Разработка лабораторного стенда "Измерение опасных акустических сигналов" - Коммуникации, связь, цифровые приборы и радиоэлектроника дипломная работа

Разработка лабораторного стенда "Измерение опасных акустических сигналов" - Коммуникации, связь, цифровые приборы и радиоэлектроника дипломная работа




































Главная

Коммуникации, связь, цифровые приборы и радиоэлектроника
Разработка лабораторного стенда "Измерение опасных акустических сигналов"

Принцип распространения звуковых волн в помещении и звукоизоляция. Акустические каналы утечки информации. Способы перехвата акустической (речевой) информации из выделенных помещений. Порядок проведения измерений с помощью шумомера АТЕ-9051, его настройка.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1.1 Источники акустических сигналов
1.2 Принцип распространения звуковых волн в помещении и звукоизоляция
1.3 Каналы утечки акустической информации
1.3.1 Акустические каналы утечки информации
1.3.2 Виброакустические каналы утечки информации
1.3.3 Акустоэлектрические каналы утечки информации
1.3.4 Оптико-электронный канал утечки информации
1.3.5 Параметрический канал утечки акустической информации
1.4 Классификация способов перехвата акустической информации
1.5 Средства перехвата акустической информации
1.6 Средства измерения акустических сигналов
1.7 Измерение акустических сигналов и вибраций
2.2 Требования по защите акустической информации
2.3.1 Назначение изделия АТЕ-9051 и технические характеристики
2.3.3 Описание органов управления АТЕ-9051
2.3.4 Порядок проведения измерений с помощью шумомера
2.6.1 Использование генераторов зашумления
4. Содержание экономической части дипломного проекта по оценке экономической эффективности разработки (конструкции изделия)
акустический сигнал информация шумомер
Для человека слух является вторым по информативности после зрения. Поэтому одним из довольно распространенных каналов утечки информации является акустический канал. В акустическом канале переносчиком информации выступает звук, лежащий в полосе ультра (более 20 000 Гц), слышимого и инфразвукового диапазонов. Диапазон звуковых частот, слышимых человеком, лежит в пределах от 16 до 20 000 Гц, и содержащихся в человеческой речи -- от 100 до 6000 Гц. Когда в воздухе распространяется акустическая волна, частицы воздуха приобретают колебательные движения, передавая колебательную энергию друг другу. Если на пути звука нет препятствия, он распространяется равномерно во все стороны. Если же на пути звуковой волны возникают какие-либо препятствия в виде перегородок, стен, окон, дверей, потолков и т. п., звуковые волны оказывают на них соответствующее давление, приводя их также в колебательный режим. Эти воздействия звуковых волн и являются одной из основных причин образования акустического канала утечки информации. Различают определенные особенности распространения звуковых волн в зависимости от среды. Это прямое распространение звука в воздушном пространстве, распространение звука в жестких средах (структурный звук). Кроме того, воздействие звукового давления на элементы конструкции зданий и помещений вызывает их вибрацию. В свободном воздушном пространстве акустические каналы образуются в помещениях при ведении переговоров в случае открытых дверей, окон, форточек. Кроме того, такие каналы образуются системой воздушной вентиляции помещений. В этом случае образование каналов существенно зависит от геометрических размеров и формы воздуховодов, акустических характеристик фасонных элементов задвижек, воздухораспределителей и подобных элементов. Под структурным звуком понимают механические колебания в твердых средах. Механические колебания стен, перекрытий или трубопроводов, возникающие в одном месте, передаются на значительные расстояния почти не затухая. Опасность такого канала утечки состоит в неконтролируемой дальности распространения звука. Преобразовательный, а точнее, акусто-преобразовательный канал -- это изменение тех или иных сигналов электронных схем под воздействием акустических полей. На практике такое явление принято называть микрофонным эффектом.
Опасными для утечки информации по акустическим каналам могут являются помещения и коммуникации:
- трубы отопления, проходящая рядом с кабинетом;
В качестве критерия защищенности речевой информации используется отношение сигнал/шум, при котором качество подслушиваемой речевой информации ниже допустимого уровня. В соответствии с существующими нормами понимание речи невозможно, если отношение помеха / сигнал равно 6-8, а акустический сигнал не воспринимается человеком как речевой, если отношение помеха / сигнал превышает 8-10. Следовательно, для гарантированной защищенности речевой информации отношение сигнал/шум должно быть не более 0,1 или -10 дБ. Поэтому, важным этапом предотвращения утечки информации по акустическому каналу, является проведение измерений акустических сигналов. В результате проведения измерений можно выявить и устранить уязвимости помещений и коммуникаций, что может быть достигнуто следующими мерами по предотвращения утечки информации:
-установка двойной двери с тамбуром, в котором размещена звуковая колонка, устранение щелей между дверью и дверной коробкой, покрытие двери и тамбура звукопоглощающими материалами, установка на дверь замка с автозащелкой, экранов на стены, перед батареями отопления - акселерометров и экранов на батареи, зашумления вентиляционного канала;
-использование шумогенератора, линейное и пространственное зашумление;
-использование защиты от прослушивания телефонной линии.
Задачи дипломного проекта выработать методику измерений акустических сигналов.
В рамках дипломного проекта будут разработаны схема для проведения измерений и лабораторная работа, которая будет применяться в лаборатории информационной безопасности, технической защиты информации, программно-аппаратных средств обеспечения информационной безопасности.
1.1 Источники акустических сигналов
В случае, когда источником информации является голосовой аппарат человека, информация называется речевой. Речевой сигнал является сложным акустическим сигналом, основная энергия которого сосредоточена в диапазоне частот от 300 Гц до 4000 Гц.
Голосовой аппарат человека является первичным источником акустических колебаний, которые представляют собой возмущения воздушной среды в виде волн сжатия и растяжения (продольных волн). Под действием акустических колебаний в ограждающих строительных конструкциях и инженерных коммуникациях помещения, в котором находится речевой источник, возникают вибрационные колебания. Таким образом, в своем первоначальном состоянии речевой сигнал в помещении присутствует в виде акустических и вибрационных колебаний.
Носители информации в виде полей и электрического тока называются сигналами. Если информация, содержащаяся в сигналах, секретная или конфиденциальная, а сигналы могут быть приняты (перехвачены, подслушаны) злоумышленником и с них, может быть «снята» эта информация, то такие сигналы представляют опасность для информации и называются опасными.
Опасные сигналы могут быть функциональными и случайными. Функциональные сигналы создаются для выполнения радиосредством заданных функций по обработке, передаче и хранении информации. При передаче закрытой информации функциональными сигналами ее отправитель осознает потенциальные угрозы безопасности содержащейся в сигналах информации.
1.2 Принцип распространения звуковых волн в помещении и звукоизоляция
С физической точки зрения звук -- это распространение каким-либо источником механических колебаний в упругой среде (воздухе, металле, дереве и т.п.). В процессе колебаний источник создает пониженное (повышенное) давление, которое распределяется во все стороны. Образующаяся при этом звуковая волна попадает в ухо человека и заставляет колебаться барабанную перепонку, перемещение которой воспринимается мозгом как звук.
Скорость распространения звука зависит от плотности среды и может изменяться в довольно широких пределах. Встречая на своем пути препятствие, звуковая волна может отражаться и преломляться (рисунок 1).
Рисунок 1 - Распространение звуковых волн в помещении
Время запаздывания прихода отраженной волны относительно волны, идущей прямо, называется реверберацией. При прохождении через отверстие (окно, дверь и т.п.) наблюдается явление дифракции звуковой волны (рисунок 2).
Рисунок 2 - Дифракция звуковой волны
Встречая на своем пути пористый материал, звуковая волна может поглощаться. Энергия звуковой волны, попадающей на пористую поверхность, частично отражается, а частично рассеивается. И чем больше пор в материале, тем больше рассеивание энергии звуковой волны внутри них. Материалы, рассеивающие внутри себя большую часть энергии, называются поглощающими.
Звук в помещение попадает через двери, окна, стены и потолки. Он проходит через трещины и различные технологические отверстия в ограждающих конструкциях здания. Наиболее распространенные места возможного проникновения звука в жилые помещения дома показаны на рисунке (рисунок 3).
Рисунок 3 - Проходимость акустических волн в коммуникациях помещения
1.3 Каналы утечки акустической информации
В зависимости от среды распространения речевых сигналов и способов их перехвата ТКУИ можно разделить на акустические, вибрационные, акустоэлектрические, оптоэлектронные и параметрические.
1.3.1 Акустические каналы утечки информации
В акустических каналах утечки информации средой распространения речевых сигналов является воздух (рисунок 4), и для их перехвата используются высокочувствительные микрофоны и специальные направленные микрофоны. Микрофоны соединяются с портативными звукозаписывающими устройствами или специальными миниатюрными передатчиками.
Автономные устройства, конструктивно объединяющие микрофоны и передатчики, называют закладными устройствами (ЗУ) перехвата речевой информации.
Перехваченная ЗУ речевая информация может передаваться по радиоканалу, сети электропитания, оптическому (ИК) каналу, соединительным линиям ВТСС, посторонним проводникам, инженерным коммуникациям в ультразвуковом (УЗ) диапазоне частот, телефонной линии с вызовом от внешнего телефонного абонента.
Прием информации, передаваемой ЗУ, осуществляется, как правило, на специальные приемные устройства, работающие в соответствующем диапазоне длин волн. Однако существуют исключения из этого правила. Так, в случае передачи информации по телефонной линии с вызовом от внешнего абонента прием можно осуществлять с обычного телефонного аппарата.
Использование портативных диктофонов и ЗУ требует проникновения в контролируемое помещение.
Рисунок 4 - Акустический канал утечки информации
1.3.2 Виброакустические каналы утечки информации
В виброакустических каналах утечки информации (рисунок 5) средой распространения речевых сигналов являются ограждающие строительные конструкции помещений (стены, потолки, полы) и инженерные коммуникации (трубы водоснабжения, отопления, вентиляции и т.п.). Для перехвата речевых сигналов в этом случае используются вибродатчики (акселерометры).
Вибродатчик, соединенный с электронным усилителем называют электронным стетоскопом. Электронный стетоскоп позволяет осуществлять прослушивание речи с помощью головных телефонов и ее запись на диктофон.
По виброакустическому каналу также возможен перехват информации с использованием «стетоскопных» ЗУ. В них, как правило, для передачи информации используется радиоканал, поэтому такие устройства часто называют радиостетоскопами. Реально, также возможно использование ЗУ с передачей информации по оптическому каналу инфракрасном диапазоне волн, а также по ультразвуковому каналу (по инженерным коммуникациям).
Рисунок 5 - Виброакустические каналы утечки информации
1.3.3 Акустоэлектрические каналы утечки информации
Акустоэлектрические каналы утечки информации (рисунок 6) возникают за счет преобразований акустических сигналов в электрические.
Некоторые элементы ВТСС, в том числе трансформаторы, катушки индуктивности, электромагниты вторичных электрочасов, звонков телефонных аппаратов и т.п., обладают свойством изменять свои параметры (емкость, индуктивность, сопротивление) под действием акустического поля, создаваемого источником речевого сигнала. Изменение параметров приводит либо к появлению на данных элементах электродвижущей силы (ЭДС), либо к модуляции токов, протекающих по этим элементам, в соответствии с изменениями воздействующего акустического поля.
ВТСС, кроме указанных элементов, могут содержать непосредственно акустоэлектрические преобразователи (АЭП). К таким ВТСС относятся некоторые типы датчиков охранной и пожарной сигнализации, громкоговорители ретрансляционной сети и т.д. Эффект АЭП называют «микрофонным эффектом». Причем из ВТСС, обладающих «микрофонным эффектом», наибольшую чувствительность к акустическому полю имеют абонентские громкоговорители и некоторые датчики пожарной сигнализации.
Перехват акустоэлектрических колебаний в данном канале утечки информации осуществляется путем непосредственного подключения к соединительным линиям ВТСС специальных высокочувствительных низкочастотных усилителей. Например, подключая такие средства к соединительным линиям телефонных аппаратов с электромеханическими вызывными звонками, можно прослушивать разговоры, ведущиеся в помещениях, где установлены эти аппараты.
ТКУИ с использованием «высокочастотного навязывания» может быть осуществлен путем несанкционированного контактного введения (облучения) токами высокой частоты от генератора на нелинейные или параметрические элементами ВТСС, на которых происходит модуляция высокочастотного сигнала информационным. Информационный сигнал в данных элементах ВТСС появляется вследствие акустоэлектрического преобразования акустических сигналов в электрические. Промодулированный сигнал отражается от указанных элементов и распространяется в обратном направлении по линии или излучается.
Наиболее часто такой канал используется для перехвата разговоров, ведущихся в помещении, через телефонный аппарат, имеющий выход за пределы КЗ.
Рисунок 6 - Акустоэлектрические каналы утечки информации 
1.3.4 Оптико-электронный канал утечки информации 
Оптико-электронный (лазерный) канал утечки акустической информации (рисунок 7) образуется при облучении лазерным лучом вибрирующих под действием акустического речевого сигнала отражающих поверхностей помещений (оконных стекол, зеркал и т.д.). Отраженное лазерное излучение модулируется по амплитуде и фазе и принимается приемником оптического (лазерного) излучения, при демодуляции которого выделяется речевая информация.
Для организации такого канала предпочтительным является использование зеркального отражения лазерного луча. Однако, при небольших расстояниях до отражающих поверхностей (порядка нескольких десятков метров) может быть использовано диффузное отражение лазерного излучения.
Для перехвата речевой информации по данному каналу используются сложные лазерные системы, которые в литературе часто называют «лазерными микрофонами». Работают они, как правило, в ближнем инфракрасном диапазоне длин волн.
Рисунок 7 - Оптико-электронный (лазерный) канал утечки акустической информации
1.3.5 Параметрический канал утечки акустической информации
Параметрические каналы утечки информации (Рисунок 8). В результате воздействия акустического поля меняется давление на все элементы высокочастотных генераторов ТСПИ и ВТСС. При этом изменяется взаимное расположение элементов схем, проводов в катушках индуктивности, дросселей и т.п., что может привести к изменениям параметров высокочастотного сигнала, например, к модуляции его информационным сигналом. Поэтому этот канал утечки информации называется параметрическим. Наиболее часто наблюдается паразитная модуляция информационным сигналом излучений гетеродинов радиоприемных и телевизионных устройств, находящихся в помещениях, где ведутся конфиденциальные разговоры.
Параметрический канал утечки информации может быть реализован и путем ВЧ облучения помещения, где установлены ЗУ, имеющие элементы, параметры которых (например, добротность и резонансная частота объемного резонатора) изменяются под действием акустического (речевого) сигнала.
При облучении помещения мощным ВЧ сигналом, в таком ЗУ при взаимодействии облучающего электромагнитного поля со специальными элементами закладки (например, четвертьволновым вибратором) происходит образование вторичных радиоволн, т.е. переизлучение электромагнитного поля. А специальное устройство закладки (например, объемный резонатор) обеспечивает амплитудную, фазовую или частотную модуляцию переотраженного сигнала по закону изменения речевого сигнала.
Для реализации такого канала необходимы специальный передатчик с направленным излучением и приемник.
Рисунок 8 - Параметрический канал утечки акустической информации
1.4 Классификация способов перехвата акустической информации
Способы перехвата акустической (речевой) информации из выделенных помещений представлены на рисунке 9.
Рисунок 9 - Структурная схема способов перехвата акустической (речевой) информации
1.5 Средства перехвата акустической информации
В прямых акустических (воздушных) технических каналах утечки информации (рисунок 10) средой распространения акустических сигналов является воздух. В качестве датчиков средств разведки используются высокочувствительные микрофоны, преобразующие акустический сигнал в электрический.
Рисунок 10 - Распространения акустических сигналов
В аппаратуре акустической разведки используются микрофоны различных типов с чувствительностью 30 - 60 мВ/Па, обеспечивающие регистрацию речи средней громкости на удалении до 7 - 10 м от её источника. При этом частотный диапазон составляет в основном от 50-100 Гц до 5 - 20 кГц.
Перехват акустической (речевой) информации из выделенных помещений по данному каналу может осуществляться:
-с использованием портативных устройств звукозаписи (диктофонов), скрытно уста-новленных в выделенном помещении;
-с использованием электронных устройств перехвата информации (закладных устройств) с датчиками микрофонного типа (преобразователями акустических сигналов, распространяющихся в воздушной среде), скрытно установленных в выделенном помещении, с передачей информации по радиоканалу, оптическому каналу, электросети 220 В, телефонной линии, соединительным линиям ВТСС и специально проложенным кабелям;
-с использованием направленных микрофонов, размещённых в близлежащих строениях и транспортных средствах, находящихся за границей контролируемой зоны;
-без применения технических средств (из-за недостаточной звукоизоляции ограждающих конструкций выделенных помещений и их инженерно-технических систем) посторонними лицами (посетителями, техническим персоналом) при их нахождении в коридорах и смежных помещениях (непреднамеренное прослушивание).
Использование тех или иных средств акустической разведки определяется возможностью доступа в контролируемое помещение посторонних лиц. Если посторонние лица не имеют постоянного доступа в выделенное помещение, но имеется возможность его регулярного кратковременного посещения под различными предлогами (например, для проверки системы освещения, кондиционирования или уборки помещения), то для перехвата речевой информации могут использоваться портативные устройства звукозаписи (в основном цифровые диктофоны), которые скрытно устанавливаются в интерьерах помещений, как правило, непосредственно перед проведением закрытого мероприятия (рисунок 11). После окончания мероприятия диктофон из помещения изымается. Такие устройства также могут камуфлироваться под предметы повседневного обихода, например, книги, письменные приборы, пачки сигарет и т.д.
Рисунок 11 - Перехват речевой информации с помощью диктофона
В настоящее время зарубежными и отечественными фирмами выпускается огромное количество портативных цифровых диктофонов, которые очень легко спрятать практически в любом помещении. Цифровые диктофоны могут быть встроены в авторучку, наручные часы и т.п.
Недостатком способа перехвата речевой информации с использованием портативных диктофонов является необходимость повторного проникновения в выделенное помещение с целью изъятия диктофона для прослушивания записанных разговоров. Такого недостатка лишены электронные устройства перехвата информации (закладные устройства).
Под закладными устройствами обычно понимают портативные устройства съёма информации, скрытно внедряемые (закладываемые) в выделенные помещения, в том числе в ограждающие конструкции, оборудование, предметы интерьера, а также в технические средства и системы обработки информации, вспомогательные технические средства и системы.
Перехватываемая акустическими закладками информация может передаваться на приёмные пункты по радио- и оптическому каналам, специально проложенным линиям, электросети переменного тока, телефонным линиям и т.д.
В том случае, если имеется постоянный неконтролируемый доступ в выделенное помещение, в нём заранее могут быть установлены миниатюрные микрофоны, соединительные линии которых выводятся в специальные помещения, где устанавливается регистрирующая или передающая аппаратура. Причём длина соединительного кабеля может достигать 10 км. Такие системы перехвата акустической информации часто называют проводными микрофонными системами (рисунок 12).
Рисунок 12 - Проводные микрофонные системы перехвата акустической информации
1.6 Средства измерения акустических сигналов
Измеритель шума (шумомер) -- это прибор для измерения уровня звука. Существуют стандарты, устанавливающие требования к данным приборам. Российские и европейские стандарты существенно отличаются.
Измерители уровня шума состоят из микрофона, усилителя, вольтметра, интегратора, корректирующих фильтров, детектора и индикатора.
Шумомер представляет собой микрофон, к которому подключен вольтметр, отградуированный в децибелах. Поскольку электрический сигнал на выходе с микрофона пропорционален исходному звуковому сигналу, прирост уровня звукового давления, воздействующего на мембрану микрофона вызывает соответствующий прирост напряжения электрического тока на входе в вольтметр, что и отображается посредством индикаторного устройства, отградуированного в децибелах.
Применяемые в технологической практике цифровые шумомерыклассифицируются по четырем классам. Каждый класс измерительных приборов ориентирован на проведение измерений в определенном диапазоне частот. Третий класс шумомеров предназначен для ориентировочных и сравнительных измерений. Второй класс аппаратов необходим для технических измерений. Приборы первого класса используются в лабораторных работах и натурных измерениях. На шумомерах нулевого класса проводятся базовые и эталонные измерения.
Категории ориентированы на следующие частоты:
Производственные и бытовые шумы сегодня тоже классифицируются. Различают прерывистый и колеблющийся шум, импульсивный шум, постоянный шум. Соответственно этим свойствам работают и шумомеры , измеряя время колебаний и интенсивность шума. Показатели быстрого, медленного или импульсивного колебания обозначаются латинскими символами F,S,I. Современные приборы для измерения шумовых колебаний оснащены шкалой, на которой нанесены деления измерения шума в децибелах. Также в устройствах использованы три фильтра различных уровней громкости шума. Высокий, низкий и средний уровень помечаются в обозначении фильтров литерами С,В,А.
Современный высокоточный шумомер представляет собой конструкцию, объединяющую шумовой фильтр, фильтр коррекции, аудиомикрофон, усилитель звуковых колебаний, устройство индикации звуковых колебаний. Устройство сконструировано с учетом особенностей анатомии человеческого слухового аппарата и слуховое восприятие. Измерения громкости, которые проводятся цифровым шумомером, адекватны и точны. В общественном транспорте, жилых строениях, учреждениях общественного назначения, на производственных объектах использование этого прибора вошло в повседневную практику в целях эксперимента и анализа, а также контроля. Сделанные прибором этого вида измерения имеют весомую силу в приемной документации при актировании проверок и сдач готовых объектов.
Такие испытания, экспертизы и проверки необходимы на производственных предприятиях, выпускающих бытовую аппаратуру, на промышленных объектах с мощной машинной базой. Поскольку превышенный уровень шумовых колебаний относится к факторам загрязнения окружающей среды и к вредным воздействиям на здоровье человека, проверки такого характера проводятся активно. И в качестве измерительного прибора, осуществляющего адекватный технический контроль, используется цифровой шумомер.
1.7 Измерение акустических сигналов и вибраций
Одним из основных направлений обеспечения информационной безопасности является инженерно-техническая защита информации, которая объективно приобретает все больший вес.
Такая тенденция обусловлена развитием методов и средств добывания информации, позволяющих несанкционированно получать большой объем информации на безопасном расстоянии от ее источников, огромными достижениями микроэлектроники но выпуску доступных средств нелегального добывания информации. а также достаточно высокими темпами информатизации предприятий и в целом всего общества.
Очевидно, что эффективная защита информации с учетом этих тенденций возможна при более широком использовании технических средств зашиты, что предполагает наличие профессиональных знаний и специальных навыков работы с контрольно-измерительной аппаратурой.
В настоящий лабораторный практикум включены методики оценки защищенности конфиденциальной информации от утечки по техническим каналам: акустическому, виброакустическому, акустоэлектрических преобразований во вспомогательных технических средствах и системах (ВТСС), побочных электромагнитных излучений и наводок от основных технических средств и систем на ВТСС и их коммуникации.
Лабораторный практикум предназначен для выработки у студентов навыков работы со специальной техникой в рамках курса инженерно-технической защиты информации.
Акустические (виброакустические) каналы утечки информации
В акустическом (виброакустическом) канале утечки носителем информации от источника к несанкционированному получателю является акустическая волна в атмосфере, воде и твердой среде.
Структура акустического капала утечки информации представлена на рисунке 13.
Спектр речевого сигнала (речи говорящего человека) изменяется в процессе произнесения различных и звуков и зависит от положения языка и зубов. При этом одни гармонические составляющие усиливаются, другие подавляются. Области спектра звука. в которых сосредоточивается основная мощность акустического сигнала, называются формантами. Форманты звуков речи расположены в области частот от 150-200 до 8600 Гц. Основная энергия подавляющей части формант сосредоточена в диапазоне частот 300-3000 Гц, что позволило ограничить спектр речевого сигнала, передаваемого по стандартному телефонному каналу, этой полосой.
Рисунок 13 - Структура акустического канала утечки информации
Психологическая (с учетом чувствительности уха на разных частотах) интенсивность акустических сигналов изменяется в широких пределах 0-130 дБ (от порога слышимости до болевого порога). Для человека как основного источника соотношение между уровнем громкости и его качественной оценкой характеризуется следующими данными: очень тихая речь (шепот) - 5-10 дБ. тихая речь - 30-40 дБ, речь умеренной громкости - 50-60 дБ, громкая речь - 60-70 дБ и более.
Кроме громкости, речь человека характеризуется тоновым диапазоном (диапазоном частот), тембром и вибрато.
Среднестатистический голос человека включает тоны в диапазоне 64-1300 Гц. Крайне низкие тоны басовых голосов имеют частоту около 40 Гц, высокие тоны детских голосов - около 4000 Гц.
Тембр голоса человека определяется количеством н величиной гармоник (обертонов) его спектра.
Вибрато представляет собой периодическое изменение высоты и силы голоса с частотой примерно 5-7 пульсаций в секунду. При отсутствии вибрато голос кажется безжизненным и невыразительным.
Значения характеристик голоса конкретного человека индивидуальные и позволяют его идентифицировать.
Акустические сигналы машин и технических средств возникают в результате колебаний их поверхностей и частиц воздуха. проходящего через различные отверстия и полости машин и средств.
В общем случае диапазон частот акустических сигналов составляет:
-менее 16 Гц (в инфразвуновом диапазоне) - вибрации машин;
-16 Гц-20 к1 ц (звуковой диапазон) - речь, звуки машин;
-более 20 кГц (ультразвуковой диапазон) - звуки отдельных живых существ и механических средств.
Источники сигналов характеризуются диапазоном частот, мощностью излучения в Вт, интенсивностью излучения в Вт/м2 мощностью акустической волны, прошедшей через перпендикулярную поверхность 1 м2, громкостью звука в дБ, измеряемой как десятичный логарифм отношения интенсивности звука к порогу слышимости. Интенсивность излучения является физической характеристикой акустического сигнала, а громкость - физиологической, учитывающей разную чувствительность слуховой системы человека к акустическим волнам разной частоты.
Физические явления, возникающие при распространении акустических волн, изучаются физической акустикой. В воздушной среде акустический сигнал распространяется в виде продольной упругой волны, которая представляет собой колебание частиц воздуха вдоль направления распространения волны. Продольные колебания воздуха приводят к изменению давления относительно атмосферного в области распространения волны. Звуковое давление, соответствующее порогу слышимости уха, составляет 10-10 от нормального атмосферного, болевому порогу порядка 10-4 от атмосферною давления. Перевод уровней речевого сигнала из размерности Д(дБ) в размерность Д(Па) производится по формуле
В твердых телах наряду с продольными волнами возникают поперечные (перпендикулярные направлению распространения волны) колебания, которые не создают давления в продольном направлении.
Акустические волны как носители информации характеризуются следующими показателями и свойствами:
-скоростью распространения носителя в определенной среде;
-величиной (коэффициентом) затухания или поглощения;
-условиями распространения акустической волны (коэффициентом отражения от границ различных сред, дифракцией).
Теоретически скорость звука определяется формулой Лапласа и зависит от модуля всесторонней упругости (когда сжатие производится без притока и отдачи тепла) и плотности вещества среды распространения.
Для газов модуль всесторонней упругости равен их давлению. При сжатии газа увеличение давления сопровождается пропорциональным увеличением его плотности. Поэтому скорость звука в газе не зависит от его плотности, а пропорциональна корню квадратному из температуры газа, значению универсальной газовой постоянной, отношению величин теплоемкостей газа при постоянном объеме и давлении.
Скорость звука в морской воде зависит от ее темп
Разработка лабораторного стенда "Измерение опасных акустических сигналов" дипломная работа. Коммуникации, связь, цифровые приборы и радиоэлектроника.
1995/04/25 через 2:5020/240
Стили Литературного Языка Реферат
Дипломная работа по теме Система потребительского кредитования и его совершенствования в коммерческом банке
Контрольная работа по теме Предприятия питания в туристической практике
Дипломная работа по теме Эффективное управление производством
Дипломная работа по теме Бизнес–план ателье 'Русская нить'
Реферат: Вплив атомних електростанцій на навколишнє середовище 2
Курсовая работа: Проблемы нравственного воспитания в современной школе
Безопасность Мясных Консервов Реферат
Контрольная Работа На Тему Адаптация Детей-Инвалидов В Семье
Сочинение Обломов Вывод
Реферат: Правовые отношения
Реферат: Проблемы квазистатической электродинамики
Курсовая работа: Редуктор двухступенчатый соосный
Реферат На Тему Организация Контроля В Организации Как Важная Функция Менеджмента
Эссе На Тему Солнечная Система
Реферат по теме Билеты по астрономии за 11 класс
Реферат: Влияние компьютеризации на социализацию ребенка
Сочинение Про Достижения
Реферат Достопримечательности Великобритании
Отчет о движении денежных средств - Бухгалтерский учет и аудит курсовая работа
Аллен Уэлш Даллес - государственный деятель Соединенных Штатов Америки - История и исторические личности презентация
Электрофорез в химии, биологии, медицине и научных исследованиях - Биология и естествознание реферат


Report Page