Реферат На Тему Биохимические Функции Печени

Реферат На Тему Биохимические Функции Печени



>>> ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ <<<






























Реферат На Тему Биохимические Функции Печени

Главная
Коллекция "Otherreferats"
Медицина
Биохимия печени

Печень: понятие, обмен веществ. Биохимическая трансформация, фаза резорбции и пострезорбции. Углеводный обмен в печени. Метаболизм фруктозы и галактозы, липидов. Липидный обмен, биосинтез кетоновых тел. Кетонурия и кетоацидоз, холевая и желчная кислота.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Печень - самый крупный орган в организме человека и животных; у взрослого человека она весит 1,5 кг. Хотя печень составляет 2-3% массы тела, на нее приходится от 20 до 30% потребляемого организмом кислорода.
Печень состоит примерно из 300 млрд клеток. 80% из которых составляют гепатоциты. Клетки печени занимают центральное место в реакциях промежуточного метаболизма. Поэтому в биохимическом отношении гепатоциты являются как бы прототипом всех остальных клеток.
Важнейшими функциями печени являются метаболическая, депонирующая, барьерная, экскреторная и гомеостатическая.
Метаболическая (2Б, К). Продукты расщепления питательных веществ поступают в печень (1) из пищеварительного тракта через воротную вену. В печени протекают сложные процессы обмена белков и аминокислот, липидов, углеводов, биологически активных веществ (гормонов, биогенных аминов и витаминов), микроэлементов, регуляция водного обмена. В печени синтезируются многие вещества (например, желчи), необходимые для функционирования других органов.
Депонирующая (2Д). В печени происходит накопление углеводов (например, гликогена), белков, жиров, гормонов, витаминов, минеральных веществ. Из печени в организм постоянно поступают макроэргические соединения и структурные блоки, необходимые для синтеза сложных макромолекул (3).
Барьерная (4). В печени осуществляется обезвреживание (биохимическая трансформация) чужеродных и токсичных соединений, поступивших с пищей или образовавшихся в кишечнике, а также токсических веществ экзогенного происхождения (2К).
Экскреторная (5). Из печени различные вещества эндо- и экзогенного происхождения либо поступают в желчные протоки и выводятся с желчью (более 40 соединений), либо попадают в кровь, откуда выводятся почками.
Гомеостатическая (на схеме не приведена). Печень выполняет важные функции по поддержанию постоянного состава крови (гомеостаза), обеспечивая синтез, накопление и выделение в кровь различных метаболитов, а также поглощение, трансформацию и экскрецию многих компонентов плазмы крови.
Печень принимает участие в метаболизме почти всех классов веществ.
Метаболизм углеводов. Глюкоза и другие моносахариды поступают в печень из плазмы крови. Здесь они превращаются в глюкозо-6-фосфат и другие продукты гликолиза (см. с. 302). Затем глюкоза депонируется в виде резервного полисахарида гликогена или превращается в жирные кислоты. При снижении уровня глюкозы печень начинает поставлять глюкозу за счет мобилизации гликогена. Если запас гликогена оказывается исчерпанным, глюкоза может синтезироваться в процессе глюконеогенеза из таких предшественников, как лактат, пируват, глицерин или углеродный скелет аминокислот.
Метаболизм липидов. Жирные кислоты синтезируются в печени из ацетатных блоков (см. с. 170). Затем они включаются в состав жиров и фосфолипидов, которые поступают в кровь в форме липопротеинов. В то же время жирные кислоты поступают в печень из крови. Для энергообеспечения организма большое значение имеет свойство печени конвертировать жирные кислоты в кетоновые тела, которые затем вновь поступают в кровь (см. с. 304).
В печени идет синтез холестерина из ацетатных блоков. Затем холестерин в составе липопротеинов транспортируется в другие органы. Избыток холестерина превращается в желчные кислоты или выводится из организма с желчью (см. с. 306).
Метаболизм аминокислот и белков. Уровень аминокислот в плазме крови регулируется печенью. Избыточные аминокислоты расщепляются, аммиак связывается в цикле мочевины (см. с. 184), мочевина переносится в почки. Углеродный скелет аминокислот включается в промежуточный метаболизм как источник для синтеза глюкозы (глюконеогенез) или как источник энергии. Кроме того, в печени осуществляется синтез и расщепление многих белков плазмы крови.
Стероидные гормоны и билирубин, а также лекарственные вещества, этанол и другие ксенобиотики поступают в печень, где они инактивируются и конвертируются в высоко полярные соединения (см. с. 308).
Депонирование. Печень служит местом депонирования энергетических резервов организма (содержание гликогена может достигать 20% массы печени) и веществ-предшественников; здесь также депонируются многие минеральные вещества, следовые элементы, ряд витаминов, в том числе железо (около 15% всего железа, содержащегося в организме), ретинол, витамины A, D, K, B12 и фолиевая кислота.
Компенсаторные функции печени. Ткани высших организмов нуждаются в постоянном притоке макроэргических веществ и предшественников для синтеза более сложных макромолекул. Потребности организма обеспечиваются за счет питания, однако оно бывает нерегулярным и неравномерным. Перерывы в поступлении питательных веществ компенсируются печенью, которая вместе с другими тканями, прежде всего жировой тканью, выполняет компенсаторные и депонирующие функции.
В биохимии питания принято различать фазу резорбции и фазу пострезорбции которая охватывает состояния организма во время разгрузочных дней (в том числе при соблюдении поста) вплоть до полного голодания. Переход между этими двумя фазами определяется концентрацией макроэргических соединений в плазме крови и регулируется гормонами и вегетативной нервной системой.
Фаза резорбции (всасывания) начинается непосредственно с приемом пищи и длится примерно 2-4 ч. За счет переваривания пищи в плазме крови временно увеличивается концентрация глюкозы, аминокислот и жиров (триглицеринов).
Поджелудочная железа отвечает на это изменением выброса гормонов: увеличением секреции инсулина и уменьшением секреции глюкагона. Увеличение соотношения инсулин/гпюкагон в сочетании с богатыми энергией субстратами стимулирует переход тканей (особенно печени, мышечной и жировой тканей) в анаболическую фазу.
В печени из поступающих субстратов синтезируются гликоген и жиры. Гликоген депонируется в печени, жиры в виде липопротеинов очень низкой плотности [ЛОНП (VLDL)] поступают в кровь.
В мышечной ткани также за счет глюкозы пополняется запас гликогена, а из аминокислот синтезируются белки.
В жировую ткань жиры поступают из печени и желудочно-кишечного тракта (в составе липопротеинов), а затем депонируются в виде жировых капель.
Сердце и нервная ткань используют глюкозу в качестве источника энергии. Клетки сердечной мышцы являются в известном смысле "всеядными", так как они могут получать энергию и из других субстратов.
При прекращении поступления пищи вскоре начинается фаза пострезорбции. Эта стадия начинается с изменения секреции гормонов поджелудочной железы: теперь А-клетки секретируют больше глюкагона, а В-клетки прекращают секрецию инсулина. Низкое соотношение инсулин/глюкагон в плазме крови запускает процесс промежуточного метаболизма в обратном направлении. Теперь организм должен вернуться к использованию собственных энергетических резервов. В организме начинается расщепление запасных веществ - гликогена, жиров, белков, и запускается производство макроэргических субстратов в печени.
В печени происходит мобилизация гликогена (гликогенолиз, см. с. 158), Полученная глюкоза используется для обеспечения других тканей, прежде всего мозга, коры надпочечников и эритроцитов, не располагающих собственными резервами глюкозы. Если спустя несколько часов резервы глюкозы в печени окажутся исчерпанными, усиливается процесс глюконеогенеза (см. с. 156). Субстраты поступают из мышц (аминокислоты) и жировой ткани (глицерин). Высвободившиеся жирные кислоты используются печенью для синтеза кетоновых тел (кетогенез, см. с. 304), которые направляются в кровь и служат важнейшим источником энергии в пострезорбционной фазе.
В мышцах разнообразные резервы глюкозы используются исключительно для собственных нужд (см. с. 238). Аминокислоты, образующиеся за счет медленного расщепления белков, поступают в печень и утилизируются в процессе глюконеогенеза.
В жировой ткани гормоны инициируют липолиз с образованием глицерина и жирных кислот. Жирные кислоты служат источником энергии во многих тканях (за исключением мозга и эритроцитов). Важным приемником жирных кислот является печень, где они используются для синтеза кетоновых тел.
Глюкоза, наряду с жирными кислотами и кетоновыми тепами, является важнейшим источников энергии. Уровень глюкозы в крови поддерживается постоянным 4-6 мМ (0,8-1,0 г/л) благодаря тонкой регуляции процессов ее поступления и потребления. Глюкоза поступает из кишечника (за счет переваривания пищи), печени и почек. При этом печень выполняет функцию «глюкостата»: в фазе резорбции глюкоза поступает в печень из крови и накапливается в виде гликогена. При дефиците глюкозы (фаза пострезорбции, голодание) печень, напротив, поставляет глюкозу, которая образуется за счет процессов гликогенолиза и глюконеогенеза (см. с. 300).
Печень обладает свойством синтезировать глюкозу из других сахаров, например фруктозы и галактозы, или из других продуктов промежуточного метаболизма. Превращение лактата в глюкозу в цикле Кори (см. с. 330) и аланина в глюкозу в цикле аланина (см. с. 330) играет особую роль в обеспечении эритроцитов и мышечных клеток.
Необходимыми условиями активного углеводного обмена в печени является обратимый транспорт сахаров через плазматическую мембрану гепатоцитов (при отсутствии контроля инсулином) и наличие фермента глюкозо-6-фосфатазы, высвобождающего глюкозу из глюкозо-6-фосфата.
Синтез глюкозы de novo (до 250 г в сутки) происходит в основном в печени. Процесс глюконеогенеза может идти и в почках, однако из-за небольших размеров почек их вклад в синтез глюкозы составляет всего 10%.
Глюконеогенез контролируется гормонами. Кортизол, глюкагон и адреналин стимулируют этот процесс, а инсулин, напротив, подавляет.
При глюконеогенезе в печени наиболее важными субстратами являются лактат, поступающий из мышечной ткани и эритроцитов, аминокислоты из желудочно-кишечного тракта (глюкогенные аминокислоты) и мышц (аланин), а также глицерин из жировых тканей. В почках в качестве субстрата служат главным образом аминокислоты (см. с. 320).
Жирные кислоты и другие источники ацетил-КоА не могут использоваться в организме млекопитающих для биосинтеза глюкозы, поскольку ацетил-КоА, образующийся при в-окислении в цитратном цикле, полностью окисляется до СО2, в то время как в глюконеогенезе исходным продуктом является оксалоцетат.
Метаболизм фруктозы осуществляется превращением ее в глюкозу (на схеме слева). Вначале фруктоза фосфорилируется при участии фермента кетогексокиназы (фруктокиназы) [1] с образованием фруктозо-1-фосфата, который далее расщепляется альдолазой до глицеральдегида (глицераля) и дигидроксиацетон-3-фосфата [2]. Последний уже является промежуточным продуктом гликолиза (в центре схемы), а глицераль фосфорилируется в присутствии триокиназы, образуя глицераль-3-фосфат [3].
Затем глицеральдегид частично восстанавливается до глицерина [4] или окисляется до глицерата. После фосфорилирования оба соединения вновь включаются в гликолиз (на схеме не приведено). При восстановлении глицеральдегида [4]расходуется НАДН (NADH). Поскольку при конверсии этанола лимитирующим фактором является низкое соотношение концентраций НАД+/НАДН (NAD+/NADH). Этот процесс ускоряется в присутствии фруктозы (см. с. 312).
Кроме того, в печени реализуется полиольный путь трансформации фруктозы в глюкозу (на схеме не приведен): фруктоза за счет восстановления С-2 превращается в сорбит, а при последующем дегидрировании С-1 - в глюкозу.
Метаболизм галактозы также начинается с фосфорилирования с образованием галактозо-1-фосфата [5] (на схеме справа). Далее следует эпимеризация С-4 с образованием производного глюкозы. Биосинтез УДФ-глюкозы (UDP-глюкозы), промежуточного продукта обмена глюкозы, осуществляется обходным путем - через УДФ-галактозу (UDP-галактозу) и последующую эпимеризацию [6, 7]. По такому же пути идет биосинтез самой галактозы, поскольку все реакции за исключением [5] обратимы.
Печень является главным местом синтеза жирных кислот, жиров, кетоновых тел и холестерина. Жиры могут также синтезироваться в жировой ткани, однако ее основной функцией остается депонирование липидов.
Обмен липидов в печени тесно связан с превращением углеводов и аминокислот. При поступлении питательных веществ в фазе резорбции глюкозачерез промежуточное образование ацетил-КоА (ацетил-СоА) конвертируется в жирные кислоты. Печень может также извлекать жирные кислоты из липопротеинов, поступающих из желудочно-кишечного тракта (в виде хиломикронов) и других тканей. Жирные кислоты используются для биосинтеза триглицеринов и фосфолипидов. При связывании жиров с аполипопротеинами образуются липопротеиновые комплексы очень низкой плотности [ЛОНП (VLDL), см. с. 272]. Они попадают в кровь и переносятся в другие ткани, прежде всего в жировую и мышечную ткань.
В фазе пострезорбции (см. с. 300), особенно в период поста или голодания, обмен липидов идет в обратном направлении, организм обращается к собственным запасам. В этих условиях жиры поступают из жировой ткани в кровь, переносятся в печень, распадаются в результате в-окисления до ацетил-КоА и, наконец, превращаются в кетоновые тела.
Холестерин поступает в организм из двух источников - с пищей и за счет эндогенного синтеза, причем большая часть холестерина синтезируется в печени. Биосинтез холестерина начинается с ацетил-КоА (см. с. 174). Полученный холестерин используется в синтезе желчных кислот (см. с. 306), встраивается в клеточные мембраны (см. с. 216), депонируется в жировых каплях в составе эфиров жирных кислот. Остальная часть поступает в кровь в составе липопротеиновых комплексов [ЛОНП (VLDL)] и переносится в другие ткани. Печень способствует обмену холестерина благодаря тому, что служит местом, худа поступают с кровью и где подвергаются расщеплению липопротеиновые комплексы [ЛВП, ЛПП, ЛНН (HDL, IDL, LDL), см. с. 272], содержащие холестерин и его эфиры с жирными кислотами.
При высокой концентрации ацетил-КоА в митохондриях гепатоцитов происходит конденсация двух молекул ацетил-КоА с образованием ацетоацетил-КоА [1]. Присоединение еще одной ацетильной группы [2] приводит к 3-гидрокси-З-метилглутарил-КоА (ГМГ-КоА) [3], который после отщепления ацетил-КоА превращается в ацетоуксусную кислоту (ацетоацетат) (цикл Линена). При восстановлении последней получается 3-гидроксибутират [4], а при неферментативном декарбоксилировании - ацетон [5]. Все три соединения принято называть «кетоновыми телами», что не совсем правильно, поскольку в 3-гидроксимасляной кислоте отсутствует кетогруппа.
Кетоновые тела поступают из печени в кровь, где они хорошо растворимы. Концентрация кетоновых тел в крови возрастает в фазе пострезорбции (фаза голодания). Наряду с жирными кислотами 3-гидроксибутират и ацетоацетат в этот период являются основными энергоносителями. Ацетон, не имеющий метаболической ценности, удаляется через легкие. После 1-2 недели голодания кетоновые тела начинают использоваться в качестве источника энергии нервными тканями. Однако при этом для обеспечения цитратного цикла необходимо минимальное количество глюкозы.
Если биосинтез кетоновых тел превышает потребности организма, они накапливаются в крови (кетонемия) и, наконец, выводятся с мочой (кетонурия). Оба феномена наблюдаются во время длительного голодания (углеводная недостаточность) и при заболеваний диабетом (Diabetes mellitis). Хотя 3-гидроксимасляная кислота является слабой кислотой (рКа примерно 4), возрастание концентрации кетоновых тел вызывает изменение рН в крови (кетоацидоз, см. с. 280). Кетонурия и кетоацидоз могут быстро привести к электролитному сдвигу (нарушению ионного гомеостаза) и потери сознания (кетоацидозной коме) и, следовательно, опасны для жизни.
В печени из холестерина образуются желчные кислоты (см. с. 304). Эти стероидные соединения с 24 атомами углерода являются производные холановой кислоты, имеющими от одной до трех б-гидроксильных групп и боковую цепь из 5 атомов углерода с карбоксильной группой на конце цепи. В организме человека наиболее важна холевая кислота. В желчи при слабощелочном рН она присутствует в виде холат-аниона.
Желчные кислоты и соли желчных кислот
Кроме холевой кислоты в желчи содержится также хенодезоксихолевая кислота. Она отличается от холевой отсутствием гидроксильной группы при С-12. Оба соединения принято называть первичными желчными кислотами. В количественном отношении это наиболее важные конечные продукты обмена холестерина.
Другие две кислоты, дезоксихолевая и литохолевая, называются вторичными желчными кислотами, поскольку они образуются путем дегидроксилирования по С-7 первичных кислот в желудочно-кишечном тракте. В печени образуются конъюгаты желчных кислот с аминокислотами (глицином или таурином ),связанные пептидной связью. Эти конъюгаты являются более сильными кислотами и присутствуют в желчи в форме солей (холатов и дезоксихолатов Na+ и К+, называемых солями желчных кислот).
печень резорбция метаболизм кетонурия
В связи с наличием в структуре б-гидроксильных групп желчные кислоты и соли желчных кислот являются амфифильными соединениями и обладают свойствами детергентов (см. с. 34). Основные функции желчных кислот состоят в образовании мицелл, эмульгировании жиров и солюбилизации липидов в кишечнике. Это повышает эффективность действия панкреатической липазы и способствует всасыванию липидов (см. с. 264).
На рисунке показано, как молекулы желчных кислот фиксируются на мицелле своими неполярными частями, обеспечивая ее растворимость. Липаза агрегирует с желчными кислотами и гидролизует жиры (триацилглицерины), содержащиеся в жировой капле. Метаболические превращения желчных кислот
Первичные желчные кислоты образуются исключительно в цитоплазме клеток печени. Процесс биосинтеза (1) начинается с гидроксилирования холестерина по С-7 и С-12, и эпимеризации по C-3, затем следует восстановление двойной связи в кольце В и укорачивание боковой цепи на три углеродных атома.
Лимитирующей стадией является гидроксилирование по С-7 с участием 7б-гидроксилазы. Холевая кислота служит ингибитором реакции, поэтому желчные кислоты регулируют скорость деградации холестерина.
Коньюгирование желчных кислот проходит в две стадии. Вначале образуются КоА-эфиры желчных кислот, а затем следует собственно стадия конъюгации с глицином или таурином (2) с образованием, например, гликохолевой и таурохолевой кислот. Желчь дренируется во внутрипеченочные желчные протоки и накапливается в желчном пузыре (3).
Кишечная микрофлора продуцирует ферменты, осуществляющие химическую модификацию желчных кислот (4). Во-первых, пептидная связь гидролизуется (деконьюгирование), и, во-вторых, за счет дегидроксилирования С-7 образуются вторичные желчные кислоты (5). Однако большая часть желчных кислот всасывается кишечным эпителием (6) и после попадания в печень вновь секретируется в составе желчи (энтерогепатическая циркуляция желчных кислот). Поэтому из 15-30 г солей желчных кислот, ежедневно поступающих в организм с желчью, в экскрементах обнаруживается только около 0,5 г. Это примерно соответствует ежесуточному биосинтезу холестерина de novo.
При неблагоприятном составе желчи отдельные компоненты могут кристаллизоваться. Это влечет за собой отложение желчных камней, которые чаще всего состоят из холестерина и кальциевых солей желчных кислот (холестериновые камни), но иногда эти камни включают и желчные пигменты.
1. Бышевский А.Ш., Терсенов О.А. Биохимия для врача // Екатеринбург: Уральский рабочий, 1994, 384 с.
2. Ленинджер А. Биохимия. Молекулярные основы структуры и функций клетки // М.: Мир, 1974, 956 с.
3. Пустовалова Л.М. Практикум по биохимии // Ростов-на Дону: Феникс, 1999, 540 с.
4. Хмельницкий Р.А. Физическая и коллоидная химия // М.: Высш. шк., 1988, 400 с.
5. Ньюсхолм Э., Старт К. Регуляция метаболизма. Под ред. Э.Г. Ларского. - М.: Мир, 1977. - 407 с.
6. Мишнев О.Д., Щеголев А.И. Структурно-метаболическая характеристика ацинуса печени // Арх. патологии, гистологии и эмбриологии. 1988. Т. ХСV, № 10, с. 89-96.
7. Парк Д.В. Биохимия чужеродных соединений. - М.: Медицина, 1973, 287 с.
8. Чекман И.С., Гриневич А.И. Конъюгация ксенобиотиков // Фармакологи и токсикология, 1988, № 1, с. 86-93.
9. Щербаков В.М., Тихонов А.В. Изоформы цитохрома Р-450 печени человека // М.: АО “Биохимические технологии”, 1995, 102 с.
Биосинтез гемоглобина. Обмен хромопротеидов. Биохимические процессы, протекающие в печени. Роль печени в углеводном обмене и обмене стеринов. Синтез гликогена в печени. Участие печени в распаде белка. Механизм обезвреживания токсических веществ в печени. реферат [26,6 K], добавлен 23.01.2009
Обмен веществ как сложный процесс превращения химических элементов в организме, обеспечивающих его рост, развитие и деятельность. Воздействие тренировок на метаболизм организма. Факторы, воздействующие на уровень метаболизма. Что ускоряет обмен веществ. статья [18,8 K], добавлен 07.06.2010
Роль печени и почек в обмене белков. Нормы белков в питании. Участие аминокислот в процессах биосинтеза и катаболизма. Тканевой обмен нуклеотидов. Синтез и катаболизм ДНК и РНК. Регуляция процессов азотистого обмена. Патология азотистого обмена. курсовая работа [58,0 K], добавлен 06.12.2008
Ознакомление с понятием, сущностью и процессами метаболизма. Рассмотрение особенностей создания молекул аминокислот, углеводов, липидов и нуклеиновых кислот. Образование всех клеток и тканей, выделение энергии в процессе обмена веществ в организме. презентация [507,1 K], добавлен 02.06.2015
Нарушение обмена, переваривания и всасывания липидов. Гиперлипемия как один из показателей нарушения жирового обмена. Нарушение депонирования жиров (ожирение и жировая инфильтрация печени): причины и патогенез. Обмен липидов и ненасыщенных жирных кислот. лекция [1,2 M], добавлен 13.04.2009
Роль клеточных органелл в энергетических процессах, нервной клетки. Обмен углеводов и особенности энергетического обеспечения мозга. Метаболизм липидов, белков и аминокислот. Роль воды в обеспечении функционирования. Церебральный энергетический обмен. контрольная работа [48,5 K], добавлен 19.08.2015
Изучение анатомии, цитологии и гистологии печени, ее роль в метаболизме. Биохимические показатели функции печени, их клиническое значение. Нормы билирубина в крови. Гемолитическая болезнь новорожденных. Дефицит липотропных веществ. Гипоонкотические отеки. презентация [1,3 M], добавлен 22.06.2015
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2020, ООО «Олбест»
Все права защищены


Биохимия печени | реферат [26,6 K], добавлен 23.01.2009
БИОХИМИЯ ПЕЧЕНИ — Студопедия
Биохимия печени
Рефераты : Биохимия печени | 1. 2 Функции печени .
Биохимия печени
Любовь Марьи Кирилловны И Владимира Дубровского Сочинение
Спорт Іс Әрекетінің Жалпы Психологиялық Негіздері Реферат
Контрольная Работа По Теме Стили Речи
Сколько Абзацев В Итоговом Сочинении По Литературе
Сочинение На Тему Станционный Смотритель По Литературе

Report Page