Реферат: Интеграл по комплексной переменной

Реферат: Интеграл по комплексной переменной




⚡ 👉🏻👉🏻👉🏻 ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻




























































Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.
Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.
Основные свойства : Пусть на комплексной плоскости Z задана кусочно-гладкая кривая С длиной l, используя параметрическое задание кривой С зададим h(t) и x (t), где h и x являются кусочно-гладкими кривыми от действительной переменной t. Пусть a<= t<=b, причем a и b могут быть бесконечными числами .
Пусть x и h удовлетворяют условию : [x‘(t)]2 + [h‘(t)]2 ¹ 0. Очевидно, что задание координат h =h(t) и x=x (t), равносильно заданию комплексной функции z (t)= x (t) + ih(t).
Пусть в каждой точке z (t) кривой С определена некоторая функция f (z ). Разобьем кривую С на n – частичных дуг точками деления z0 , z1 , z2 , …, z n-1 соответствующие возрастающим значениям параметра t, т.е. t0, t1, …, t i+1 > t i.
Dz i =z i – z i-1. Составим интегрируемую функцию S = åf (z*)Dz i . (1)
где z*– производная точки этой дуги.
Если при стремлении max |Dz i |® 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек z i , то этот предел называется интегралом от функции f (z ) по кривой С.
где Dz i = Dx (t) + iDh(t) (x (t) и h(t) - действительные числа)
Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при Dx и Dh ® 0 и предполагая, что данные пределы существуют, получаем :
Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f (z ).
Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :
7.) Пусть Cp – окружность радиуса r, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : z = Z0 + r×eij, 0 £ j £ 2p, dz = ir×eij dj .
Кусочно-гладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.
В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :
Для действительной переменной имеют место формулы Грина. Известно, что если функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной области G, ограниченны кусочно-гладкой кривой С, а их частные производные 1-го порядка непрерывны в G, то имеет место формула Грина:
ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю.
Доказательство : из формулы (5) следует:
Т.к. f(z ) аналитическая всюду, то U(x, y), V(x, y) - непрерывны в области, ограниченной этим контуром и при этом выполняются условия Коши-Римана. Используя свойство криволинейных интегралов:
По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :
ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f(z) является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.
TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :
Пусть f (z) является аналитической функцией в многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см. рис.). Пусть f (z) непрерывна в замкнутой области G, тогда :
, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном направлении.
интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией Ф(Z). Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф¢ (Z) = f( Z).
Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :
Это аналог формулы Ньютона-Лейбница.
Ранее была сформулирована теорема Коши, которая позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.
Так как левый интеграл в (2) не зависит от выбора контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве g окружность gr с радиусом r . Тогда:
Уравнение окружности gr : z = Z0 + reij (4)

Тогда т.к. функция f(z) аналитична в точке Z=Z0 и всюду в области G, а следовательно и непрерывна в G, то для всех e>0 существует r>0, что для всех z из r–окрестности точки Z0 выполняется | f(z) – f(Z0) | < e.
Подставив ( 7) в ( 6) с учетом ( 8) получаем :
Подставляя в ( 5) и выражая f(Z0) имеем :
Интеграл, стоящий в (9) в правой части выражает значение аналитической функции f(z) в некоторой точке Z0 через ее значение на произвольном контуре g , лежащем в области аналитичности функции f(z) и содержащем точку Z0 внутри.
Очевидно, что если бы функция f(z) была аналитична и в точках контура С, то в качестве границы g в формуле (9) можно было использовать контур С.
Приведенные рассуждения остаются справедливыми и в случае многосвязной области G.
Следствие : Интеграл Коши, целиком принадлежащий аналитической области G имеет смысл для любого положения Z0 на комплексной плоскости при условии, что эта точка есть внутренней точкой области Г. При этом если Z0 принадлежит области с границей Г, то значение интеграла равно (9), а если т. Z0 принадлежит внешней области, то интеграл равен нулю :
При Z0 Î Г указанный интеграл не существует.
Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2-х комплексных переменных : переменной интегрирования z и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в качестве которого выбираем точку Z0.
Пусть задана функция двух комплексных переменных j (Z, z ), причем Z= x + iy в точке, принадлежащей некоторой комплексной плоскости G. z= x+ ih Î С. (С - граница G).
Взаимное расположение области и кривой произвольно. Пусть функция j (Z, z ) удовлетворяет условиям : 1) Функция для всех значений z Î С является аналитической в области G. 2) Функция j (Z, z ) и ее производная ¶j/¶Z являются непрерывными функциями по совокупности переменных Z и z при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях :
Интеграл существует и является функцией комплексной переменной. Справедлива формула :
Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру.
ТЕОРЕМА. Пусть f(Z) является аналитической функцией в области G и непрерывной в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее вычисления имеет место формула :
С помощью формулы (3) можно получить производную любого порядка от аналитической функции f (Z) в любой точке Z области ее аналитичности. Для доказательства этой теоремы используется формула (2) и соответственные рассуждения, которые привели к ее выводу.
ТЕОРЕМА МОРЕРА. Пусть f(Z) непрерывна в односвязной области G и интеграл от этой функции по любому замкнутому контуру, целиком принадлежащему G равен 0. Тогда функция f (Z) является аналитической функцией в области G. Эта теорема обобщается и на случай многосвязной области G.
Разложение функции комплексного переменного в ряды.

Если функция f(x, y) определена и непрерывна вместе с частными производными (до n-го порядка ), то существует разложение этой функции в ряд Тейлора :
Итак, если задана функция f (z) комплексного переменного, причем f (z) непрерывная вместе с производными до n-го порядка, то:
Формула (2) записана для всех Z принадлежащих некоторому кругу | Z-Z0 |1 такой полюс будет называться простым.
, если m ® ¥ , то в этом случае в точке Z=Z0 имеем существенную особенность.
Определение 2. Вычетом функции f(Z) в круге |Z-Z0|0 существует M>0 и S0³0 такие, что выполняется условие : |f(t)|S0 интеграл, стоящий в левой части равенства (2) также существует и сходится. Этот интеграл определяет собой функцию от комплексного параметра р :
Функция F(p) называется изображением функции f(t) по Лапласу, а функция f(t) по отношению к F(p) называется оригиналом.
f(t) Ü F(p), где F(p) – изображение функции f(t) по Лапласу.
Смысл введения интегральных преобразований.

Этот смысл состоит в следующем : с помощью перехода в область изображения удается упростить решение многих задач, в частности свести задачу решения многих задач дифференциального, интегрального и интегро-дифференциального уравнения к решению алгебраических уравнений.
Теорема единственности: если две функции j( t) и Y(t) имеют одно и то же изображение F(p), то эти функции тождественно равны.
Смысл теоремы : если при решении задачи мы определим изображение искомой функции, а затем по изображению нашли оригинал, то на основании теоремы единственности можно утверждать, что найденная функция является решением в области оригинала и причем единственным.
Изображение функций s0(t), sin (t), cos (t).

Определение: называется единичной функцией.
Единичная функция удовлетворяет требованиям, которые должны быть наложены на функцию для существования изображения по Лапласу. Найдем это изображение :
Рассуждая аналогичным образом получим изображение для функции sin(t) :
Аналогично можно доказать, что cos (t) переходит в функцию в области преобразований. Откуда :
Изображение функции с измененным масштабом независимого переменного.

Теорема : изображение суммы нескольких функций умноженное на постоянные равны сумме изображений этих функций умноженных на те же постоянные.
Теорема смещения : если функция F(p) это изображение f(t), то F(a+p) является изображением функции e-at f(t) (4)

Применим оператор Лапласа к левой части равенства (4)
Теорема. Если , то справедливо выражение :
Подставляя (3) в (2) и учитывая третье условие существования функции Лапласа имеем :
Пример: Решить дифференциальное уравнение :
Предположим, что x(t) – решение в области оригиналов и , где - решение в области изображений.
Теорема о интегрировании оригинала. Пусть находится в области оригиналов, , тогда также оригинал, а его изображение .
Таким образом операции интегрирования в области оригиналов соответствует операция деления в области изображений.
Теорема о интегрировании изображений : Пусть – функция оригинал, которая имеет изображение и также оригинал, а - является сходящимся интегралом, тогда .
Толкование теоремы : операция деления на аргумент в области оригиналов соответствует операции интегрирования в пределах от р до ¥ в области изображений.
Понятие о свертке функций. Теорема о свертке.

Пусть заданы две функции a(t) и b(t), удовлетворяющие условиям существования изображения по Лапласу, тогда сверткой таких функций называется следующая функция :
Свертка обозначается следующим образом :
Свертка функции подчиняется переместительному закону.
Теорема о умножении изображений. Пусть и , тогда произведение изображений представляется сверткой оригиналов .
Интеграл (1) представляет собой повторный интеграл относительно переменных t и t . Изменим порядок интегрирования. Переменные t и t входят в выражение симметрично. Замена переменной производится эквивалентно.
Если в последнем интеграле сделать замену переменной, то после преобразований последний интеграл преобразуется в функцию F2(p).
Операция умножения двух функций в пространстве изображений соответствует операции свертки их оригиналов в области оригиналов. Обобщением теоремы о свертке есть теорема Эфроса.
Теорема Эфроса. Пусть функция находится в области оригиналов, , а Ф(р) и q(р) – аналитические функции в области изображений, такие, что , тогда .
В практических вычислениях важную роль играет следствие из теоремы о свертке, наз. интеграл Дюамеля. Пусть все условия теоремы выполняются, тогда
Соотношение (2) применяется при решении дифференциальных уравнений.
- Это прямое преобразование Лапласа.
Обратное преобразование есть возможность получить функцию-оригинал через известную функцию-изображение :
Пользоваться формулой для обратного преобразования можно при определенном виде функции F(p), либо для численного нахождения функции-оригинала по известному изображению.
Известная методика разложения дробно-рациональных функций на сумму элементарных дробей (1)-(4) может быть представлена в виде двух теорем разложения.
Первая теорема разложения. Пусть F(p) – изображение некоторой функции, тогда эта функция представляется в виде , k – постоянная, может быть сколь угодно большим числом, , то возможен почленный переход в пространство оригиналов с помощью формулы : .
Вторая теорема разложения. Если изображение представляется д
робно-рациональной функцией . Степень числа s меньше степени знаменателя n, знаменатель имеет корни a1, a2, …, a n соответствующий кратности k1, k2, …, kn , при этом k1+ k2 +…+ kn = n. В этом случае оригинал функции определяется по формуле :
Связь между преобразованиями Фурье и Лапласа.

1) f(t) определена и непрерывна на всем интервале: (-¥ ; ¥ )
3) При M, S0 >0 , для всех t > 0 выполняется условие |f(t)|0 и преобразование для этой функции существует, то оно может быть получено из таблицы оригиналов и изображений для преобразования Лапласа путем замены параметра t на iu, но при этом необходимо убедиться, что F(p) не обращается в число справа от мнимой оси.
Функция (6) называется спектральной плотностью
В связи с изложенным можно указать два пути отыскания спектральной плотности :
2) Использование преобразования Лапласа или Фурье.
Непосредственное вычисление спектральной плотности для абсолютно интегрируемой функции.

Функция F(iu) может быть представлена, как комплексная функция действительной переменной
|F(iu)| - амплитудное значение спектральной плотности, y (u) – фазовый угол.
В алгебраической форме : F(iu) = a(u) +ib(u)
Для непосредственного вычисления спектральной плотности вычисляется интеграл (6), а затем по формулам (8) и (9) определяется амплитудное значение |F(iu)| и фазовый угол y (u).
Найти спектральную плотность импульса :
Отыскание спектральной плотности для неабсолютно интегрируемых функций.

Прямое преобразование Фурье для таких функций не существует, существует преобразование Лагранжа.
Прямое преобразование Фурье необходимо :
1) Для облегчения процесса решения дифференциальных и интегральных уравнений.
2) Для исследования амплитудной и частотной характеристик спектральной плотности, определенной всюду на числовой оси.
Введем следующее определение спектральной плотности для неабсолютно интегрируемых функций:
Если для заданной функции y=f(t) существует непрерывное изображение по Лапласу F(p), то спектральной плотностью функции называется изображение функции по Лапласу при p = iu.
Спектральной плотностью F1(iu) неабсолютно интегрируемой функции называется предел от спектральной плотности F2(iua) абсолютно интегрируемой функции.

Название: Интеграл по комплексной переменной
Раздел: Рефераты по математике
Тип: реферат
Добавлен 05:54:30 23 сентября 2001 Похожие работы
Просмотров: 5214
Комментариев: 23
Оценило: 5 человек
Средний балл: 4.6
Оценка: неизвестно   Скачать

Срочная помощь учащимся в написании различных работ. Бесплатные корректировки! Круглосуточная поддержка! Узнай стоимость твоей работы на сайте 64362.ru
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Да, но только в случае крайней необходимости.

Реферат: Интеграл по комплексной переменной
Докторскую Диссертацию Система Социологии Публично Защитил
Реферат: Понятие выставок и ярмарок и их значение
Эффективность Работы Склада Курсовая
Реферат: Роль и место рынка ценных бумаг в структуре финансового рынка 2
Дипломная работа по теме Окислительная способность композитов на основе железа
Реферат: Конституционный суд Российской Федерации
План Сочинения По Произведению Дубровский
Дипломная работа по теме Обезболивание, премедикация и психологическая подготовка пациента при лечении кариеса
Составление Автомобильного Маршрута Курсовая Туризм
Сочинение 8 Класс Презентация
Дипломная работа по теме Анализ и перспективы развития рынка банковских карточек в России и за рубежом
Учета Анализ Основных Средств Дипломная Работа
Курсовая работа по теме Роль предварительного информирования в организации таможенного контроля товаров
Реферат: Особенности процесса производства культурных услуг
Курсовая работа по теме Проект виробництва таблеток 'Парацетамол'
Сочинение На Тему Моя Дружная Семья
Реферат: К классификация фразеологизмов
Доклад по теме На распутье
Реферат по теме Нонконформизм
Переплет Дипломной Работы
Доклад: Русская музыка
Реферат: Формула персонального брендинга
Реферат: Трудовые правоотношения

Report Page