Реферат: Геометрия Лобачевского
👉🏻👉🏻👉🏻 ВСЯ ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻
Нехай тепер АОВ – деякий гострий кут. (рис1) В геометрії Лобачевського можна вибрати таку точку М на стороні ОВ, що перпендикуляр MQ до сторони ОВ не перетинається з другою стороною кута. Цей факт як раз підтверджує, що не виконується п'яте правило: сума кутів ( і ( є менше розгорнутого кута, але прямі ОА і MQ не перетинаються. Якщо почати зближувати точку М до О, то найдеться така "критична" точка М0, що перпендикуляр M0Q0 до сторони OB поки що не перетинається зі стороною ОА, але для любої точки М`, яка лежить між О і М0, відповідаючий перпендикуляр М`Q` перетинається зі стороною ОА. Прямі ОА і M0Q0 все більше приближаються одна до одної, але спільних точок не мають. На рис.2 ці прямі зображено окремо; а саме такі необмежено наближаються одна до одної прямі Лобачевський в своїй геометрії називає паралельними. А два перпендикуляра до одної прямої, які необмежено віддаляються один від одного, як на рисунку Лобачевський називає прямими, які розходяться. Виявляється, що цим і обмежуються всі можливості розміщення двох прямих на площині Лобачевського: дві неспівпадаючі прямі, які або перетинаються в одній точці, або паралельні , або можуть бути такими, що розходяться (в цьому випадку вони мають єдиний спільний перпендикуляр)
На рис. 3 перпендикуляр МQ до сторони ОВ кута АОВ не перетинається зі стороною ОА, а прямі ОВ` , М`Q` симетричні прямим ОВ і MQ відносно ОА. Дальше |ОА| = |MB|, так як MQ – перпендикуляр до відрізка ОВ` в його середині і аналогічно M`Q` – перпендикуляр до відрізка ОВ` в його середині. Ці перпендикуляри не перетинаються, тому не існує точки, одинаково віддаленої від точок О,В,В`, отже трикутник ОВВ` не має описаного кола.
На рис. 4 зображено цікавий варіант розташування трьох прямих на площині Лобачевського: кожні дві із них паралельні, тільки в різних напрямках. А на рис. 5 всі прямі паралельні одна одній в одному напрямку (пучок паралельних прямих). Лінія позначена пунктиром на рис.5 "перпендикулярна" всім проведеним прямим (тобто дотична до цієї лінії в любій її точці М перпендикулярна прямій, яка проходить через М.). Ця лінія називається граничною кола, або орициклом. Прямі розглянутого пучка ніби являються її "радіусами", а центр граничної кола лежить в нескінченності, оскільки "радіуси" паралельні. В той же час гранична кола не являється прямою лінією, вона "викривлена". І інші властивості, які в евклідовій геометрії має пряма, в геометрії Лобачевського виявляються властивими другим лініям. Наприклад, з множини точок, які знаходяться на одній стороні від даної прямої на даній відстані від неї, в геометрії Лобачевського являють собою криву лінію, яка називається єквидистантою.
Ми коротко торкнулися деяких факторів геометрії Лобачевського, не згадуючи багатьох інших цікавих і змістовних теорем (наприклад, довжина кола і площа круга тут зростає в залежності від радіуса по показниковому закону). Виникає переконання, що ця теорія багата дуже цікавими і змістовними фактам, насправді не суперечлива. Але це переконання (яке було у всіх трьох творців неєвклідової геометрії) не замінює доведення несуперечливості.
Щоб дістати таке доведення , треба побудувати модель. І Лобачевський це добре розумів і намагався її знайти.
Але сам Лобачевський вже не зміг цього зробити. Побудова такої моделі (доведення несупечливості геометрії Лобачевського) випало на долю математиків наступного покоління.
В 1868 р. італійській математик Є. Бельтрамі дослідив зігнуту поверхність, яка називалась псевдосферою, і довів, що на цій поверховості діє геометрія Лобачевського! Якщо на цій лінії намалювати найкоротші лінії ("геодезичні") і вимірювати по цим лініям відстані, складати з дуг цих ліній трикутники тощо, то вияявляється, що в точності реалізуються всі формули геометрії Лобачевського (зокрема сума кутів будь-якого трикутника дорівнює менше 180 0
). Правда, на псевдосфері реалізується не вся площина Лобачевського.
Клейн бере деякий круг К и розглядає такі проективні перетворення площини, які відображають круг К на себе. "Площину" Клейн називає внутрішність круга К, а вказані проективні перетворення вважає "рухом" цієї "площини". Дальше кожну хорду круга К (без кінців оскільки беруться тільки внутрішні точки круга) Клейн вважає "прямою". Оскільки, "рух" являє собою проективні перетворення, "прямі" при цих рухах переходять в "прямі". Тепер в цій "площині" можна роздивлятися відрізки, трикутники тощо. Дві фігури називаються рівними, якщо кожна з них може бути перетворена в іншу деяким "рухом". Так само введені всі поняття, які згадуються в аксіомах в цій моделі. Наприклад, очевидно, що через будь-які дві точки А, В проходить єдина пряма. Також , можна прослідкувати, що через точку А, яка не лежить на прямій a, проходить нескінченно багато прямих , які не перетинають a. Пізніша перевірка показує, що в моделі Клейна виконуються и всі інші аксіоми геометрії Лобачевського. Частково для будь-якої прямої l існує "рух"., перетворюючи її в другу пряму l` з віміченою точкою А`. Це дозволяє перевірити виконання всіх аксіом геометрії Лобачевського.
Название: Геометрия Лобачевского
Раздел: Рефераты по математике
Тип: реферат
Добавлен 11:18:32 21 июля 2005 Похожие работы
Просмотров: 514
Комментариев: 15
Оценило: 6 человек
Средний балл: 4.5
Оценка: 5 Скачать
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Да, но только в случае крайней необходимости.
Реферат: Геометрия Лобачевского
Реферат: Slave Resistance Essay Research Paper AfricanAmerican History
Курсовая работа по теме Особенности комплекса продвижения услуг (на примере ресторана)
Курсовая работа по теме Проведение маркетинговых исследований на примере предприятия ЗАО 'Атлант'
Повесть Иван Сочинение
Курсовая работа: Разработка арифметико-логического устройства
Реферат Про Авиценну
Контрольная Работа 9 Класс Еремин
Дипломная работа по теме Редактор буфера обмена
Сочинение Почему Происходят Конфликты В Семье
Как Делать Дипломную Работу 2022 Швея
Реферат: Perception In Advertising Essay Research Paper The
Доклад по теме Основы цифровой графики и цвета в Adobe
Как Писать Сочинение Инструкцию
Шпаргалка: Химия. Скачать бесплатно и без регистрации
Дипломная работа по теме Анализ финансово-хозяйственной деятельности фирмы на примере ООО "Камэнергостройпром"
Курсовая работа по теме Банковские платежные агенты как новая категория субъектов банковской деятельности
Дипломные работы: Строительство и архитектура.
Сколько Критериев В Сочинении По Русскому Егэ
Дипломная работа по теме Подготовка и ведение дел в арбитражном суде
Концепция Эссе
Реферат: Общественный и государственный строй в Древней Индии
Реферат: Виктор Гюго
Реферат: Праздничная культура эпохи средневековья