Разработка программного обеспечения лабораторного комплекса компьютерной обучающей системы (КОС) "Экспертные системы" - Программирование, компьютеры и кибернетика дипломная работа

Разработка программного обеспечения лабораторного комплекса компьютерной обучающей системы (КОС) "Экспертные системы" - Программирование, компьютеры и кибернетика дипломная работа




































Главная

Программирование, компьютеры и кибернетика
Разработка программного обеспечения лабораторного комплекса компьютерной обучающей системы (КОС) "Экспертные системы"

Понятие электронных курсов. Описание программных и языковых средств разработки. Технология создания компьютерной обучающей системы, пакета вопросов в редакторе Excel. Разработка интерфейса ЭС. Организация диалога пользователя с экспертной системой.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
цветовая гамма представления графической информации должна быть как можно более удобной для восприятия.
Текстовый редактор программы Black board learn мало чем отличается от популярных текстовых редакторов, таких как, например, MS Word. Для форматирования текста используется панель инструментов, располагающаяся над окном редактирования.
Можно вставлять (импортировать) в раздел различные изображения форматов jpg, jpeg, gif, bmp, dib, ico, emf и wmf.
Для этого нужно при создании или редактировании элемента или папки выбрать:
2. В появившемся стандартном диалоге выбрать изображение для вставки.
1.7 Описание объектной модели браузера MS Internet Explorer
Рассмотрим объектную модель браузера Microsoft Internet Explorer 4.0.
Объектная модель - это набор связанных между собой объектов, обеспечивающих доступ к содержимому страницы и ряду функций браузера. Следует разделить эти два набора объектов. Доступ к содержимому страницы из скриптовых языков позволяет управлять ее содержанием уже после загрузки - этот принцип лежит в основе технологии Dynamic HTML.
Объекты имеют свои свойства, методы и события. Рассмотрим основные объекты браузера подробнее.
Объект window находится в вершине иерархии и является контейнером для других объектов. Он представляет собой текущее окно браузера. Это может быть обычное окно либо одно из окон набора фреймов. В последнем случае у объекта будет присутствовать коллекция frames, каждый элемент которой будет представлять собой отдельный фрейм.
Объект history содержит информацию об адресах страниц (в формате URL), которые вы посещали в данной сессии. Эти адреса сохраняются в списке History. Объект позволяет перемещаться по списку с помощью кода на JavaScript.
Объект location содержит информацию об URL - адресе текущей страницы или загрузки новой. Свойства данного объекта позволяют получить различную информацию об URL - адресе текущей страницы.
Объект event позволяет скриптовой программе получить детальную информацию о произошедшем событии и выполнить необходимые действия. Это объект доступен только во время самого события. Более того, обращаться к нему можно только из обработчиков событий или соответствующих функций.
Объект screen предназначен для получения информации о клиентском браузере.
Объект document представляет собой HTML - документ, загруженный в данный момент в браузере.
В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название "экспертные системы" (ЭС). Цель исследований по ЭС состоит в разработке программ, которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Исследователи в области ЭС для названия своей дисциплины часто используют также термин "инженерия знаний", введенный Е. Фейгенбаумом как "привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов".
Программные средства (ПС), базирующиеся на технологии экспертных систем, или инженерии знаний (в дальнейшем будем использовать их как синонимы), получили значительное распространение в мире. Важность экспертных систем состоит в следующем:
технология экспертных систем существенно расширяет круг практически значимых задач, решаемых на компьютерах, решение которых приносит значительный экономический эффект;
технология ЭС является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки сложных приложений;
высокая стоимость сопровождения сложных систем, которая часто в несколько раз превосходит стоимость их разработки; низкий уровень повторной используемости программ и т.п.;
объединение технологии ЭС с технологией традиционного программирования добавляет новые качества к программным продуктам за счет: обеспечения динамичной модификации приложений пользователем, а не программистом; большей "прозрачности" приложения (например, знания хранятся на ограниченном ЕЯ, что не требует комментариев к знаниям, упрощает обучение и сопровождение); лучшей графики; интерфейса и взаимодействия.
По мнению ведущих специалистов, в недалекой перспективе ЭС найдут следующее применение:
ЭС будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг;
технология ЭС, получившая коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей.
ЭС предназначены для так называемых неформализованных задач, т.е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач.
Неформализованные задачи обычно обладают следующими особенностями:
ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных;
ошибочностью, неоднозначностью, неполнотой и противоречивостью знаний о проблемной области и решаемой задаче;
большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик;
динамически изменяющимися данными и знаниями.
Следует подчеркнуть, что неформализованные задачи представляют большой и очень важный класс задач. Многие специалисты считают, что эти задачи являются наиболее массовым классом задач, решаемых ЭВМ.
Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма).
Экспертные системы применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности решения экспертные системы не уступают решениям эксперта-человека. Решения экспертных систем обладают "прозрачностью", т.е. могут быть объяснены пользователю на качественном уровне. Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно-бумажная промышленность, телекоммуникации и связь и др.
Коммерческие успехи к фирмам-разработчикам систем искусственного интеллекта (СИИ) пришли не сразу. На протяжении 1960 - 1985 гг. успехи ИИ касались в основном исследовательских разработок, которые демонстрировали пригодность СИИ для практического использования. Начиная примерно с 1985 г. (в массовом масштабе с 1988 - 1990 гг.), в первую очередь ЭС, а в последние годы системы, воспринимающие естественный язык (ЕЯ-системы), и нейронные сети (НС) стали активно использоваться в коммерческих приложениях.
Следует обратить внимание на то, что некоторые специалисты (как правило, специалисты в программировании, а не в ИИ) продолжают утверждать, что ЭС и СИИ не оправдали возлагавшихся на них ожиданий и умерли. Причины таких заблуждений состоят в том, что эти авторы рассматривали ЭС как альтернативу традиционному программированию, т.е. они исходили из того, что ЭС в одиночестве (в изоляции от других программных средств) полностью решают задачи, стоящие перед заказчиком. Надо отметить, что на заре появления ЭС специфика используемых в них языков, технологии разработки приложений и используемого оборудования (например, Lisp-машины) давала основания предполагать, что интеграция ЭС с традиционными, программными системами является сложной и, возможно, невыполнимой задачей при ограничениях, накладываемых реальными приложениями. Однако в настоящее время коммерческие инструментальные средства (ИС) для создания ЭС разрабатываются в полном соответствии с современными технологическими тенденциями традиционного программирования, что снимает проблемы, возникающие при создании интегрированных приложений.
Причины, приведшие СИИ к коммерческому успеху, следующие.
Интегрированность. Разработаны инструментальные средства искусственного интеллекта (ИС ИИ), легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).
Открытость и переносимость. ИС ИИ разрабатываются с соблюдением стандартов, обеспечивающих открытость и переносимость [14].
Использование языков традиционного программирования и рабочих станций. Переход от ИС ИИ, реализованных на языках ИИ (Lisp, Prolog и т.п.), к ИС ИИ, реализованным на языках традиционного программирования (С, C++ и т.п.), упростил обеспечение интегриро-ванности, снизил требования приложений ИИ к быстродействию ЭВМ и объемам оперативной памяти. Использование рабочих станций (вместо ПК) резко увеличило круг приложений, которые могут быть выполнены на ЭВМ с использованием ИС ИИ.
Архитектура клиент-сервер. Разработаны ИС ИИ, поддерживающие распределенные вычисления по архитектуре клиент-сервер, что позволило: снизить стоимость оборудования, используемого в приложениях, децентрализовать приложения, повысить надежность и общую производительность (так как сокращается количество информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном ему оборудовании).
Проблемно/предметно-ориентированные ИС ИИ. Переход от разработок ИС ИИ общего назначения (хотя они не утратили свое значение как средство для создания ориентированных ИС) к проблемно/предметно-ориентированным ИС ИИ [9] обеспечивает: сокращение сроков разработки приложений; увеличение эффективности использования ИС; упрощение и ускорение работы эксперта; повторную используемость информационного и программного обеспечения (объекты, классы, правила, процедуры).
Типичная статическая ЭС состоит из следующих основных компонентов (рис. 1.):
· рабочей памяти (РП), называемой также базой данных (БД);
База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.
База знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.
Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи.
Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом.
Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.
Диалоговый компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.
В разработке ЭС участвуют представители следующих специальностей:
-эксперт в проблемной области, задачи которой будет решать ЭС;
-инженер по знаниям - специалист по разработке ЭС (используемые им технологию, методы называют технологией (методами) инженерии знаний);
-программист по разработке инструментальных средств (ИС), предназначенных для ускорения разработки ЭС.
Необходимо отметить, что отсутствие среди участников разработки инженеров по знаниям (т. е. их замена программистами) либо приводит к неудаче процесс создания ЭС, либо значительно удлиняет его.
Эксперт определяет знания (данные и правила), характеризующие проблемную область, обеспечивает полноту и правильность введенных в ЭС знаний.
Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы ЭС; осуществляет выбор того ИС, которое наиболее подходит для данной проблемной области, и определяет способ представления знаний в этом ИС; выделяет и программирует (традиционными средствами) стандартные функции (типичные для данной проблемной области), которые будут использоваться в правилах, вводимых экспертом.
Программист разрабатывает ИС (если ИС разрабатывается заново), содержащее в пределе все основные компоненты ЭС, и осуществляет его сопряжение с той средой, в которой оно будет использовано.
Экспертная система работает в двух режимах: режиме приобретения знаний и в режиме решения задачи (называемом также режимом консультации или режимом использования ЭС).
В режиме приобретения знаний общение с ЭС осуществляет (через посредничество инженера по знаниям) эксперт. В этом режиме эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования с данными, характерные для рассматриваемой области.
Отметим, что режиму приобретения знаний в традиционном подходе к разработке программ соответствуют этапы алгоритмизации, программирования и отладки, выполняемые программистом. Таким образом, в отличие от традиционного подхода в случае ЭС разработку программ осуществляет не программист, а эксперт (с помощью ЭС), не владеющий программированием.
В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ его получения. Необходимо отметить, что в зависимости от назначения ЭС пользователь может не быть специалистом в данной проблемной области (в этом случае он обращается к ЭС за результатом, не умея получить его сам), или быть специалистом (в этом случае пользователь может сам получить результат, но он обращается к ЭС с целью либо ускорить процесс получения результата, либо возложить на ЭС рутинную работу). В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Решатель на основе входных данных из рабочей памяти, общих данных о проблемной области и правил из БЗ формирует решение задачи. ЭС при решении задачи не только исполняет предписанную последовательность операции, но и предварительно формирует ее. Если реакция системы не понятна пользователю, то он может потребовать объяснения:
"Почему система задает тот или иной вопрос?", "как ответ, собираемый системой, получен?".
Структуру, приведенную на рис. 1.1, называют структурой статической ЭС. ЭС данного типа используются в тех приложениях, где можно не учитывать изменения окружающего мира, происходящие за время решения задачи. Первые ЭС, получившие практическое использование, были статическими.
На рис. 1.2 показано, что в архитектуру динамической ЭС по сравнению со статической ЭС вводятся два компонента: подсистема моделирования внешнего мира и подсистема связи с внешним окружением. Последняя осуществляет связи с внешним миром через систему датчиков и контроллеров. Кроме того, традиционные компоненты статической ЭС (база знаний и машина вывода) претерпевают существенные изменения, чтобы отразить временную логику происходящих в реальном мире событий.
Подчеркнем, что структура ЭС, представленная на рис. 1.1 и 1.2, отражает только компоненты (функции), и многое остается "за кадром". На рис. 1.3 приведена обобщенная структура современного ИС для создания динамических ЭС, содержащая кроме основных компонентов те возможности, которые позволяют создавать интегрированные приложение в соответствии с современной технологией программирования. технологией программирования.
2.3 Этапы разработки экспертных систем
Разработка ЭС имеет существенные отличия от разработки обычного программного продукта. Опыт создания ЭС показал, что использование при их разработке методологии, принятой в традиционном программировании, либо чрезмерно затягивает процесс создания ЭС, либо вообще приводит к отрицательному результату.
Использовать ЭС следует только тогда, когда разработка ЭС возможна, оправдана и методы инженерии знаний соответствуют решаемой задаче. Чтобы разработка ЭС была возможной для данного приложения, необходимо одновременное выполнение по крайней мере следующих требований:
1) существуют эксперты в данной области, которые решают задачу значительно лучше, чем начинающие специалисты;
2) эксперты сходятся в оценке предлагаемого решения, иначе нельзя будет оценить качество разработанной ЭС;
3) эксперты способны вербализовать (выразить на естественном языке) и объяснить используемые ими методы, в противном случае трудно рассчитывать на то, что знания экспертов будут "извлечены" и вложены в ЭС;
4) решение задачи требует только рассуждений, а не действий;
5) задача не должна быть слишком трудной (т.е. ее решение должно занимать у эксперта несколько часов или дней, а не недель);
6) задача хотя и не должна быть выражена в формальном виде, но все же должна относиться к достаточно "понятной" и структурированной области, т.е. должны быть выделены основные понятия, отношения и известные (хотя бы эксперту) способы получения решения задачи;
7) решение задачи не должно в значительной степени использовать "здравый смысл" (т.е. широкий спектр общих сведений о мире и о способе его функционирования, которые знает и умеет использовать любой нормальный человек), так как подобные знания пока не удается (в достаточном количестве) вложить в системы искусственного интеллекта.
Использование ЭС в данном приложении может быть возможно, но не оправдано. Применение ЭС может быть оправдано одним из следующих факторов:
1) решение задачи принесет значительный эффект, например экономический;
2)использование человека-эксперта невозможно либо из-за недостаточного количества экспертов, либо из-за необходимости выполнять экспертизу одновременно в различных местах;
3) использование ЭС целесообразно в тех случаях, когда при передаче информации эксперту происходит недопустимая потеря времени или информации;
использование ЭС целесообразно при необходимости решать задачу в окружении, враждебном для человека.
Приложение соответствует методам ЭС, если решаемая задача обладает совокупностью следующих характеристик:
1) задача может быть естественным образом решена посредством манипуляции с символами (т.е. с помощью символических рассуждений), а не манипуляций с числами, как принято в математических методах и в традиционном программировании;
2) задача должна иметь эвристическую, а не алгоритмическую природу, т.е. ее решение должно требовать применения эвристических правил. Задачи, которые могут быть гарантированно решены (с соблюдением заданных ограничений) с помощью некоторых формальных процедур, не подходят для применения ЭС;
3) задача должна быть достаточно сложна, чтобы оправдать затраты на разработку ЭС. Однако она не должна быть чрезмерно сложной (решение занимает у эксперта часы, а не недели), чтобы ЭС могла ее решать;
4) задача должна быть достаточно узкой, чтобы решаться методами ЭС, и практически значимой.
При разработке ЭС, как правило, используется концепция "быстрого прототипа". Суть этой концепции состоит в том, что разработчики не пытаются сразу построить конечный продукт. На начальном этапе они создают прототип (прототипы) ЭС. Прототипы должны удовлетворять двум противоречивым требованиям: с одной стороны, они должны решать типичные задачи конкретного приложения, а с другой - время и трудоемкость их разработки должны быть весьма незначительны, чтобы можно было максимально запараллелить процесс накопления и отладки знаний (осуществляемый экспертом) с процессом выбора (разработки) программных средств (осуществляемым инженером по знаниям и программистом). Для удовлетворения указанным требованиям, как правило, при создании прототипа используются разнообразные средства, ускоряющие процесс проектирования.
Прототип должен продемонстрировать пригодность методов инженерии знаний для данного приложения. В случае успеха эксперт с помощью инженера по знаниям расширяет знания прототипа о проблемной области. При неудаче может потребоваться разработка нового прототипа или разработчики могут прийти к выводу о непригодности методов ЭС для данного приложения. По мере увеличения знаний прототип может достигнуть такого состояния, когда он успешно решает все задачи данного приложения. Преобразование прототипа ЭС в конечный продукт обычно приводит к перепрограммированию ЭС на языках низкого уровня, обеспечивающих как увеличение быстродействия ЭС, так и уменьшение требуемой памяти. Трудоемкость и время создания ЭС в значительной степени зависят от типа используемого инструментария.
В ходе работ по созданию ЭС сложилась определенная технология их разработки, включающая шесть следующих этапов (рис. 1.4):
идентификацию, концептуализацию, формализацию, выполнение, тестирование, опытную эксплуатацию. На этапе идентификации определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей.
На этапе концептуализации проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач.
На этапе формализации выбираются ИС и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями.
На этапе выполнения осуществляется наполнение экспертом базы знаний. В связи с тем, что основой ЭС являются знания, данный этап является наиболее важным и наиболее трудоемким этапом разработки ЭС. Процесс приобретения знаний разделяют на извлечение знаний из эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном ЭС. Процесс приобретения знаний осуществляется инженером по знаниям на основе анализа деятельности эксперта по решению реальных задач.
Само собою напрашивается вопрос: зачем разрабатывать экспертные системы? Не лучше ли обратиться к человеческому опыту? Однако искусственная компетентность ЭС имеет ряд существенных преимуществ перед человеческой. Они представлены ниже в (таблице 1).
Человеческая компетенция ослабевает со временем. Перерыв в деятельности человека-эксперта может серьёзно отразиться на его профессиональных качествах. Не постоянная.
Передача знаний от одного человека другому - долгий и дорогой процесс.
Передача искусственной информации - это простой процесс копирования программы или файла данных.
Легко документируемая, т.к. способ представления искусственной компетентности в системе отображен в описании этого представления на естественном языке.
Непредсказуемая, зависящая от эмоций. Эксперт-человек может принимать разные решения в тождественных ситуациях из-за эмоций, забыть в кризисной ситуации важное правило.
Устойчивая. Экспертные системы устойчивы к «помехам». Результаты экспертной системы - стабильны.
Дорогая. Эксперты, особенно высококвалифицированные обходятся очень дорого.
Экспертные системы, наоборот, сравнительно недороги. Их разработка дорога, но они дёшевы в эксплуатации.
Вот несколько примеров того, как ЭС позволяют сэкономить финансовые ресурсы. AmericanExpress сократила свои потери на $27 млн в год благодаря ЭС, определяющей целесообразность выдачи или отказа в кредите той или иной фирме. Компания DEC ежегодно экономит $70 млн., используя системуXCON/XSEL, которая по заказу покупателя составляет конфигурацию вычислительной системы VAX. Компания Sira сократила затраты на строительство трубопровода в Австралии на $40 млн. за счет ЭС, управляющей трубопроводом.
Бортовая ЭС на транспортном самолете позволяет снизить эксплуатационные расходы до $150 млн. за весь срок его эксплуатации.
Но обычно ЭС используются как советчики экспертов-людей, не заменяя их. "…Вероятно, можно отказаться от наиболее квалифицированного эксперта, но во многих ситуациях необходимо оставить в системе место для эксперта со средней квалификацией.
Экспертные системы используются при этом для усиления и расширения профессиональных возможностей такого пользователя” (Уотермен, "Руководство по экспертным системам”).
Все же в некоторых видах деятельности человеческая компетентность превосходит искусственную. Это не есть отражение фундаментальных ограничений ИИ, но характерно для его современного состояния.
Творческая, использующая воображение, аналогии с ситуациями из других предметных областей.
Запрограммированная, ЭС тяготеет к рутинному поведению.
Нуждается в подсказке, мало приспособлена к обучению новым концепциям и правилам.
Использует чувственное восприятие визуальной, звуковой, осязательной или обонятельной информации.
Использует общедоступные знания. Человек использует огромный объем общедоступных знаний, которые почти невозможно встроить в ЭС.
Использует только специализированные знания.
Особенности экспертных систем, отличающие их от обычных программ, заключаются в том, что они должны обладать следующими качествами.
· достигать экспертного уровня решений, т.е. в конкретной предметной области иметь тот же уровень профессионализма, что и эксперты-люди;
· быть умелой, т.е. применять знания эффективно и быстро, избегая, как и люди, ненужных вычислений;
· иметь адекватную робастность, т.е. способность лишь постепенно снижать качество работы по мере приближения к границам диапазона компетентности или допустимой надёжности данных.
2. Возможностью к символьным рассуждениям, а именно:
· представлять знания в символьном виде;
· переформулировать символьные знания. На языке искусственного интеллекта символ - это строка знаков, соответствующая содержанию некоторого понятия. Символы объединяют, чтобы выразить отношения между ними. Когда отношения представлены в экспертной системе они называются символьными структурами.
· работать в предметной области, содержащей трудные задачи;
· использовать сложные правила, т.е. использовать либо сложные конструкции правил, либо большое их количество.
Понятие и эволюция игр, анализ их различных жанров и существующих аналогов. Выбор программных средств для реализации игры, написание сюжета и выбор среды разработки игры. Алгоритмы для придания гибкости обучающей игре. Описание программных модулей. дипломная работа [2,7 M], добавлен 27.10.2017
Методы и этапы создания автоматизированной обучающей системы по дисциплине "Программирование" для студентов ВУЗов. Описание и сравнение программ-аналогов. Выбор инструментальных средств и языка разработки. Проектирование интерфейса обучающей программы. курсовая работа [4,4 M], добавлен 26.11.2010
Общие сведения об электронных учебниках, характеристика средств их создания. Требования, предъявляемые к современным учебникам. Технология создания программного продукта. Создание ссылок для главного меню и основных модулей. Средства защиты информации. дипломная работа [1,2 M], добавлен 19.04.2013
Основные характеристики современных автоматизированных обучающих систем. Требования к электронным образовательным ресурсам. Технологии создания электронных учебно-методических комплексов. Основные принципы применения компьютерных обучающих систем. дипломная работа [2,1 M], добавлен 16.06.2015
Принципы построения автоматизированных обучающих систем, их классификация, обзор существующих вариантов. Описание социальной программы поддержки населения "Твой курс", проектирование информационной системы по обучению населения компьютерной грамотности. курсовая работа [1,5 M], добавлен 12.09.2012
Рассмотрение понятия компьютерной графики; характеристика ее видов - растровой, векторной, фрактальной, трехмерной. Описание интерфейса и основных инструментов графического программного обеспечения - Adobe Photoshop, Corel Draw, Autodesk 3ds Max. реферат [387,8 K], добавлен 02.01.2012
Общая характеристика киноиндустрии как предметной области работы. Разработка базы данных и дерева вопросов для получения информации для выбора фильма. Программная реализация экспертной системы. Тестирование системы и создание руководства пользователя. курсовая работа [1,9 M], добавлен 19.05.2014
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Разработка программного обеспечения лабораторного комплекса компьютерной обучающей системы (КОС) "Экспертные системы" дипломная работа. Программирование, компьютеры и кибернетика.
Лабораторная Работа Выяснения Равновесия Рычага
Бедные Люди Достоевский Сочинения
Реферат: Шпаргалки к госэкзаменам по Банковсому Делу
Учебное пособие: Промышленный комплекс Украины
Курсовая работа по теме Анализ вопросов компенсации морального вреда
Контрольная работа: Культура и цивилизация эволюция понятий и отношений
Реферат Гимнастика Как Средство Физического Воспитания
Сочинения По Периодам История 2022
Доклад по теме Бондарчук Сергей Федорович
Эссе По Английскому Дружба
Как Правильно Заполнять Дневник Учебной Практики
Характеристики свойств минералов кальцит, марказит, роговая обманка
Контрольная Работа 3 По Алгебре 8 Класс
Практическая Работа По Теме Кислоты
Контрольная Работа Информационные Системы
Курсовая По Теме Оборотные Средства Предприятия By
Сайт Контрольная Работа Заказать
Диссертация Доктора Биологических Наук Матросов Александр
Курсовая Работа На Тему Муниципальная Служба В Южно-Сахалинске
Реферат: Динозавры - животные древности. Скачать бесплатно и без регистрации
Травматизм в строительной отрасли (на примере ЗАО "Дон-Строй") - Безопасность жизнедеятельности и охрана труда курсовая работа
Судебное оспаривание нормативных правовых и ненормативных актов - Государство и право курсовая работа
Выбор конструкции скважины и расчет равнопрочной эксплуатационной колонны - Геология, гидрология и геодезия курсовая работа


Report Page