Разработка мощного понижающего ШИМ-преобразователя - Коммуникации, связь, цифровые приборы и радиоэлектроника дипломная работа

Разработка мощного понижающего ШИМ-преобразователя - Коммуникации, связь, цифровые приборы и радиоэлектроника дипломная работа




































Главная

Коммуникации, связь, цифровые приборы и радиоэлектроника
Разработка мощного понижающего ШИМ-преобразователя

Обзор современной элементной базы для построения мощных ШИМ-преобразователей. Силовые транзисторы и диоды, конденсаторы. Выбор и расчет элементов силовой схемы мощного понижающего ШИМ-преобразователя. Организационный план работ по реализации проекта.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Прогресс большинства областей современной техники неразрывно связан с успехами энергетической или силовой электроники. Её значимость определяется все возрастающей потребностью в эффективных преобразователях и регуляторах электрической энергии. Свойства, характеристики и параметры силовых схем зависят, в свою очередь, от применяемых полупроводниковых приборов. Высокое качество полупроводниковых переключателей, их уникальные характеристики открывают долговременные перспективы совершенствования электронных устройств. С другой стороны, процесс полупроводникового производства является отражением передовых научно-технических достижений в области физики, электроники, автоматики, машиностроения. Получается некий циклический процесс, каждый виток которого является этапом непрерывного совершенствования и взаимовлияния.
1. Обзор современной элементной базы для построения мощных ШИМ-преобразователей
преобразователь конденсатор диод транзистор
Биполярный транзистор с изолированным затвором (IGBT - Insulated Gate Bipolar Transistors) - полностью управляемый полупроводниковый прибор, в основе которого трёхслойная структура. Его включение и выключение осуществляются подачей и снятием положительного напряжения между затвором и истоком. На рисунке 1 приведено условное обозначение IGBT.
Рисунок 1 - Условное обозначение IGBT
Коммерческое использование IGBT началось с 80-х годов и уже претерпела четыре стадии своего развития.
I поколение IGBT (1985 г.): предельные коммутируемые напряжения 1000В и токи 200 А в модульном и 25 А в дискретном исполнении, прямые падения напряжения в открытом состоянии 3,0-3,5 В, частоты коммутации до 5 кГц (время включения/выключения около 1 мкс).
II поколение (1991 г.): коммутируемые напряжения до 1600 В, токи до 500 А в модульном и 50 А в дискретном исполнении; прямое падение напряжения 2,5-3,0 В, частота коммутации до 20 кГц ( время включения/ выключения около 0,5 мкс).
III поколение (1994 г.): коммутируемое напряжение до 3500 В, токи 1200 А в модульном исполнении. Для приборов с напряжением до 1800 В и токов до 600 А прямое падение напряжения составляет 1,5-2,2 В, частоты коммутации до 50 кГц (времена около 200 нс).
IV поколение (1998 г.): коммутируемое напряжение до 4500 В, токи до 1800 А в модульном исполнении; прямое падение напряжения 1,0-1,5 В, частота коммутации до 50 кГц (времена около 200 нс).
Таким образом, IGBT имеет три внешних вывода: эмиттер, коллектор, затвор. Соединения эмиттера и стока (D), базы и истока (S) являются внутренними. Сочетание двух приборов в одной структуре позволило объединить достоинства полевых и биполярных транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включённом состоянии.
Схематичный разрез структуры IGBT показан на рисунке 2. Биполярный транзистор образован слоями p+ (эмиттер), n (база), p (коллектор); полевой - слоями n (исток), n+ (сток) и металлической пластиной (затвор). Слои p+ и p имеют внешние выводы, включаемые в силовую цепь. Затвор имеет вывод, включаемый в цепь управления. На рисунке 3, изображена структура IGBT IV поколения, выполненного по технологии "утопленного" канала (trench-gate technology), позволяющей исключить сопротивление между p-базами и уменьшить размеры прибора в несколько раз.
Рисунок 2 - Схематичный разрез структуры IGBT
Процесс включения IGBT можно разделить на два этапа: после подачи положительного напряжения между затвором и истоком происходит открытие полевого транзистора (формируется n - канал между истоком и стоком). Движение зарядов из области n в область p приводит к открытию биполярного транзистора и возникновению тока от эмиттера к коллектору.
Рисунок 3 - Структура IGBT IV поколения
В настоящее время транзисторы IGBT выпускаются, как правило, в виде модулей в прямоугольных корпусах с односторонним прижимом и охлаждением ("Mitsubishi", "Siemens", "Semikron" и др.) и таблеточном исполнении с двухсторонним охлаждением ("Toshiba Semiconductor Group"). Модули с односторонним охлаждением выполняются в прочном пластмассовом корпусе с паяными контактами и изолированным основанием. Все электрические контакты находятся в верхней части корпуса. Отвод тепла осуществляется через основание. Типовая конструкция модуля в прямоугольном корпусе показана на рисунке 4.
Рисунок 4 - Типовая конструкция IGBT-модуля: 1 - кристалл; 2 - слой керамики; 3 - спайка; 4 - нижнее тепловыводящее основание
Ток управления IGBT мал, поэтому цепь управления - драйвер конструктивно компактна. Наиболее целесообразно располагать цепи драйвера в непосредственной близости от силового ключа. В модулях IGBT драйверы непосредственно включены в их структуру. "Интеллектуальные" транзисторные модули (ИТМ), выполненные на IGBT, также содержат " интеллектуальные" устройства защиты от токов короткого замыкания, системы диагностирования, обеспечивающие защиту от исчезновения управляющего сигнала, одновременной проводимости в противоположных плечах силовой схемы, исчезновения напряжения источника питания и других аварийных явлений. В структуре ИТМ на IGBT предусматривается в ряде случаев система управления с широтно-импульсной модуляцией (ШИМ) и однокристальная ЭВМ. Во многих модулях имеется схема активного фильтра для коррекции коэффициента мощности и уменьшения содержания высших гармонических в питающей сети.
 IGBT-модуль по внутренней электрической схеме может представлять собой единичный IGBT, двойной модуль (half-bridge), где два IGBT соединены последовательно (полумост), прерыватель (chopper), в котором единичный IGBT последовательно соединён с диодом, однофазный или трёхфазный мост. Во всех случаях, кроме прерывателя, модуль содержит параллельно каждому IGBT встроенный обратный диод. Наиболее распространённые схемы IGBT- модулей приведены на рисунке 5.
Простейшим полупроводниковым прибором является диод, представляющий полупроводниковый кристалл с электронно-дырочным (pn) переходом. Основным элементом диода является электронно-дырочный переход (pn-переход).
Электронно-дырочный переход - основной элемент не только диодов, но и других биполярных приборов, поскольку именно электронно-дырочный переход позволяет управлять потоками носителей заряда в биполярных приборах. Электронно-дырочный переход создают в кристалле изменением типа проводимости, путем введения соответственно акцепторной и донорной примеси.
Особенность электрических характеристик диода в том, что он обладает низким сопротивлением при одной полярности приложенного к нему напряжения (плюс на аноде - прямое включение) и высоким сопротивлением при другой полярности (минус на аноде - обратное включение). Это свойство диода обеспечило ему широкое применение в выпрямителях - схемах преобразования переменного напряжения в постоянное.
К основным недостаткам полупроводникового диода следует отнести: при прямом смещении - наличие области малых токов на начальном участке ("пятка") и конечного сопротивления толщи rs ; при обратном - наличие пробоя и небольшого (однако сильно возрастающего с температурой) обратного тока.
Полупроводниковые диоды изготовляют из германия, кремния, селена и других веществ. Рассмотрим, как создается p-n переход при использовании донорной примеси, этот переход не удастся получить путем механического соединения двух полупроводников различных типов, так как при этом получается слишком большой зазор между полупроводниками. Эта толщина должна быть не больше межатомных расстояний. По этому в одну из поверхностей образца вплавляют индий. Вследствие диффузии атомов индия в глубь монокристалла германия, у поверхности германия преобразуется область с проводимостью р-типа. Остальная часть образца германии, в которую атомы индия не проникли, по-прежнему имеет проводимость n-типа. Между областями возникает p-n переход. В полупроводниковом диоде германий служит катодом, а индий - анодом.
Вольт - Амперная характеристика при прямом и обратном соединении показана на рисунке 6.
Рисунок 6 - Вольт - Амперная характеристика диода
Силовые выпрямительные диоды, как правило, работают в блоках, обеспечивающих энергопитание электротехнических устройств, поэтому, они должны быть мощными, обладать высоким к.п.д. преобразования переменного тока в постоянный, не изменять свои параметры в процессе работы и их конструкция должна предусматривать хороший теплоотвод.
Поскольку на выпрямительных диодах, как правило, рассеивается значительная мощность, они разогреваются, что приводит к ухудшению их выпрямительных свойств и, если температура pn перехода превысит определенное значение, диод может выйти из строя, что в свою очередь может сопровождаться выходом из строя всего силового блока.
В настоящее время в большинство систем силовой электроники работают на кремниевых диодах. Между тем потенциал кремния, как материала для силовой электроники, практически исчерпан. В то же время, карбид кремния является отличным материалом для нового поколения силовых диодов. Уникальные свойства SiC позволяют улучшать все характеристики приборов силовой электроники: быстродействие, предельные коммутируемые токи и напряжения, статические и динамические потери. В частности SiC-диоды обладают:
высокими рабочими температурами, вплоть до 600 °C; ничтожно маленьким (практически нулевым) временем восстановления основных носителей заряда при переключениях; более высоким напряжение пробоя, чем кремниевые;
устойчивостью к воздействию радиации, и при этом отсутствует деградация электрических свойств; практически не изменяющимися электрическими характеристиками под воздействием температуры и времени.
Существуют три класса силовых диодов на основе SiC: pin диоды - обладают низким током утечки в запертом состоянии, но имеют свойство накапливать заряд в режиме восстановлении и создают высокое падение напряжения во время прохождения прямого тока; диоды Шоттки - работают на высоких частотах, но имеют большой ток утечки и высокое сопротивление;
гибрид диода Шоттки и pin диода - JBS диод - работает на высоких частотах и обладает малым током утечки.
В нашей стране выпускаются SiC диоды на обратное напряжение до 900В, прямой ток до 3А. При этом западный рынок уже потребляет SiC - диоды Шоттки с предельными значениями 1200В/25А, рабочей температурой до 175 °C, и начат серийный выпуск диодов 1200В на 50 А.. К тому же промышленность уже готовится к выпуску диодов с предельными значениями 5000 В/120 А/200 °C.
Одним из основных факторов, препятствующих разработке силовых SiC-диодов, является высокая плотность дефектов в подложках и эпитаксиальных слоях SiC. Максимальные напряжения пробоя порядка или более 1кВ, как правило, достигаются для pin - структур. Малые рабочие площади не позволяют получать на таких приборах значительных величин прямых токов и соответственно их трудно назвать силовыми. Кроме того, есть проблемы при создании омических и выпрямляющих контактов к структурам на SiC, слабо проработана технология корпусировки приборов для высокотемпературных применений. Так же цена SiC-диодов на порядок выше кремниевых, что связано с применением более дорогостоящих технологий при их создании. Таким образом, для массового применения силовых SiC-диодов необходимо решить вышеупомянутые проблемы.
Система двух разноименно заряженных проводников называется конденсатором, а заряд, который надо перенести с одного проводника на другой, чтобы зарядить один из них отрицательно, а другой положительно, называется зарядом конденсатора. В частности, плоским конденсатором называется конденсатор, состоящий из двух параллельных пластин, расстояние между которыми мало по сравнению с размерами пластин.
Разность потенциалов между пластинами конденсатора, конечно, зависит от заряда конденсатора. Присоединив к пластинам конденсатора электрометр и увеличивая заряд конденсатора повторной зарядкой, мы найдем, что показания электрометра тем больше, чем больший заряд мы сообщаем конденсатору. Измеряя заряд и разность потенциалов мы убедимся на опыте, что разность потенциалов U между пластинами прямо пропорциональна заряду, находящемуся на каждой из них, и поэтому зависимость между этими величинами может быть представлена формулой:
Здесь С - коэффициент, характеризующий конденсатор.
В СИ единица емкости носит в честь Фарадея название фарад (Ф). Емкостью, равной одному фараду, обладает такой конденсатор, между пластинами которого возникает разность потенциалов, равная одному вольту, при заряде на каждой из пластин, равном одному кулону.
Емкость конденсатора зависит от формы, размеров и взаимного расположения составляющих его тел; в частности, емкость плоского конденсатора зависит от расстояния между его пластинами и от их площади.
Классификация конденсаторов. В зависимости от назначения конденсаторы разделяются на две большие группы: общего и специального назначения.
Группа общего назначения включает в себя широко применяемые конденсаторы, используемые в большинстве видов и классов аппаратуры. Традиционно к ней относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования.
Все остальные конденсаторы являются специальными. К ним относятся: высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие. В зависимости от способа монтажа конденсаторы могут выполняться для печатного и навесного монтажа, а также в составе микромодулей и микросхем или для сопряжения с ними. Выводы конденсаторов для навесного монтажа могут быть жёсткие или мягкие, аксиальные или радиальные из проволоки круглого сечения или ленты, в виде лепестков, с кабельным вводом, в виде проходных шпилек, опорных винтов и т. п. По характеру защиты от внешних воздействий конденсаторы выполняются: незащищёнными, защищёнными, неизолированными, изолированными, уплотненными герметизированными. Незащищённые конденсаторы допускают эксплуатацию в условиях повышенной влажности только в составе герметизированной аппаратуры. Защищённые конденсаторы допускают эксплуатацию в аппаратуре любого конструктивного исполнения. Неизолированные конденсаторы (с покрытием или без него) не допускают касаний своим корпусом шасси аппаратуры. Изолированные конденсаторы имеют достаточно хорошее изоляционное покрытие и допускают касания корпусом шасси аппаратуры. Уплотнённые конденсаторы имеют уплотнённую органическими материалами конструкцию корпуса. Герметизированные конденсаторы имеют герметичную конструкцию корпуса, который исключает возможность сообщения окружающей среды с его внутренним пространством. Герметизация производится с помощью керамических и металлических корпусов или стеклянных колб. По виду диэлектрика все конденсаторы можно разделить на группы: с органическим, неорганическим, газообразным и оксидным диэлектриком.
Конденсаторы с органическим диэлектриком. Эти конденсаторы изготовляют намоткой тонких длинных лент конденсаторной бумаги, плёнок или их комбинации с металлизированными или фольговыми электродами. По назначению конденсаторы можно разделить на: низкочастотные и высокочастотные. К низкочастотным плёночным относятся конденсаторы на основе полярных и слабополярных плёнок (бумажные, металлобумажные, комбинированные, лакоплёночные, поликарбонатные и полипропиленовые). Они способны работать на частотах до 104-105Гц при существенном снижении амплитуды переменной составляющей напряжения с увеличением частоты.
К высокочастотным плёночным относятся конденсаторы на основе неполярных плёнок (полистирольные и фторопластовые). Они допускают работу на частотах до 105-107Гц. Верхний предел по частоте зависит от конструкции обкладок, контактного узла и от ёмкости. К этой группе относят некоторые типы конденсаторов на основе слабо полярной полипропиленовой плёнки.
Высоковольтные конденсаторы можно разделить на высоковольтные постоянного напряжения и импульсные.
В качестве диэлектрика высоковольтных конденсаторов постоянного напряжения используют: бумагу, полистирол, полиэтилентерефталат и сочетание бумаги и синтетических плёнок.
Транзисторы высоковольтные, импульсные делают на основе бумажного и комбинированного диэлектриков.
Основное требование к высоковольтным конденсаторам - это высокая электрическая прочность изоляции. Импульсные конденсаторы наряду с высокой электрической прочностью и сравнительно большими ёмкостями должны допускать быстрые разряды.
Помехоподавляющие конденсаторы предназначены для ослабления электромагнитных помех в широком диапазоне частот. Они имеют малую индуктивность, в результате чего повышается резонансная и полосаподавляемых частот. Эти конденсаторы делают бумажные, комбинированные и плёночные.
Конденсаторы с неорганическим диэлектриком. Конденсаторы с неорганическим диэлектриком можно разделить на три группы: низковольтные, высоковольтные и помехоподавляющие. В качестве диэлектрика в них используется керамика, стекло, стекло эмаль, слюда. Обкладки выполняются в виде тонкого слоя металла, нанесённого на диэлектрик путём непосредственной его металлизации, или в виде тонкой фольги.
Группа низковольтных конденсаторов включает в себя низкочастотные и высокочастотные конденсаторы.
По назначению они подразделяются на три типа: Тип 1- конденсаторы, предназначенные для использования в резонансных контурах, где малые потери и высокая стабильность ёмкости имеют существенное значение. Тип 2- конденсаторы, предназначенные для использования в цепях фильтров, блокировки и развязки или в других цепях, где малые потери и высокая стабильность ёмкости не имеют существенного значения. Тип 3-керамические конденсаторы с барьерным слоем, предназначенные для работы в тех же цепях, что и второго типа, но имеющие меньшее значение сопротивления изоляции и большее значение тангенса угла диэлектрических потерь, что ограничивает область применения низкими частотами. Слюдяные и стеклоэмалевые конденсаторы относятся к конденсаторам первого типа, стеклокерамические могут быть первого и второго типов, керамические - всех типов.
Высоковольтные конденсаторы большой и малой реактивной мощности. По назначению они могут быть 1 и 2 типов и так же, как низковольтные, они разделяются на высокочастотные и низкочастотные. Основным параметром является удельная энергия, поэтому керамику для них подбирают с большой диэлектрической проницаемостью. Для увеличения реактивной мощности выбирают керамику с малыми потерями, а конструкцию и выводы конденсаторов рассчитывают на возможность прохождения больших токов. Высоковольтные слюдяные конденсаторы делают фольговыми, т.к. они предназначены для работы при повышенных токовых нагрузках.
Помехоподавляющие конденсаторы разделяются на опорные и проходные, их основное назначение-подавление индустриальных и высокочастотных помех, создаваемых промышленными и бытовыми приборами, т.е. они являются фильтрами нижних частот.
Опорные конденсаторы - это конденсаторы, одним из выводов которых является опорная металлическая пластина с резьбовым креплением.
Проходные конденсаторы делают коаксиальными - один из, выводов которых представляет собой тонко несущий стержень, по которому протекает полный ток внешней цепи и не коаксиальными - через выводы которых протекает полный ток внешней цепи.
Конденсаторы с оксидным диэлектриком. В качестве диэлектрика в них, используется оксидный слой, образуемый электрохимическим путём на аноде - металлической обкладке из некоторых металлов. В зависимости от материала анода оксидные конденсаторы подразделяют на алюминиевые, танталовые и ниобиевые.
Конденсаторы группы общего назначения имеют униполярную проводимость, их эксплуатация возможна только при положительном потенциале на аноде.
Неполярные конденсаторы могут, включены в цепь постоянного и пульсирующего тока без учёта полярности, а также допускать смену полярности в процессе эксплуатации.
Высокочастотные конденсаторы широко применяются в источниках вторичного питания, в качестве накопительных и фильтрующих, они работают в диапазоне частот пульсирующего тока от десятков до сотен кГц.
Импульсные конденсаторы используются в цепях с относительно длительным зарядом и быстрым разрядом.
Пусковые конденсаторы используются в асинхронных двигателях, в которых ёмкость включается только на момент пуска двигателя.
Система условных обозначений и маркировка конденсаторов. Условное обозначение конденсаторов может быть сокращённым или полным. В соответствии с действующей системой сокращённое условное обозначение состоит из букв и цифр.
Ферромагнетиками называются твердые вещества (как правило, находящиеся в кристаллическом состоянии), обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий - магнитного поля, деформации, изменения температуры. Ферромагнетики, в отличие от слабо магнитных диа- и парамагнетиков, являются сильно магнитными средами: внутреннее магнитное поле в них может в сотни и тысячи раз превосходить внешнее поле. Ферромагнетизм наблюдается у кристаллов переходных материалов - железа, кобальта, никеля, у некоторых редкоземельных металлов и у ряда сплавов.
Магнитный момент ферромагнетика первоначально был равен нулю, что очень важно. В данном случае в поле до 100А/м намагниченность возрастает почти линейно, но после 100А/м наступает состояние насыщения, когда с увеличением внешнего поля намагниченность уже перестает расти. Этот эффект говорит о нелинейности магнитных характеристик ферромагнетика.
Кроме нелинейной зависимости между H и J изображенной на рисунке 10, а, следовательно, и между H и B, для ферромагнетиков характерно наличие гистерезиса.
На рисунке 11 изображена петля гистерезиса, по горизонтальной оси отложена напряженность внешнего поля, а по вертикальной - магнитная индукция внутри ферромагнетика.
При действии на ферромагнетик переменного магнитного поля индукция меняется по кривой 1-2-3-4-5-1, которая носит название петля гистерезиса.
Поскольку нельзя однозначно определить зависимость B от H, понятие магнитной проницаемости применяется только к основной прямой намагничивания. У ферромагнетиков она зависит от напряженности внешнего магнитного поля, как показано на рисунке 12.
Рисунок 7 - Нелинейная зависимость ферромагнетиков
Рисунок 9 - Зависимость проницаемости ферромагнетика от напряженности внешнего поля
Видно, что максимальное значение проницаемости µ достигается при приближении к области насыщения, после чего, при дальнейшем увеличение H, начинается ее падение.
У каждого ферромагнитного вещества имеется такая температура, называемая точкой Кюри, выше которой это вещество теряет свои особые магнитные свойства и ведет себя как обычный парамагнетик.
Ферриты или магнитные материалы с прямоугольной петлей гистерезиса (ППГ) находят широкое применение в устройствах автоматики, вычислительной техники, в аппаратуре телеграфной связи. Сердечники у ферритов имеют два устойчивых магнитных состояния, соответствующих различным направлениям остаточной магнитной индукции. Именно благодаря этой особенности их можно использовать в качестве элементов для хранения и переработки двоичной информации. Запись и считывание информации осуществляются переключением сердечника из одного магнитного состояния в другое с помощью импульсов тока, создающих требуемую напряженность магнитного поля.
Двоичные элементы на ферритах характеризуются высокой надежностью, малыми габаритами, низкой стоимостью, относительной стабильностью характеристик. Они обладают практически неограниченным сроком службы, сохраняют записанную информацию при отключенных источниках питания.
Кроме того, ферриты должны обеспечивать малое время перемагничивания, возможно большую температурную стабильность магнитных характеристик, а, следовательно, иметь высокую температуру Кюри и некоторые другие свойства.
Ферриты в практике распространены шире, чем металлические тонкие ленты. Это объясняется тем, что технология изготовления сердечников наиболее проста и экономична.
Ферритам свойственна спонтанная прямоугольность петли гистерезиса, т.е. специфическая форма петли реализуется при выборе определенного химического состава и условий спекания феррита, а не является результатом какой-либо специальной обработки материала, приводящей к образованию текстуры (например, механических воздействий или обработки в сильном магнитном поле).
Установлено, что прямоугольная петля гистерезиса характерна для материалов с достаточно сильной магнитной кристаллографической анизотропией и слабо выраженной магнитострикцией. В этом случае процессы перемагничивания происходят главным образом за счет необратимого смещения доменных границ. Сохранение большой остаточной намагниченности после снятия внешнего поля объясняется локализацией доменных границ на микро неоднородностях структуры. Такими неоднородностями могут быть области с разной степенью обращенности шпинели, вакансии и связанные с ними комплексы, междоузельные атомы и др. Например, в магний-марганцевых ферритах спонтанная прямоугольность петли гистерезиса обусловлена тетрагональными искажениями кристаллической решетки за счет ионов Mn3+, образующихся при определенных условиях синтеза.
При использовании ферритов следует учитывать изменение их свойств от температуры. Так, при возрастании температуры от -20 до +60С у ферритов различных марок коэрцитивная сила уменьшается в 1,5-2 раза, остаточная индукция - на 15-30%, коэффициент прямоугольности - на 5-35%.
В зависимости от особенности устройств, в которых применяются ферриты с ППГ, требования, предъявляемые к ним, могут существенно различаться. Так, ферриты, предназначенные для коммутационных и логических элементов схем автоматического управления, должны иметь малую коэрцитивную силу (10-20 А/м). Наоборот, материалы, используемые в устройствах хранения дискретной информации, должны иметь повышенное значение коэрцитивной силы (100-300 А/м).
В запоминающих устройствах ЭВМ применяют либо кольцевые ферритовые сердечники малого размера (имеются сердечники с наружным диаметром 0,3-0,4 мм), либо многоотверстные ферритовые платы в которых область вокруг каждого отверстия выполняет функции отдельного сердечника. При использовании сердечников достигается более высокое быстродействие, однако возникают технологические трудности при прошивке таких сердечников проводниками и сборке матриц.
Применение ферритов. Магнитомягкие ферриты с начальной магнитной проницаемостью 400 - 20000 в слабых полях во многих случаях эффективно заменяют листовые ферромагнитные материалы - пермаллой и электротехническую сталь. В средних и сильных магнитных полях замена листовых ферромагнетиков ферритами нецелесообразна, поскольку у ферритов меньше индукция насыщения.
Магнитомягкие ферриты широко применяются в качестве сердечников контурных катушек постоянной и переменной индуктивностей, фильтров в аппаратуре радио- и проводной связи, сердечников импульсных и широкополосных трансформаторов, трансформаторов развертки телевизоров, магнитных модуляторов и усилителей. Из них изготавливают также стержневые магнитные антенны, индуктивные линии задержки и другие детали, и узлы электронной аппаратуры.
Наиболее часто применяют ферритовые сердечники с замкнутой магнитной цепью. Такие магнитопроводы бывают либо монолитными, в виде единого тела (например, кольцевой сердечник), либо составными - из двух хорошо пришлифованных друг к другу частей, зазор между которыми по возможности мал. Составные магнитопроводы распространены шире монолитных, так как намотка проволоки на последние вызывает определенные трудности.
2. Разработка силовой электрической схемы ШИМ-преобразователя
Принципиальная электрическая схема ШИМ - преобразователя представлена на рисунке 13. В ее состав входят:
Автоматический выключатель QF1, служит для защиты от перегрузки по току. Контактор Q, в данной схеме применяется для подачи напряжения на силовую часть схемы.
Рис. 10 - Схема электрическая принципиальная мощного ШИМ - преобразователя
Блок варисторов R1,R2,..R6, защищает от перенапряжения в схеме.
Мост Ларионова выпрямляет ток из переменного в постоянный.
Емкости C1,C2, являются высокочастотными фильтрами.
Транзистор играет роль силового ключа, осуществляющего высокочастотную коммутацию тока.
Демпфирующая цепь, состоящая из C3, VD9 и R2, уменьшает скорость нарастания напряжения на транзисторе.
Демпфирующая цепь, состоящая из C4, R3, сглаживает выбросы напряжения на диоде VD10.
Фильтровые емкости C5,C6,C7, уменьшают пульсации напряжения на выходе.
Сопротивления R10 и R11 выравнивают напряжение на емкостях.
Емкости Cd1 и Cd2 предотвращают забросы напряжения при изменении параметров нагрузки.
Диод VD11 предотвращает разряд конденсаторов Cd1 и Cd2.
Благодаря сопротивлению R9 заряжается и разряжается емкость Cd1 и Cd2.
Рисунок 13 - Схема электрическая принципиальная мощного ШИМ - преобразователя
3. Выбор и расчет элементов силовой схемы мощного понижающего ШИМ-преобразователя
Основными параметрами при расчете элементов силовой схемы мощного понижающего ШИМ-преобразователя является мощность Р=100кВт, частота F=20кГц, входное напряжение U=500В и iн=200А.
3.1 Выбор силового транзистора и диода
Опираясь на перечисленные параметры и учитывая, что предельные значения транзистора и диода должны выбираться с запасом, заключаем, что наиболее подходящим силовым транзистором является SKM 400GB125D, а наиболее подходящим силовым диодом SKKD 380.
Характеристики транзистора SKM 400GB125D приведены в таблице 1, а характеристики силового диода в таблице 2.
Таблица 1 - Характеристики транзистора
VCES - (постоянное) напряжение коллектор - эмиттер при короткозамкнутых выводах базы - (затвора-) и эмиттера
ICRM - периодический (tp=1мс) максимальный ток коллектора
Freewheeling diode - диод для свободного протекания тока
IFRM - повторяющийся импульсный (tp=1мс) прямой ток
IFAV - максимально допустимый средний прямой ток (sin.180 - полусинусоидальная форма тока)
VF - постоянное напряжение в открытом состоянии (IF = 1000A)
IRD - постоянный обратный ток запирания
Для наиболее оптимального выбора охладителя использовалась программа Semisel V3.
Подставив, известные параметры в программу получили результат, приведенный в таблице 3. В табли
Разработка мощного понижающего ШИМ-преобразователя дипломная работа. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Реферат: Основные виды материального стимулирования деятельности государственных служащих
Курсовая работа: Оценка способов зимовки пчелиных семей
Реферат: Учет готовой продукции работ, услуг
Сотовая Связь Курсовая Работа
Темы Дипломных Работ По Лингвистике
Реферат по теме Аристотель - древнегреческий философ
Учимся Писать Итоговое Сочинение 11 Класс
Реферат Масштабы Вселенной
Реферат На Тему Игровая Технология
Сочинение: Сочинения на тему "Ни за что бы не подумал, что я..."
Курсовая работа: Исследование экологического состояния участка реки и анализ русловых переформирований
Темы Магистерских Диссертаций По Охране Труда
Реферат: Уровень жизни советских людей в 70-е годы ХХ века
Осень Мини Сочинение 3 Класс
Реферат по теме Международные стандарты финансовой отчетности
Сочинение Егэ По Тексту Гранина
Реферат: Расчет и анализ аналитических коэффициентов финансовой деятельности предприятия. Скачать бесплатно и без регистрации
Курсовая работа по теме Постоянно действующие экспертные комиссии
Курсовая работа по теме Выбор наиболее оптимального варианта проложения трассы автомобильной дороги
Центр Занятости Населения Дневник Практики
Расчет затрат на проведение геофизических исследований скважин на участке Корчакольский Глубокий - Геология, гидрология и геодезия курсовая работа
Защита прав ребёнка в Российской Федерации - Государство и право реферат
Общая характеристика США - География и экономическая география презентация


Report Page