутки оболочки и вследствие других деформаций колес.
5. Пластическое течение материала на боковых поверхностях зубьев при боль­ших перегрузках.
Анализ причин выхода из строя волновых передач показывает, что при передаточных отношениях и > 100... 120 несущая способность обычно ограничивается стой­костью подшипника генератора волн; при u< 100 — прочностью гибкого элемента, причем уровень напряжений определяется в первую очередь величиной радиального упругого перемещения и в меньшей степени вращающим моментом.
Максимально допустимый вращающий момент связан с податливостью звеньев.
Удобно за критерий работоспособности условно принять допустимые напряжения смятия [σ] см
на боковых поверхностях зубьев по аналогии со шлицевыми соеди­нениями:
где Т — вращающий момент на тихоход­ном валу передачи, Н-м; d— диаметр делительной окружности гибкого зубчатого венца, мм; - коэффициент ши­рины зубчатого венца (берется 0,2...0,18 для силовых, 0,15...0,1 для малонагруженных и кинематических передач); К — коэф­фициент, зависящий от режима работы, равный 1 при спокойной нагрузке (Т та
x
/T< 1,2); 1,25 — при умеренной динамиче­ской нагрузке (Т тах
/Т < 1,6); 1,75 —при резко динамической нагрузке (Т тах
/Т < 2,5).
При работе с продолжительными оста­новками коэффициенты уменьшают, а при непрерывной круглосуточной работе уве­личивают в 1,2 раза.
Величину [σ] см
берут по данным экспе­риментов такой, при которой также обеспе­чивается работоспособность передачи по другим критериям:
где — коэффициенты, завися­щие соответственно от передаточного чис­ла в рассчитываемой ступени и; от частоты вращения п генератора волн, мин -1
; от размеров передачи d. Соответственно
= 1,25 при d< 130 мм, =1 при d> 130 мм.
В средних условиях [σ] см
для сталь­ных колес 10...20, для пластмассовых 3...15 МПа; при малых скоростях генера­тора увеличиваются в 5... 10 раз.
Размеры передачи, полученные по пред­ложенным зависимостям, согласуются с данными каталогов иностранных фирм. Параметры зацепления выбирают с учетом податливости звеньев.
Для упрощения расчетов применяют упрощенные зависимости, проверенные экспериментами. Они справедливы только для эвольвентных зубчатых колес, наре­занных стандартным инструментом с ис­ходным контуром, имеющим α = 20°, ко­эффициент высоты h a
* = 1, коэффициент радиального зазора С* = 0,25 (или С* = 0,35 для модуля до 1 мм); для переда­точного числа в одной ступени u = 60...320, а также для указанных ниже соотношений размеров и формы деформации генератора волн.
Модуль зацепления вычисляется по за­висимости m = d/z и округляется до стан­дартного.
Необходимый боковой зазор между зубьями в начале зоны зацепления ненагруженной передачи и величина относи­тельного радиального упругого переме­щения:
где Tmах — максимально допустимый мо­мент перегрузки (обычно Ттах ≥ 2Т); G — модуль упругости при кручении, МПа; h 2
— толщина оболочки колеса, мм (рис. 4); m — модуль, мм; — радиальное упругое перемещение в долях модуля .
Смещение исходного контура для гибкого x 1
и жесткого х 2
колес и глубина захода в долях модуля :
Размеры зубчатых колес определяют по зависимостям, аналогичным зависимостям для обычного зацепления.
Диаметры окружностей впадин и вер­шин зубьев гибкого колеса (нарезаемого стандартной фрезой);
Диаметр впадин жесткого колеса зави­сит от параметров долбяка и опреде­ляется по известным зависимостям:
Индекс 0 относится к инструменту (долбяку). Смещение исходного контура долбяка средней изношенности можно брать х 0
= 0, диаметр окружности вершин долбяка
Толщину зуба при нарезании контро­лируют по роликам или через длину общей нормали. Степень точности зубчатых колес обычно 7-я.
Рекомендуемая геометрическая форма зацепления исключает интерференцию (при нарезании гибкого колеса в недеформированном состоянии червячной фрезой, а жесткого — стандартным долбяком с числом зубьев долбяка z о
≤ 0,5 z 2
).
Кулачковый генератор волн имеет кула­чок, выполненный по форме кольца, рас­тянутого четырьмя силами с углом между силами 2β = 60°. Радиус-вектор кулачка (рис. 5, слева) в каждой четверти
где — внутренний диаметр подшипника генератора; — радиальные перемещения гибкого кольца подшипника, которые под­считывают в интервале ;
Здесь — потребное максимальное упру­гое перемещение с учетом упругих податливостей генератора волн и жесткого коле­са, а также отклонений размеров от номи­нальных при изготовлении;
Дисковый генератор волн (см. рис. 5, справа) имеет два больших ролика диа­метром Dр, расположенных на эксцентри­ковом валике с эксцентриситетом е:
где е = 3,4 ; —внутренний диаметр цилиндра или подкладного кольца.
Подшипники генератора волн рассчитывают по реакции F R
на динамическую грузоподъемность. Радиальная реакция на один подшипник , осевая , коэффициент вращения V =1,2, коэффициент безопасности Кб =1,1 —для кулачковых генераторов (с гибким под­шипником), Кб = 1,3 — для дисковых гене­раторов с обычными подшипниками.
Гибкое колесо выполняют с дном (рис. 4, сверху) или сo шлицевым соединени­ем (рис. 4, снизу), причем зубчатые венцы одинаковые (с эвольвентными зубьями), но В1 = 0,5 В. Толщина зубчатого венца до впадин зубьев
Остальные величины: С = 0,2В; h 2
= (0,5...0,8) h 1
, h 1
`=h 1
; L = 0,8d; h 4
= (1...1,2) h 2
, h 3
= 2h 1
, h 5
≥ 0,16d.
Гибкое колесо проверяют на прочность по известным зависимостям для запаса прочности. Зависимость для определения общего запа­са прочности гибкого колеса:
где u — передаточное отношение волновой передачи в одной ступени; d = mz 1
—диа­метр делительной окружности, мм; m — модуль, мм; L — длина, мм (см. рис. 4); — радиальная деформа­ция; E = 2·10 5
МПа — для стали; h 1
— толщина зубчатого венца, равная 0,5(d f
1
— d ц
), мм; K σ
— эффективный коэф­фициент концентрации напряжений у осно­вания зуба; Т—вращающий момент, Н·м; К d
— коэффициент увеличения нап­ряжений от сил в зацеплении; σ -1
— пере­дел выносливости материала стандартных круглых образцов при знакопеременном цикле напряжений, МПа.
Эффективный коэффициент концентра­ции напряжений
Минимальный радиус переходной по­верхности, мм,
где С* = 0,25, ρ* = 0,4 при m> 1; С* = 0,35, ρ* = 0,4 при m= 1...0,5; С* = 0,5, ρ* = 0,33 при m ≤ 0,5.
Коэффициент увеличения напряжений от сил в зацеплении
Колеса выполняют из стали ЗОХГСА, 50Х, 38ХНВА, 40X13 с твердостью 28...32НRC.
Жесткое колесо выполняют с толщиной обода h 0
> (6...8) h 1
. Меньший коэффициент принимают при посадке жесткого колеса в корпус по посадке с натягом.
1. «Детали машин», Д. Н, Решетов, изд. «Машиностроение», Москва, 1989 г.
Банк рефератов содержит более 364 тысяч рефератов , курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.










Название: Волновые передачи
Раздел: Промышленность, производство
Тип: реферат
Добавлен 01:27:01 18 декабря 2010 Похожие работы
Просмотров: 1104
Комментариев: 13
Оценило: 2 человек
Средний балл: 5
Оценка: неизвестно     Скачать

Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)

Реферат : Волновые передачи - BestReferat.ru
Волновые передачи - Реферат , страница 1
реферат на тему Волновые передачи - скачать бесплатно
Реферат Волновая передача
Волновые передачи
Контрольная Работа Главные Члены Предложения 3 Класс
Реферат Педагога Психолога
Сочинение На Тему Моя Родина 7 Класс
Финансовые Результаты Курсовые
Сочинение По Произведению После

Report Page