Реферат: Практическое применение теории игр

Реферат: Практическое применение теории игр




👉🏻👉🏻👉🏻 ВСЯ ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻




























































Оренбургский государственный аграрный университет
Кафедра организации производства и моделирования экономических систем
"Практическое применение теории игр"

I.Теоретические основы методов программирования
3. Сетевое планирование и управление
4. Моделирование систем массового обслуживания
II. Практическое применение теории игр в задачах моделирования экономических процессах
Целью данного реферативного исследования является рассмотрение решения задач с помощью методов: динамического программирования, теории игр, сетевого планирования и управления и моделирование систем массового обслуживания. Актуальность данной работы заключается в том, что с помощью этих методов можно облегчить условия труда современному человеку. В приведенной ниже работе можно найти способы решения задач, которые часто встречаются в нашем обиходе: например, для менеджера предприятия, для бухгалтеров, для отдела потребления и т.д.
Особое внимание в данной работе уделено фактору сезонности в экономических процессах, приведения формул и примеров расчетов. Некоторые модели посвящены рассмотрению ряда прикладных задач маркетинга, менеджмента и других областей управления в экономике: моделирование спроса и потребления, научное управление запасами, аналитическое моделирование систем массового обслуживании, принятие решений на основе теории игр.
На моделях связанных с теорией игр я решила остановиться более подробно, так как там представлены, на мой взгляд, более актуальные задачи: как сделать так, чтобы природа работала на тебя, а не ты на неё, как получить набольшую выгоду или учет твоих интересов конкурентом, или поставщиком, какой товар лучше производить и т.д.
I
. Теоретические основы методов программирования

Динамическое программирование — один из разделов оптимального программирования, в котором процесс принятия решения и управления может быть разбит на отдельные этапы (шаги).
Экономический процесс является управляемым, если можно влиять на ход его развития. Под управлением понимается совокупность решений, принимаемых на каждом этапе для решений, принимаемых на каждом этапе для влияния на ход развития процесса. Например, выпуск продукции предприятием – управленческий процесс. Совокупность решений принимаемых в начале года (квартала и т.д.) по обеспечению предприятия сырьем, замене оборудования, финансированию и т.д., является управлением. Необходимо организовать выпуск продукции так, чтобы принятые решения на отдельных этапах способствовали получению максимально возможного объема продукции или прибыли.
Динамическое программирование позволяет свести одну сложную задачу со многими переменными ко многим задачам с малым числом переменных. Это значительно сокращает объем вычислений и ускоряет процесс принятия управленческого решения.
При решении задачи этим методом процесс решения расчленяется на этапы, решаемые последовательно во времени и приводящие, в конечном счете, к искомому решению. Типичные особенности многоэтапных (многошаговых) задач, решаемых методом динамического программирования, состоят в следующем:
Процесс перехода производственно-экономической системы из одного состояния в другое должен быть марковским (процессом с отсутствием последействия). Это значит, что если система находится в некотором состоянии S n

S n
, то дальнейшее развитие процесса зависит только от данного состояния и не зависит от того, каким путем система приведена в это состояние.
Процесс длится определенное число шагов N. На каждом шаге осуществляется выбор одного управления u n
, под воздействием, которого система переходит из одного состояния S n
в другое S n
+1
:S n
S n
+1
. Поскольку процесс марковский, то S n
= u n
(S n
) зависит только от текущего состояния.
Каждый шаг (выбор очередного решения) связан с определенным эффектом, который зависит от текущего со стояния и принятого решения: (S n
, S n
).
Общий эффект (доход) за N шагов слагается из доходов на отдельных шагах, т.е. критерий оптимальности дол жен быть аддитивным (или приводящимся к нему).
Требуется найти такое решение u n
для каждого шага (n = 1, 2, 3, ..., N), т.е. последовательность (u 1
, ..., u N
), чтобы получить максимальный эффект (доход) за N шагов.
В отличие от линейного программирования, в котором симплексный метод является универсальным методом решения, в динамическом программировании такого универсального метода не существует. Одним из основных методов динамического программирования является метод рекуррентных соотношений, который основывается на использовании принципа оптимальности, разработанного американским математиком Р. Беллманом. Принцип состоит в том, что, каковы бы ни были начальное состояние на любом шаге и управление, выбранное на этом шаге, последующие управления должны выбираться оптимальными относительно состояния, к которому придет система в конце данного шага. Использование данного принципа гарантирует, что управление, выбранное на любом шаге; не локально лучше, а лучше с точки зрения процесса в целом.
В некоторых задачах, решаемых методом динамического программирования, процесс управления разбивается на шаги. При распределении на несколько лет ресурсов деятельности предприятия шагом целесообразно считать временной период; при распределении средств между предприятиями — номер очередного предприятия. В других задачах разбиение на шаги вводится искусственно. Например, непрерывный управляемый процесс можно рассматривать как дискретный, условно разбив, его на временные отрезки (шаги). Исходя из условий каждой конкретной задачи, длину шага выбирают таким образом, чтобы на каждом шаге получить простую задачу оптимизации и обеспечить требуемую точность вычислений.
Любая возможная допустимая последовательность решений (u 1
, ..., u N
) называется стратегией управления
. Стратегия управления, доставляющая максимум критерию оптимальности, называется оптимальной
.
В основе общей концепции метода ДП лежит принцип оптимальности
Беллмана
:
Оптимальная стратегия обладает таким свойством, что независимо от того, каким образом система оказалась в рассматриваемом конкретном состоянии, последующие решения должны составлять оптимальную стратегию, привязывающуюся к этому состоянию. Математически этот принцип записывается в виде рекуррентного соотношения ДП (РДП):

где — все допустимые управления при условии, что система находится в состоянии S n
;
(S n
, S n
) — эффект от принятия решения u n
;
Благодаря принципу оптимальности удается при последующих переходах испытывать не все возможные варианты, лишь оптимальные выходы. РДП позволяют заменить трудоёмкое вычисление оптимума по N переменным в исходной задаче решением N задач, в каждой из которых оптимум годится лишь по одной переменной.
Имеется очень много практически важных задач, которые ставятся и решаются как задачи ДП (задачи о замене оборудования, о ранце, распределения ресурсов и т.д.)
В качестве примера построения РДП рассмотрим использование принципа оптимальности для реализации математической модели задачи оптимального распределения некоторого ресурса в объеме х:
где x j
— количество ресурса, используемое j-м способом;
— доход от применения способа j, j = 1, N .
Рекуррентные соотношения, с помощью которых находится решение этой задачи, имеют вид:
При решении экономических задач часто анализировать ситуации, в которых сталкиваются интересы двух или более конкурирующих сторон, преследующих различные цели; это особенно характерно в условиях рыночной экономики. Такого рода ситуации называются конфликтными.

Математической теорией конфликтных ситуаций является теория игр
. В игре могут сталкиваться интересы двух ( игра парная
) или нескольких ( игра множественная
) противников; существуют игры с бесконечным множеством игроков. Если во множественной игре игроки образуют коалицию, то игра называется коалиционной
; если таких коалиций две, то игра сводится к парной.
На промышленных предприятиях теория игр может применяться для выбора оптимальных решений, например, при создании рациональных запасов сырья, материалов, полуфабрикатов, когда противоборствуют две тенденции: увеличение запасов, гарантирующих бесперебойную работу производства, сокращения запасов в целях минимизации затрат на их хранение. В сельском хозяйстве теория игр может применяться при решении таких экономических задач, как посева одной из возможных культур, урожай которой зависит от погоды, если известны цена единицы той или иной культуры и средняя урожайность каждой культуры в зависимости от погоды (например, будет ли лето засушливы, нормальным или дождливым); в этом случае одним выступает сельскохозяйственное предприятие, стремящееся обеспечить наибольший доход, а другим — природа.
Решение подобных задач требует полной определенности формулировании их условий ( правил игры
); установления количества игроков, выявления возможных стратегий игроков, возможных выигрышей (проигрыш понимается как отрицательный выигрыш). Важным элементом в условии игровых задач является стратегия
, т.е. совокупность правил, которые в зависимости от ситуации в игре определяют однозначный выбор действий данного игрока. Если в процессе игры игрок применяет попеременно несколько стратегий, то такая стратегия называется смешанной
, а ее элементы — чистыми
стратегиями. Количество стратегий у каждого игрока может быть конечным и бесконечным, в зависимости от этого игры подразделяются на конечные
и бесконечные
.
Важными являются понятия оптимальной стратегии
, цены игры, среднего выигрыша
. Эти понятия находят отражение в определении решения
игры: стратегии Р* и Q* первого и второго игрока соответственно называются их оптимальными стратегиями
, а число V — ценой игры
, если для любых стратегий Р первого игрока и любых стратегий Q выполняются неравенства: где М (Р,Q) означает математическое ожидание выигрыши (средней выигрыш) первого игрока, если первым и вторым игроками избраны соответственно стратегии Р и Q.
Из неравенств следует, в частности, что V = M (P *
,Q *
),т.е. цена игры равна математическому ожиданию выигрыша первого игрока, если оба игрока изберут оптимальные для себя стратегии.
Одним из основных видов игр являются матричные игры
, которыми называются парные игры с нулевой суммой
(один игрок выигрывает столько, сколько проигрывает другой) при условии, что каждый игрок имеет конечное число стратегий. В этом случае парная игра формально задается матрицей А = (а ij
), элементы которой а ij
определяют выигрыш первого игрока (и соответственно проигрыш второго), если первый игрок выберет i-ю стратегию (i = ), а второй —j-ю стратегию (j = ). Матрица А называется матрицей игры
, или платежной матрицей
.
Существует ряд методов решения матричных игр. Если матрица игры имеет одну из размерностей, равную двум (у одного из игроков имеется только две стратегии), то решение игры может быть получено графически. Известно несколько методов приближенного решения матричной игры, например, метод Брауна. Во многих игровых задачах в сфере экономики неопределенность вызвана не сознательным противодействием противника, а недостаточной осведомленностью об условиях, в которых действуют стороны.
Когда одной из сторон выступает природа, когда неизвестно заранее погода, игры называются – играми с природой
. В этих случаях строки матрицы игры соответствуют стратегии игрока, а столбцы — состояниям «природы». В ряде случаев при решении такой игры рассматривают матрицу рисков
.
При решении игр с природой используется так же ряд критериев: критерий Сэвиджа, критерий Вальда, критерий Гурвица и др.
При максимальном критерии Вальда
оптимальным считается та стратегия лица, принимающего решение, которая обеспечивает максимум минимального выигрыша; применяя этот критерий, ЛПР в большей степени ориентируется на наихудшие условия (этот критерий иногда называют критерием «крайнего пессимизма»).
Критерий минимаксного риска Сэвиджа
предполагает ,
что оптимальной является та стратегия, при которой величина риска в наихудшем случае минимальна.
При использовании критерия «пессимизм — оптимизма” Гурвица
ЛПР выбирает некоторый так называемый “коэффициент пессимизма» q; при q = 1 критерий Гурвица приводится к критерию Вальда («крайнего пессимизма»), а при критерию q=0 «крайнего оптимизма».
3.
Модели сетевого планирования и управления

Сетевой моделью (другие названия: сетевой график, сеть
) называется экономико-математическая модель, отражающая комплекс работ (операций) и событий, связанных с реализацией некоторого проекта (научно-исследовательского, производственного и др.), в их логической и технологической последовательности и связи. Анализ сетевой модели, представленной в графической или табличной (матричной) форме, позволяет, во-первых, более четко выявить взаимосвязи этапов реализации проекта и, во-вторых, определить наиболее оптимальный порядок выполнения этих этапов в целях, например, сокращения сроков выполнения всего комплекса работ. Таким образом, методы сетевого моделирования относятся к методам принятия оптимальных решений.
Математический аппарат сетевых моделей базируется на теории графов.
Графом
называется совокупность двух конечных множеств: множества точек, которые называются вершинами, и множества пар вершин, которые называются ребрами. Если рассматриваемые пары вершин являются упорядоченными, т. е. на каждом ребре задается направление, то граф называется ориентированным
; в противном случае — неориентированным.
Последовательность неповторяющихся ребер, ведущая от некоторой вершины к другой, образует путь
. Граф называется связным
, если для любых двух его вершин существует путь, их соединяющий; в противном случае граф называется несвязным
. В экономике чаще всего используются два вида графов: дерево и сеть. Дерево
представляет собой связный граф без циклов, имеющий исходную вершину (корень) и крайние вершины; пути от исходной вершины к крайним вершинам называются ветвями
. Сеть
— это ориентированный конечный связный граф, имеющий начальную вершину ( источник
) и конечную вершину ( сток
). Таким образом, сетевая модель представляет собой граф вида «сеть».
В экономических исследованиях сетевые модели возникают при моделировании экономических процессов методам сетевого планирования и управления (СПУ).
Объектом управления в системах сетевого планирования и управления являются коллективы исполнителей, располагающих определенными ресурсами и выполняющих определенный комплекс операций, который призван обеспечить достижение намеченной цели, например, разработку нового изделия, строительства объекта и т.п.
Основой СПУ является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы.
Основные понятия СМ: событие, работа и путь. На рисунке графически представлена СМ, состоящая из 11 событий и 16 работ, продолжительность выполнения которых указана над работами.
Работа характеризует материальное действие, требующее использования ресурсов, или логическое, требующее взаимосвязи событий. При графическом представлении работа изображается стрелкой, которая соединяет два события. Она обозначается парой заключенных в скобки чисел (i, j), где i - номер события, из которого работа выходит, а j – номер события, в которое она входит. Работа не может начаться раньше, чем свершится событие, из которого она выходит. Каждая работа имеет определенную продолжительность t (i, j). Например, запись t (2,5) = 4 означает, что работа имеет продолжительность 5 единиц. К работам относятся такие процессы, которые не требуют ни ресурсов, ни времени выполнения. Они заключаются в установлении логической взаимосвязи работ и показывают, что одна из них непосредственно зависит от другой; такие работы называются фиктивными и на графике изображаются пунктирными стрелками.
Событиями называются результаты выполнения одной или нескольких работ. Они не имеют протяженности во времени. Событие свершается в тот момент, когда оканчивается последняя из работ, входящая в него. События обозначаются одним числом и при графическом представлении СМ изображаются кружком (или иной геометрической фигурой), внутри которого проставляется его порядковый номер (i = 1, 2, ..., N). В СМ имеется начальное событие (с номером 1), из которого работы только выходят, и конечное событие (с номером N), в которое работы только входят.
Путь — это цепочка следующих друг за другом работ, соединяющих начальную и конечную вершины, например, в приведенной выше модели путями являются L 1
= (1, 2, 3, 7, 10, 11), L 2
= (1, 2, 4, 6, 11) и др. Продолжительность пути определяется суммой продолжительностей составляющих его работ. Путь, имеющий максимальную длину, называют критическим
и обозначают L кр
, а его продолжительность — t кр
. Работы, принадлежащие критическому пути, называются критическими. Их несвоевременное выполнение ведет к срыву сроков всего комплекса работ.
СМ имеют ряд характеристик, которые позволяют определить степень напряженности выполнения отдельных работ, а также всего их комплекса и принять решение о перераспределении ресурсов. Однако перед расчетом СМ следует убедиться, что она удовлетворяет следующим основным требованиям:
1. События правильно пронумерованы, т. е. для каждой работы (i,j) i Реферат: Практическое применение теории игр
Контрольная работа: Контрольная по Жилищному праву
Физкультура В Домашних Условиях Реферат
Реферат по теме Лекарственные растения, применяемые при болезнях почек
Эссе На Тему Зачем Медработнику Философия
Сочинение По Рассказу Отцы И Дети
Реферат по теме Порядок звернення до Європейського Суду по правам людини
Реферат по теме Хирургия (Желчный перитонит)
Курсовая работа: Теория экономической неопределенности и риска и их оценка в экономике России
Реферат по теме Характерные особенности рукописной книги Киевской Руси
Реферат: Wall Street By Stone Essay Research Paper
Темы Для Пробного Итогового Сочинения 2022 2022
Реферат: Постановка задачі оптимального керування
Реферат по теме Особенности чрезвычайных ситуаций социального характера
Скачать Титульный Лист Реферата Для Колледжа
Споры Виды Споров Реферат
Реферат по теме Фридрих Шеллинг
Курсовая работа по теме Моделювання роботи смугопропускаючого фільтру
Курсовая Работа На Тему Мониторинг Виртуальной Памяти В Ос Linux
Статья: Явления происходящие на Солнце и их воздействия на Землю. Магнитные бури. Полярные сияния
Реферат: Авторское право в сфере технологий
Реферат: Коммерческие формы передачи технологий
Статья: Определение всхожести семян
Реферат: Образовательная программа школы: назначение, содержание, участие учителей и учащихся в ее разработке

Report Page