Реферат На Тему Титан И Его Сплавы

Реферат На Тему Титан И Его Сплавы



>>> ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ <<<






























Реферат На Тему Титан И Его Сплавы

Главная
Коллекция "Otherreferats"
Производство и технологии
Титан и титановые сплавы

История открытия и изучения титана. Важнейшие преимущества титановых сплавов перед другими конструкционными материалами. Структуры титановых сплавов. Сферы применения титана и титановых сплавов, перспективы его использования в медицине и строительстве.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Важнейшими преимуществами титановых сплавов перед другими конструкционными материалами являются их высокие удельная прочность и жаропрочность в сочетании с высокой коррозионной стойкостью. Кроме того, титан и его сплавы хорошо свариваются, парамагнитны и обладают некоторыми другими свойствами, имеющими важное значение в ряде отраслей техники. Перечисленные качества титановых сплавов открывают большие перспективы их применения в тех областях машиностроения, где требуются высокая удельная прочность и жаропрочность в сочетании с высокой коррозионной стойкостью. Это относится, в первую очередь, к таким отраслям техники как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.
Касаясь некоторых специфических свойств титана, можно отметить, что он представляет большой интерес как конструкционный материал для космических кораблей.
Вряд ли можно найти еще один такой металл, история открытия и изучения которого была бы так полна драматических событий, ошибок и заблуждений, как история титана. Первооткрывателем титана считается 28-летний английский монах Уильям Грегор. В 1790 г., проводя минералогические изыскания в своем приходе, он обратил внимание на распространенность и необычные свойства черного песка в долине Менакэна на юго-западе Англии и принялся его исследовать. В песке священник обнаружил крупицы черного блестящего минерала, притягивающегося обыкновенным магнитом. Будучи минералогом-любителем и имея свою небольшую минералогическую лабораторию, Грегор произвел с этим магнитным минералом несколько опытов: растворил его сначала в соляной, затем в серной кислоте, упарил раствор и получил белый порошок, который при прокалке желтел, а при спекании с углем приобретал голубой цвет. Исследованное природное образование черного цвета Грегор принял за новый, неизвестный ранее минерал, а выделенный из него белый порошок - за новый элемент. Минералу и элементу дали название по местности, где они были найдены: минерал «менакэнит» и элемент «менакин». По сегодняшним представлениям «менакэнит» был смесью ильменита (FeTiO3) и магнетита (FeTiO3(nFe3O4), а белый порошок «менакин» - диоксидом титана.
В 1795 г. немецкий исследователь-химик Мартин Генрих Клапрот, изучая рутил, выделил из него диоксид нового металла - белый порошок, похожий на описанный ранее Грегором. И хотя до получения чистого металла было еще очень далеко - почти полтора столетия, Клапрот известил мир об открытии нового металла, которому дал название «титан». Но почему титан? Вопреки распространенному в те времена правилу французских химиков во главе с Лавуазье - присваивать новым элементам и соединениям имена, отражающие их свойства, у Клапрота был свой принцип.
Ни один конструкционный металл не знал такой длительной истории исследований, как титан. Первые попытки выделить чистый материал заканчивались неудачно. Исследователи получали металл с высоким содержанием примесей кислорода, азота, серы, фосфора, водорода и др., в результате чего, выделенный металл был весьма хрупким и признавался бесполезным для дальнейшего использования. Чистый титан (содержание примесей менее 0,1%) впервые был получен в 1875 году русским ученым Д.К. Кирилловым, но его работа осталась незамеченной. Полученный в 1925 г. Ван Аркелем и де Буром иодидным методом чистейший титан оказался пластичным и технологичным металлом со многими ценными свойствами, которые привлекли к нему внимание широкого круга конструкторов и инженеров. В 1940 г. Кролль предложил магниетермический способ извлечения титана из руд, который является основным и в настоящее время. В 1947 г. были выпущены первые 45 кг технически чистого титана. Стоимость его, конечно, была баснословно высокой - 10 долл. за 1 кг, т. е. этот новый конструкционный материал был во много раз дороже железа, алюминия, магния. (Интересно, что стоимость технически чистого титана сегодня приблизительна такая же: 11 долл. за 1 кг, а стоимость сплавов титана достигает 15 долл. за 1 кг). Тем не менее выпуск металлического титана осуществлялся такими гигантскими темпами, каких не знало никакое другое металлургическое производство. Первая промышленная партия титана массой 2 т была получена в 1948 г., и этот год считается началом практического применения титана. Мировое производство титана (без СССР) за период с 1953 г. по 1996 г. возросло более чем в 30 раз. Производство титана в нашей стране началось в 1950 г. И нарастало довольно быстро. В 1960-1990 гг. в СССР было создано крупнейшее в мире производство титана и его сплавов. В конце 80-х годов объем промышленного производства титана в СССР превышал объем его производства во всех остальных странах мира вместе взятых.
Титан подобно железу является полиморфным металлом и имеет фазовое превращение при температуре 882°С. Ниже этой температуры устойчива гексагональная плотноупакованная кристаллическая решетка б-титана, а выше - объемно центрированная кубическая (о. ц. к.) решетка в-титана.
Титан упрочняется легированием б- и в-стабилизирующими элементами, а также термической обработкой двухфазных (б+в)-сплавов. К элементам, стабилизирующим б-фазу титана, относятся алюминий, в меньшей степени олово и цирконий. б-стабилизаторы упрочняют титан, образуя твердый раствор с б-модификацией титана.
За последние годы было установлено, что, кроме алюминия, существуют и другие металлы, стабилизирующие б-модификацию титана, которые могут представлять интерес в качестве легирующих добавок к промышленным титановым сплавам. К таким металлам относятся галлий, индий, сурьма, висмут. Особый интерес представляет галлий для жаропрочных титановых сплавов благодаря высокой растворимости в б - титане. Как известно повышение жаропрочности сплавов системы Ti - Alограничено пределом 7 - 8% вследствие образования хрупкой фазы. Добавкой галлия можно дополнительно повысить жаропрочность предельнолегированных алюминием сплавов без образования б2-фазы.
Алюминий практически применяется почти во всех промышленных сплавах, так как является наиболее эффективным упрочнителем, улучшая прочностные и жаропрочные свойства титана. В последнее время наряду с алюминием в качестве легирующих элементов применяют цирконий и олово.
Цирконий положительно влияет на свойства сплавов при повышенных температурах, образует с титаном непрерывный ряд твердых растворов на основе б - титана и не участвует в упорядочении твердого раствора.
Олово, особенно в сочетании с алюминием и цирконием, повышает жаропрочные свойства сплавов, но в отличие от циркония образует в сплаве упорядоченную фазу. Преимущество титановых сплавов с б-структурой - в высокой термической стабильности, хорошей свариваемости и высоком сопротивлении окислению. Однако сплавы типа б чувствительны к водородной хрупкости ( вследствие малой растворимости водорода в б-титане) и не поддаются упрочнению термической обработкой. Высокая прочность, полученная за счет легирования, сопровождается низкой технологической пластичностью этих сплавов, что вызывает ряд трудностей в промышленном производстве.
Для повышения прочности, жаропрочности и технологической пластичности титановых сплавов типа б в качестве легирующих элементов наряду с б-стабилизаторами применяются элементы, стабилизирующие в-фазу. Элементы из группы в-стабилизаторов упрочняют титан, образуя б- и в-твердые растворы.
В зависимости от содержания указанных элементов можно получить сплавы с б+в- и в-структурой. Таким образом, по структуре титановые сплавы условно делятся на три группы: сплавы с б-, (б+в)- и в-структурой. В структуре каждой группы могут присутствовать интерметаллидные фазы.
Преимущество двухфазных (б+в)-сплавов - способность упрочняться термической обработкой (закалкой и старением), что позволяет получить существенный выигрыш в прочности и жаропрочности.
Одним из важных преимуществ титановых сплавов перед алюминиевыми и магниевыми сплавами является жаропрочность, которая в условиях практического применения с избытком компенсирует разницу в плотности (магний 1,8, алюминий 2,7, титан 4,5). Превосходство титановых сплавов над алюминиевыми и магниевыми сплавами особенно резко проявляется при температурах выше 300°С. Так как при повышении температуры прочность алюминиевых и магниевых сплавов сильно уменьшается, а прочность титановых сплавов остается высокой.
Титановые сплавы по удельной прочности (прочности, отнесенной к плотности) превосходят большинство нержавеющих и теплостойких сталей при температурах до 400°С - 500°С. Если учесть к тому же, что в большинстве случаев в реальных конструкциях не удается полностью использовать прочность сталей из-за необходимости сохранения жесткости или определенной аэродинамической формы изделия (например, профиль лопатки компрессора), то окажется, что при замене стальных деталей титановыми можно получить значительную экономию в массе.
Еще сравнительно недавно основным критерием при разработке жаропрочных сплавов была величина кратковременной и длительной прочности при определенной температуре. В настоящее время можно сформулировать целый комплекс требований к жаропрочным титановым сплавам, по крайней мере для деталей авиационных двигателей.
В зависимости от условий работы обращается внимание на то или иное определяющее свойство, величина которого должна быть максимальной, однако сплав должен обеспечивать необходимый минимум и других свойств, как указано ниже.
1 Высокая кратковременная и длительная прочность во всем интервале рабочих температур. Минимальные требования: предел прочности при комнатной температуре 100ЧПа; кратковременная и 100-ч прочность при 400° С - 75ЧПа. Максимальные требования: предел прочности при комнатной температуре 120· Па, 100-ч прочность при 500° С - 65ЧПа.
2 Удовлетворительные пластические свойства при комнатной температуре: относительное удлинение 10%, поперечное сужение 30%, ударная вязкость 3ЧПаЧм. Эти требования могут быть для некоторых деталей и ниже, например для лопаток направляющих аппаратов, корпусов подшипников и деталей, не подверженных динамическим нагрузкам.
3 Термическая стабильность. Сплав должен сохранять свои пластические свойства после длительного воздействия высоких температур и напряжений. Минимальные требования: сплав не должен охрупчиваться после 100-ч нагрева при любой температуре в интервале 20 - 500°С. Максимальные требования: сплав не должен охрупчиваться после воздействия температур и напряжений в условиях, заданных конструктором, в течение времени, соответствующего максимальному заданному ресурсу работы двигателя.
4 Высокое сопротивление усталости при комнатной и высоких температурах. Предел выносливости гладких образцов при комнатной температуре должен составлять не менее 45% предела прочности, а при 400° С - не менее 50% предела прочности при соответствующих температурах. Эта характеристика особенно важна для деталей, подверженных вибрациям в процессе работы, как, например, лопатки компрессоров.
5 Высокое сопротивление ползучести. Минимальные требования: при температуре 400° С и напряжении 50ЧПа остаточная деформация за 100 ч не должна превосходить 0,2%. Максимальным требованием можно считать тот же предел при температуре 500° С за 100 ч. Эта характеристика особенно важна для деталей, подверженных в процессе работы значительным растягивающим напряжениям, как, например, диски компрессоров.
Однако со значительным увеличение ресурса работы двигателей правильнее будет базироваться на продолжительности испытания не 100 ч, а значительно больше - примерно 2000 - 6000 ч.
Несмотря на высокую стоимость производства и обработки титановых деталей, применение их оказывается выгодным благодаря главным образом повышению коррозионной стойкости деталей, их ресурса и экономии массы.
Стоимость титанового компрессора значительно выше, чем стального. Но в связи с уменьшением массы стоимость одного тонно-километра в случае применения титана будет меньше, что позволяет очень быстро окупить стоимость титанового компрессора и получить большую экономию.
4. Сферы применения титана и титановых сплавов
Авиационная промышленность - основной потребитель титановой продукции. Именно развитие авиационной техники дало толчок титановому производству. По своим физико-механическим свойствам титановые сплавы являются универсальным конструкционным материалом. Вплоть до конца 60-х годов ХХ века титан применялся главным образом для изготовления газовых турбин двигателей самолетов (титан очень прочный металл). В 70-х - 80-х годах титановые сплавы начали широко применяться для изготовления различных деталей планерной части самолетов (титан еще и легкий). Сейчас из титана делают обшивку для самолета, наиболее нагревающиеся детали, силовые элементы, детали шасси. В авиационных двигателях жаропрочные титановые сплавы применяются для изготовления лопаток, дисков и других элементов вентилятора и компрессора двигателя. В конструкции современного самолета может быть более 20 тонн титана. Например, в самолете Боинг-787 устанавливают около 2,5 миллионов титановых заклепок, что облегчает вес самолета на несколько тонн (по сравнению со стальными деталями).
Широко используют титан в судостроении. Он незаменим для обшивки судов, производства деталей насосов и трубопроводов. Такое качество титана, как малая плотность позволяет снижать массу корабля, а значит, повышать его маневренность и дальность хода. Обшитые листами титана корпуса судов никогда не потребуют покраски, ведь они десятилетиями не ржавеют и не разрушаются в морской воде (высокая коррозионная стойкость титана). А эрозионная и кавитационная стойкость позволяет не бояться больших скоростей в морской воде: взвешенные в ней мириады песчинок не повредят титановым рулям, винтам и корпусу.Слабые магнитные свойства титана и его сплавов используют при изготовлении навигационных приборов. В будущем планируется создание из титановых сплавов так называемых немагнитных кораблей, необходимых для геологогеофизических исследований в открытых океанах (устранится влияние металлических частей корабля на высокоточные навигационные приборы). Наиболее перспективное направление использования титана в судостроении - производство конденсаторных труб, турбинных двигателей и паровых котлов.Кроме этого, титан, обладающий высокой коррозионной стойкостью и способностью выдерживать огромные давления и нагрузки, - наилучший материал для создания глубоководных аппаратов.
С использованием титана и титановых сплавов успешно выпускается теплообменное оборудование для энергетической промышленности, а также для предприятий химической и нефтехимической отраслей. Оборудование изготавливаются из сплавов на основе титана: трубы для теплообменной аппаратуры различного назначения, конденсаторы турбин и в качестве внутренней поверхности дымовых труб. Использование титана позволяет увеличить долговечность, надежность и, следовательно, снизить расходы на капитальный ремонт и обслуживание этого оборудования. Титановые сплавы по стойкости к коррозии превосходят самые стойкие из имеющихся медных, медно-никелевых сплавов и нержавеющую сталь в 10-20 раз. Благодаря этому свойству можно уменьшить толщину стенки трубы для более быстрой передачи тепла в теплообменных аппаратах. Титановые сплавы применяются на объектах мировой тепловой и атомной энергетики с 1959 года.
Перспективной областью применения сплавов титана является глубокое и сверхглубокое бурение. Для добычи подземных богатств и для изучения глубоких слоев земной коры нужно проникнуть на очень большие глубины - до 15-20 тысяч метров. Обычные буровые трубы будут рваться под собственной тяжестью уже на глубине нескольких тысяч метров. И только благодаря трубам из высокопрочных сплавов на основе титана можно достичь прохождения действительно глубоких скважин.
В настоящее время титан успешно используется при разработке оборудования для освоения нефтегазовых месторождений на морских шельфах: глубоководные бурильные и добывающие установки; насосы; трубопроводы; теплообменное оборудование различного назначения; сосуды высокого давления и многое другое. По мнению специалистов, в глубоководной нефтедобыче титан и его сплавы должны стать одним из основных конструкционных материалов, поскольку имеют высокую коррозионную стойкость в морской воде. Из нашего титана производят трубы, отводы, фланцы, тройники, переходы для систем забортной, балластной и пластовой воды.
Строители тоже любят титан за его свойства. Отличная устойчивость к коррозии, прочность, легкий вес и долговечность обеспечивают самый длительный срок службы архитектурным деталям при любых условиях и с минимальной необходимостью проведения ремонта. Уникальная и неповторимая отражательная способность титана не сравнима с любым другим металлом. Он устойчив к загрязнениям городской атмосферы и морской среды, кислотным дождям, осадкам вулканической золы, промышленным выбросам и другим неблагоприятным атмосферным условиям. Титан не подвергается атмосферным влияниям и не обесцвечивается от ультрафиолетовых лучей. Также он обладает отличной устойчивостью к коррозии, которая может появиться в результате кислотных дождей и действия агрессивных газов (газ сернистой кислоты, газ сероводорода и т.д.). Все это является большим плюсом при использовании титана для строительства в крупных городах и промышленных областях. Титан используется для наружной обшивки зданий, кровельных материалов, облицовки колонн, софитов, карнизов, навесов, внутренней обшивки, легких крепежных приспособлений. Кроме того, титан используется в скульптуре и для изготовления памятников.
Титан необыкновенно популярен в медицине: любят титан ортопеды, кардиологи, стоматологи и даже нейрохирурги (врачи, которые лечат нервную систему). Из титановых сплавов делают превосходные хирургические инструменты, легкие и долговечные. У титана есть очень ценное для медиков свойство - он достаточно легко «вживляется» в организм человека. Ученые называют это свойство - «настоящее родство». Титановые конструкции (имплантанты, внутрикостные фиксаторы, наружные и внутренние протезы) абсолютно безопасны для костей и мышц. Они не вызывают аллергию, не разрушаются при взаимодействии с жидкостями и тканями организма и, конечно, с медицинскими препаратами. Кроме этого, протезы, изготовленные из титановых сплавов, очень прочны и износостойки, хотя все время выдерживают большие нагрузки. Вспомните, титан в 2-4 раза прочнее железа и в 6-12 раз прочнее алюминия (смотри раздел «Титан»). В стоматологии врачи широко используют самую передовую технологию для изготовления зубных протезов - титановые имплантаты. Титановый корень вживляется в челюсть, после чего на него наращивают верхнюю часть зуба. Из титана изготавливают протезы маленьких косточек внутри уха - и к людям возвращается слух! У титана есть еще одно положительное качество, которое тоже ценится в медицине. Титан - немагнитный металл. Поэтому больных, у которых есть титановые протезы, можно лечить с помощью физиотерапии (не таблетками, а при помощи приборов, в основе работы которых заложены физические явления - электротоки и магнит).
Значение металлов в человеческом обществе всё более возрастает. Переворот в технике происходит с интенсивным развитием алюминиевой и магниевой промышленности. В последние десятилетия человечество получило в своё распоряжение группы редких металлов. И вот уже в наши дни, в самые последние годы на авансцену истории «поднимается» новый промышленный металл - титан.
Титан с большим правом, чем алюминий, можно назвать металлом нашего века, точнее - второй его половины, так как этот новый конструкционный материал впервые стали производить и использовать только в пятидесятые годы. Впрочем, титан так и называют: «металл 20 века». И как много значений у слова «титан», так много эпитетов и наименований у самого металла. «Вечный», «парадоксальный», «металл сверхзвуковых скоростей, «металл будущего», «дитя войны» - вот только некоторые из них.
Титан называют металлом будущего. Это, конечно, правильно. В будущем появятся новые области применения замечательного материала, люди создадут сплавы с ещё более удивительными свойствами. Но ведь будущее начинается сегодня, будущее и настоящее не отдельны непроходимой границей.
Титан уже давно стал материалом современности - ценным, важным и необходимым. Больше того, широкое, повсеместное его применение как раз позволит скорее приблизить то светлое и прекрасное будущее, о котором мы все мечтаем.
1 О. П. Солонина, С. Г. Глазунов. «Жаропрочные титановые сплавы». Москва «Металлургия» 1976 г.
2 http://libmetal.ru/titan/titan%20osnprop.htm
3 http://www.metotech.ru/titan-opisanie.htm
Рассмотрение основных факторов, влияющих на технологические свойства титана и его сплавов. Определение свойств титановых сплавов. Оценка свойств материала для добычи нефти и газа на шельфе. Изучение практики использования в нефтегазовой промышленности. реферат [146,1 K], добавлен 02.04.2018
Титановые сплавы - материалы, плохо поддающиеся обработке резанием. Общие сведения о существующих титановых сплавах. Уровни механических свойств. Выбор инструментальных материалов для токарной обработки титановых сплавов. Нанесение износостойких покрытий. автореферат [1,3 M], добавлен 27.06.2013
Общая характеристика и механические свойства титана как металла. Оценка главных преимуществ и недостатков титановых сплавов, сферы их практического применения и значение в кораблестроении. Батискаф "Алвин": история проектирования и построения, проблемы. реферат [161,2 K], добавлен 19.05.2015
Обоснование применения новых полуфабрикатов из титановых сплавов, как наиболее перспективных конструкционных материалов в области стационарной атомной энергетики. Опыт применения титана и его сплавов для конденсаторов отечественных и зарубежных АЭС. дипломная работа [11,7 M], добавлен 08.01.2011
Содержание титана в земной коре. Состав титановых концентратов, полученных из титановых руд, находящихся на территории Казахстана. Современная технология получения титанового шлака и металлического титана. Особенности очистки четырёххлористого титана. реферат [4,8 M], добавлен 11.03.2015
Титан и его распространенность в земной коре. История происхождения титана и его нахождение в природе. Сплавы на основе титана. Влияние легирующих элементов на температуру полиморфного превращения титана. Классификация титана и его основных сплавов. реферат [46,4 K], добавлен 29.09.2011
Физические особенности лазерной сварки титановых сплавов. Моделирование процесса воздействия лазерного излучения на металл. Исследование влияния энергетических и временных характеристик и импульсного лазерного излучения на плавление титановых сплавов. курсовая работа [1,4 M], добавлен 11.01.2014
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2020, ООО «Олбест»
Все права защищены


Титан и титановые сплавы | реферат [46,4 K], добавлен 29.09.2011
Титан и его сплавы . Реферат . Другое. 2011-09-29
Реферат : Титановые сплавы - BestReferat.ru
Титан и его сплавы | Современные Технологии Производства
Читать реферат по материаловедению: "Титановые сплавы " Страница 1
Сети И Телекоммуникации Реферат
Реферат Бам Стройка Века Бесплатно
Эссе Моя Малая Родина 10 Класс
Входная Контрольная Работа По Информатике 5 Класс
Клише Для Итогового Сочинения Декабрьское 2021

Report Page