Реферат: Аппроксимация непрерывных функций многочленами

👉🏻👉🏻👉🏻 ВСЯ ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻
I. Постановка основной задачи теории аппроксимации
1.1. Основная теорема аппроксимации влинейном нормированном пространстве
1.2. Теорема аппроксимации в пространстве Гильберта
2.1. Теорема Валле-Пуссена и теорема существования
2.3. Переход к периодическим функциям
3.1. Приближение функции многочленами
Элементы важной и интересной области математики- теория приближения функций. Под приближением функции понимают замену по определенному правилу одной функции другой, близкой к исходной в том или ином смысле. Практическая необходимость в такой замене возникает в самых различных ситуациях, когда данную функцию необходимо заменить более простой и удобной для вычислений, восстановить функциональную зависимость по экспериментальным данным, и т.п.
Основоположником теории аппроксимации функций является великий русский математик Пафнутий Львович Чебышев (1821-1894).
В качестве приближающих функций выбирают чаще всего алгебраические и тригонометрические многочлены. Так же важное значение имеет метод наилучшего приближения, предложенный Чебышевым. Он возник из решения практических задач, связанных с конструированием прямолинейно направляющих шарнирных механизмов. Такие механизмы в XIX веке использовались в паровых машинах- основных универсальных двигателях того времени- для поддержания прямолинейного движения поршневого штока. К ним относятся параллелограмм Уатта и некоторые его разновидности.
На дальнейшее развитие этой теории оказало влияние открытие, сделанное в конце XIX века немецким математиком Карлом Вейерштрассом. Им была доказана принципиальная возможность приближения произвольной непрерывной функции с любой заданной степенью точности алгебраическим многочленом, что явилось второй причиной применения этих многочленов как универсального средства приближения функций, с заданной сколь угодно малой ошибкой.
Кроме алгебраических многочленов, другим средством приближения функций являются тригонометрические многочлены, значение которых в современной математике, конечно, не исчерпывается указанной ролью.
I. Постановка основной задачи аппроксимации
Основную задачу теории аппроксимации можно сформулировать следующим образом: на некотором точечном множестве в пространстве произвольного числа измерений заданы 2 функции f(P) и F(P,A 1
,A 2
...A n
) от точки P , из которых вторая зависит ещё от некоторого числа параметров А 1
,А 2
...А n
; эти параметры требуется определить так, чтобы уклонение в функции F(P,A 1
,A 2
...A n
) от функции f(P) было наименьшим. При этом, конечно, должно быть указано, что понимают под уклонением F от f или, как ещё принято говорить, под расстоянием между F и f.
Если, например, рассматриваются ограниченные функции, то в качестве расстояния между двумя функциями можно взять верхнюю грань в модуля их разности. При таком определении расстояния для совокупности всех ограниченных в функций оказываются справедливыми многие соотношения, которые мы имеем для точек обычного 3х-мерного пространства.
Последнее обстоятельство, с которым постоянно приходится сталкиваться в математике при рассмотрении других классов функций и многих иных совокупностей (множеств), привело к созданию весьма важного понятия метрического пространства, так что при дальнейшем изложении совокупность - это метрическое, либо Гильбертово пространство.
1.1. Основная теорема аппроксимации линейном нормированном пространстве
Пусть Е- произвольное нормированное пространство, пусть g 1
,g 2
...g n
- n линейно- независимых элементов из Е. Основную задачу аппроксимации применительно к рассматриваемому нами “линейному случаю” можно сформулировать следующим образом: дан элемент х Е, требуется определить числа , ... так, чтобы величина получила наименьшее значение.
Докажем, что требуемые значения чисел существуют.
Предварительно заметим, что - есть непрерывная функция своих аргументов. Действительно, в силу неравенства треугольника :
Введём теперь вторую непрерывную функцию:
На “сфере” , которая является ограниченным замкнутым множеством точек в n-мерном конечном Евклидовом пространстве, функция по известной теореме Вейерштрасса имеет некоторый минимум .
Неотрицательное число не может равняться 0, так как векторы g 1
,g 2
...g n
линейно независимы. Так же . Обозначим ( )- нижняя грань значения функций . Если
Желая найти минимум функции , мы можем ограничиться рассмотрением только значений , для которых , т.е. рассмотрением функции в ограниченной замкнутой области, а в такой области непрерывная функция имеет минимум.
Итак, существование линейной комбинации , дающей наилучшую аппроксимацию элемента х, доказано.
Возникает вопрос, когда выражение , дающее наилучшую аппроксимацию элемента х, будет единственным для ?
Указанная единственность во всяком случае имеет место тогда, когда пространство Е строго нормировано, т.е. когда в неравенстве , знак “=” достигается только при , .
В самом деле, допуская, что пространство Е строго нормировано, предположим, что элемент х имеет два выражения: и наилучшего приближения, причём g 1
,g 2
...g n
линейно независимы.
где, как легко видеть, можно принять, что и, поскольку
Следовательно, в силу строгой нормированности пространства: .
В этом соотношении должно =1, т.к. в противном случае элемент х был бы линейной комбинацией элементов g 1
,g 2
...g n
и, значит, было бы . Но если , то
и, значит, , т.к. элементы g 1
,g 2
...g n
линейно независимы. Таким образом, рассматриваемые выражения- тождественны.
Примером строго нормированного пространства является пространство Н, а также L p
при р>1, но пространства С и L не являются строго нормированными.
Действительно, возьмём интервал [-1,1] и две линейно независимые функции x(t) и y(t) , модули которых принимают свои максимальные значения в одной и той же точке интервала, причём arg x( )=arg y( ).
Тогда очевидно, . Чтобы доказать, что не есть строго нормированное пространство, достаточно взять x(t)=1, при и x(t)=0, при t<0 ,а y(t)=1-x(t).
Проблема, существование решения которой мы ранее доказали, допускает полезную геометрическую интерпретацию. Действительно, совокупность точек вида , где зафиксированные элементы g 1
,g 2
...g n
линейно независимы, а пробегают всевозможные комплексные числа, представляют некоторое линейное многообразие в том смысле, что из следует, что при произвольных комплексных . Это линейное многообразие, очевидно, является пространством, так как оно содержит точку 0. При n=1 мы получаем “прямую”; при n=2- “плоскость”, а вообще- “n- мерную плоскость”.
Наша проблема, таким образом, состояла в нахождении точки конечномерного подпространства G пространства E, которая от заданной точки х находится на кратчайшем расстоянии (в метрике пространства Е). Мы доказали, что такая точка в G существует.
Если само пространство Е не является конечномерным, т.е. если в нём имеется сколько угодно линейно независимых между собой векторов, то Е содержит бесконечномерные подпространства. Пусть G- такое подпространство.
Возникает вопрос, существует ли в G точка, наименее удалённая от заданной точки . Заметим, если пространство Е строго нормировано, то в G во всяком случае не может существовать более одной точки, наименее удалённой от данной точки .
1.2. Теоремы аппроксимации в пространстве Н.
Пусть G- некоторое подпространство пространства Гильберта Н, и пусть точка x - точка, не принадлежит G. Если в G существует точка y, наименее удалённая от x, то вектор x-y ортогонален к каждому вектору g из G, т.е. (x-y,g)=0, . Чтобы доказать это утверждение, предположим, что в G существует вектор f, для которого , и рассмотрим вектор .
Имеем и, значит: , а это противоречит предположению,что y- есть наименее удалённая точка от x подпространства G. Вектор y из G, обладающий тем свойством, что разность x-y ортогональна к G, естественно назвать проекцией x на G.
В этом случае, когда подпространство конечномерно и образовано линейно независимыми векторами g 1
,g 2
...g n
, мы можем, пользуясь доказанными предложениями, фактически найти вектор y= , наименее уклоняющийся от вектора x. Действительно, вектор y- есть проекция x на G и, значит, он должен удовлетворять уравнениям:
(k=1,2...n) (1), которые в подробной записи имеют вид:
и представляют систему линейных уравнений, для нахождения коэффициентов .
носит название детерминанта Грама
системы векторов g 1
,g 2
...g n
.
Так как пространствоН строго нормировано, а векторы g i
линейно независимы, то при любом векторе x система (2) имеет одно и только одно решение. Отсюда вытекает, что детерминант Грама линейно независимых векторов всегда отличен от нуля.
Найдём ещё выражение для квадрата погрешности, с которой вектор y аппроксимирует вектор x, т.е. для величины .
Присоединяя это уравнение к системе (2) и исключая , найдём, что
Из этого соотношения, и из того, что G(g 1
)=(g 1
,g 1
)>0 вытекает, что детерминант Грама всегда больше либо равен нулю, причём он обращается в нуль тогда и только тогда, если между векторами есть линейная зависимость (в частности, если один из векторов равен нулю).
Мы рассмотрели теорему аппроксимации в произвольном линейном нормированным пространстве Е. Теперь рассмотрим пример линейного нормированного пространства- пространство С.
Пространство С: совокупность всех непрерывных функций x=x(P) от точки Р в ограниченном замкнутом множестве обычного пространства любого числа измерений- это есть линейное нормированное пространство.
Из теоремы в применении к пространству вытекает следующий факт: пусть f(x)- непрерывная функция в конечном интервале [a,b]; тогда при любом n существует полином , который среди полиномов n-й степени наименее уклоняется от f(x), в том смысле, что , где Q n
(x)- произвольный полином n-й степени. Ясно, что .
Теперь докажем, что при . Это утверждение и составляет содержание теоремы Вейерштрасса (1885), которая гласит:
если f(x) непрерывна в конечном замкнутом интервале [a,b], то всякому можно сопоставить полином P n
(x) степени n=n(
), для которого во всём интервале [a,b] имеет место неравенство .
Не нарушая общности, примем, что а=0, b=1. Приведём доказательство С.П.Бернштейна.
Для этого построим полином , и докажем, что равномерно во всём интервале [0,1] . Напишем тождества:
, из которых последите два получаются дифференцированием по р соотношения:
. Из написанных тождеств вытекает, что (2).
Умножая (1) на f(x) и отнимая B n
(x), получим, что
, где суммирование в распространено на те значения к, для которых , а суммирование в - на остальные значения к.
Так как f(x) непрерывна в замкнутом интервале [0,1], и, значит, ограничена: во всём этом интервале, то
А это выражение на основании (2): , с другой стороны, , где , и, значит, при .
Окончательно: , что и доказывает теорему Вейерштрасса.
Заметим, что если P n
(x) равномерно стремится к f(x) при , то f(x) разлагается в равномерно сходящийся ряд.
Поэтому т. Вейерштрасса состоит так же в том, что всякая непрерывная в конечном интервале [a,b] функция f(x) может быть разложена в равномерно сходящийся при ряд, члены которого- полиномы.
Она относится к периодическим непрерывным функциям:
Если F(t)- непрерывная функция с периодом 2 , то каково бы ни было число , существует тригонометрическая сумма
,
n=n( ), которая для всех t удовлетворяет неравенству:
Пусть даны замкнутый (конечный или бесконечный) интервал [a,b] числовой оси и две вещественные непрерывные в [a,b] функции f(x) и S(x). Составим выражение: (*), где m и n заданы и поставим задачу найти вещественные параметры p 0
,p 1
...p m
; q 0
,q 1
...q n
так, чтобы уклонение Q(x) от f(x) было наименьшим.
В частном случае, когда S(x)=1, m=0 и интервал [a,b] конечен, поставленная задача переходит в задачу о наилучшем приближении в пространстве С заданной функции с помощью многочлена степени n.
Будем полагать, что m=n-k, кроме того, если интервалом [a,b] является вся числовая ось, мы будем предполагать, что и будем рассматривать только те функции, для которых , m условимся считать чётным.
2.1 Обобщённая теорема Валле-Пуссена.
Если многочлены ; , где и , , не имеют общего делителя , а выражение в интервале [a,b] остаётся конечным и если разность f(x)-R(x) принимает в последовательных точках x 1
Реферат: Аппроксимация непрерывных функций многочленами
Реферат: Банковские операции на рынке ценных бумаг
Золотой Болван Все Болван Сочинение С Цитатами
Типы Экономических Систем Эссе
Реферат: Eu And Usa Essay Research Paper What
Контрольная работа по теме Виды заработка (дохода), подлежащего учету при удержании алиментов
География 5 Класс Домогацких Контрольные Работы
Контрольная работа по теме Україна в системі сучасних міжнародних відносин: проблеми і перспективи розвитку
Доклад: Инвестиции в реальный сектор экономики. Скачать бесплатно и без регистрации
Реферат: Проблемы ядерной безопасности современного мира
Сочинение: Низость и двоедушие Алексея Швабрина
Курсовая работа по теме Роль производства в экономике
Контрольная работа: по Страхованию
Реферат по теме Кальций как регулятор жизни организма
Реферат: Социальное страхование в России 4
Реферат: Секрет успешной реорганизации. Скачать бесплатно и без регистрации
Реферат: Характеристика предприятия ОАО "Горизонт", его продукции и рынков сбыта
Спортивные Бальные Танцы Реферат
Игра Сочинение Стихов
Вопрос по криминологии
Дипломная работа по теме Квалифицирующие признаки преступлений против половой свободы и половой неприкосновенности личности
Статья: Эмансипация как философская проблема
Статья: Синхронное решение проблем
Реферат: Опера Дж. Пуччини "Манон Леско" (Manon Lescaut)