Разработка анимационно-обучающей программы механической системы - Программирование, компьютеры и кибернетика дипломная работа

Главная
Программирование, компьютеры и кибернетика
Разработка анимационно-обучающей программы механической системы
Механические системы и анимационное моделирование. Некоторые задачи моделирования механических систем (на примере движение тела с переменной массой). Создание анимационно-обучающей программы механической системы, текст программы и описание ее установки.
посмотреть текст работы
скачать работу можно здесь
полная информация о работе
весь список подобных работ
Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Под воздействием сил каждая из материальных точек системы, вообще говоря, как-то изменяет состояние своего движения, перемещаясь относительно других точек. Чтобы исследовать движение системы в целом, надо, очевидно, исследовать движение каждой ее точки. Мы могли бы воспользоваться для этого законами Ньютона, составить уравнения движения каждой точки системы и решить их. Но такой путь решения задачи о движении системы часто оказывается весьма сложным либо вследствие того, что трудно определить внутренние силы в виде известной функции (например, при быстро протекающих взаимодействиях тел типа удара), либо потому, что исследуемая система состоит из очень большого числа материальных точек (например, при исследовании движения некоторого объема жидкости). Однако в ряде случаев, как увидим дальше, оказывается возможным обойти эти затруднения.
Введем понятие центра масс системы тел. В элементарной физике вводится понятие центра тяжести как точки приложения равнодействующей сил тяжести, действующих на элементы тел. Введем более общее понятие, не зависящее от силы тяжести центр масс системы. Центром масс двух материальных точек называется точка, делящая расстояние между ними в отношении, обратно пропорциональном их массам (рис. 1.). усть имеем две материальные точки массой m 1 и m 2 , координаты которых в неподвижной системе отсчета соответственно x 1, y 1 , z 1 и x 2 , y 2 , z 2 . По известному правилу аналитической геометрии координаты точки x, y, z, делящей отрезок в заданном отношении
Связаны с координатами концов отрезка следующим соотношением.
Решая эти равенства относительно x, y, z, получим:
Центром масс трех материальных точек называется точка, которая делит расстояние между центром масс двух из них и третьей точкой в отношении, обратно пропорциональном сумме масс двух первых и массе третьей из них.
Легко получить координаты центра масс трех материальных точек, подобно тому как это сделано выше для двух точек:
Рис.1. К определению центра масс материальных точек:
Прибавляя к системе четвертую, пятую и т. д. точки, получим, что координаты центра масс системы n материальных точек:
§ 1.1.2 Количество движения системы тел. Закон сохранения количества движения
Рассмотрим действие друг на друга двух изолированных тел не взаимодействующих с другими телами. Будем считать силы во все время взаимодействия постоянными. В соответствии со вторым законом динамики изменение количества движения первого тела:
где - интервал времени взаимодействия .
Изменение количества движения второго тела:
где -сила, действующая со стороны первого тела на второе.
Независимо от природы сил взаимодействия и длительности их действия общее количество движения двух изолированных тел остается постоянным.
Полученный результат может быть распространен на любое число взаимодействующих тел и на силы, меняющиеся со временем. Для этого интервал времени в течение которого происходит взаимодействие тел, разобьем на столь малые промежутки в течение каждого из которых силу можно с заданной степенью точности считать постоянной. В течение каждого промежутка времени будет выполняться соотношение (1.8). Следовательно, оно будет справедливо и для всего интервала времени
Для обобщения вывода на взаимодействующих тел введем понятие замкнутой системы.
Замкнутой называется система тел, для которой результирующая внешних сил равна нулю.
Пусть материальных точек массами образуют замкнутую систему. Изменение количества движения каждой из этих точек в результате взаимодействия ее со всеми остальными точками системы соответственно:
Обозначим внутренние силы, действующие на точку массой со стороны других точек , через на точку массой и т. д. (Первый индекс обозначает точку, на которую действует сила; второй индекс указывает точку, ос стороны которой действует сила. )
Запишем в принятых обозначениях второй закон динамики для каждой точки в отдельности:
Число уравнений равно числу тел системы. Чтобы найти общее изменение количества движения системы, нужно подсчитать геометрическую сумму изменений количества движения всех точек системы. Просуммировав равенства (1.9), мы получим в левой части полный вектор изменения количества движения системы за время, а в правой части - элементарный импульс результирующей всех сил, действующих в системе. Но так как система замкнута, то результирующая сил равна нулю. В самом деле, по третьему закону динамики каждой силе в равенствах (1.9) соответствует сила причем
и результирующая этих сил равна нулю. Следовательно, во всей замкнутой системе изменение количества движения равно нулю:
полное количество движения замкнутой системы - величина постоянная во все время движения ( закон сохранения количества движения ).
Закон сохранения количества движения - один из фундаментальных законов физики, справедливый как для систем макроскопических тел, так и для систем, образованных микроскопическими телами: молекулами, атомами и т. п.
Если на точки системы действуют внешние силы, то количество движения, которым обладает система, изменяется.
Напишем уравнения (1.9), включив в них результирующие внешних сил действующих соответственно на первую, вторую и т. д. До -й точки:
Сложив левые и правые части уравнений, мы получим: слева - полный вектор изменения количества движения системы; справа - импульс результирующей внешних сил:
или, обозначая результирующую внешних сил :
изменение полного количества движения системы тел равно импульсу результирующей внешних сил.
Равенство (1.13) может быть записано в другом виде:
производная по времени от общего количества движения системы точек равна результирующей внешних сил, действующих на точки системы.
Проецируя векторы количества движения системы и внешних сил на три взаимно перпендикулярные оси, вместо векторного равенства (6.14) получим три скалярных уравнения вида:
Если вдоль какой-либо оси, скажем , составляющая результирующей внешних сил равна нулю, то количество движения вдоль этой оси не изменяется, т. е., будучи вообще незамкнутой, в направлении система может рассматриваться как замкнутая.
Мы рассмотрели передачу механического движения от одних тел к другим без перехода его в другие формы движения материи.
Величина «mv оказывается здесь мерой просто перенесенного, т. е. продолжающегося, движения… ».
Применение закона изменения количества движения к задаче о движении системы тел позволяет исключить из рассмотрения все внутренние силы, что упрощает теоретическое исследования и решения практических задач.
1.Пусть на покоящейся тележке неподвижно стоит человек (рис. 2. а). Количество движения системы человек - тележка равно нулю. Замкнута ли эта система? На нее действуют внешние силы - сила тяжести и сила трения между колесами тележки и полом. Вообще говоря, система не замкнута. Однако, поставив тележку на рельсы и соответствующим образом обработав поверхность рельсов и колес, т. е. значительно уменьшив трение между ними, можно силой трения пренебречь.
Сила тяжести, направления вертикально вниз, уравновешивается реакцией деформированных рельсов, и результирующая этих сил не может сообщить системе горизонтального ускорения, т. е. не может изменить скорость, а следовательно, и количество движения системы. Таким образом, мы можем с известной степенью приближения считать данную систему замкнутой.
Положим теперь, что человек сходит с тележки влево(рис. 2. б), имея скорость . Чтобы приобрести эту скорость , человек должен, сократив свои мышцы, подействовать ступнями ног на площадку тележки и деформировать ее. Сила, действующая со стороны деформированной площадки на ступни человека, сообщает телу человека ускорение влево, а сила, действующая со стороны деформированных ступней человека (в соответствии с третьим законом динамики), сообщает тележке ускорение вправо. В результате, когда взаимодействие прекратится (человек сойдет с тележки), тележка приобретает некоторую скорость .
Для нахождения скоростей и с помощью основных законов динамики надо было бы знать, как меняются силы взаимодействия человека и тележки со временем и где приложены эти силы. Закон сохранения количества движения позволяет сразу найти отношение скоростей человека и тележки, а также указать их взаимную направленность, если известны значения масс человека и тележки .
Пока человек неподвижно стоит на тележке, общее количество движения системы остается равным нулю:
Скорости, приобретенные человеком и тележкой, обратно пропорциональны их массам. Знак «минус» указывает на их противоположную направленность.
2.Если человек, двигаясь со скоростью , вбегает на неподвижно стоящую тележку и останавливается на ней, то тележка приходит в движение, так что общее количество движения ее и человека оказывается равным количеству движения, которым обладал раньше человек один:
3.Человек, движущийся со скоростью ,вбегает на тележку, перемещающуюся ему навстречу со скоростью , и останавливается на ней. Далее система человек - тележка движется с общей скоростью Общее количество движения человека и тележки равно сумме количеств движения, которыми они обладали каждый в отдельности:
4. Использовав то обстоятельство ,что тележка может перемещаться только вдоль рельсов, можно продемонстрировать векторный характер изменения количества движения. Если человек входит и останавливается на неподвижной до этого тележке один раз вдоль направления возможного ее движения, второй раз - под углом 45є, а третий - под углом 90є к этому направлению, то во втором случае скорость, приобретенная тележкой, примерно в полтора раза меньше, чем в первом , а в третьем случае тележка неподвижна .
§1.1.3 Движение центра масс механической системы
Покажем, что поступательное движение механической системы как целого можно характеризовать движением одной точки - центра масс системы, считая, что в ней сосредоточена масса всех тел, входящих в систему.
В равенствах (6.17) слева стоит произведение суммарной массы тел образующих систему, и компонент представляющих собой слагающие скорости движения центра масс системы по осям координат, а справа - компоненты вектора полного количества движения тел системы:
Полное количество движения механической системы равно количеству движения материальной точки массой, равной массе тел системы и движущейся, как движется ее центр масс.
Продифференцируем равенство (1.18) по времени и сравним с выражением (1.14). В равенстве (1.18) после дифференцирования справа, а в равенстве (1.14) слева стоит одна и та же величина - производная от вектора полного количества движения тел системы. Следовательно,
где - количество движения центра масс системы, - вектор результирующей внешних сил, действующих на тела системы.
Центр масс механической системы движется так же, как двигалась бы материальная точка, в которой сосредоточена масса всех тел системы, под действием результирующей внешних сил, приложенных к телам, образующим систему.
Если механическая система замкнута, т. е. то
Центр масс замкнутой механической системы находится в покое или движется равномерно и прямолинейно.
Закон движения центра масс механической системы не дает полной картины движения отдельных ее тел, но позволяет установить некоторые важные особенности движения системы в целом.
Рассмотрим, например, движение солнечной системы. С большой степенью точности ее можно считать замкнутой, пренебрегая взаимодействием с другими космическими телами. Следовательно, центр масс солнечной системы можно считать движущимся прямолинейно и равномерно.
Рассмотрим твердое тело, находящееся в покое. Положим, на него одновременно подействовали двумя силами, равными по величине, но противоположно направленными и приложенными в двух точках A и B, не совпадающих с центром масс (рис. 3). Такая система сил называется парой сил. Каков характер движения тела?
Рис.3. Тело под действием сил поворачивается вокруг центра масс.
Результирующая приложенных к телу внешних сил равна нулю. Следовательно , центр масс тела должен остаться в покое. Тело, одна точка которого неподвижна, может, очевидно, только вращаться вокруг этой точки. И следовательно, тело под действием приложенной пары сил будет поворачиваться вокруг центра масс C. Иногда, руководствуясь только интуицией, приходят к ошибочному заключению, что в описанном случае тело должно вращаться вокруг точки О, расположенной между точками приложения пары сил.
§ 1.1.4 Движеие тел переменной массы. Уравнение мещерского. Формула циолковского
В природе и современной технике мы нередко сталкиваемся с движением тел, масса которых меняется со временем. Масса земли возрастет вследствие падения на нее метеоритов, масса метеорита при полете в атмосфере уменьшается в результате отрыва или сгорания его частиц, масса дрейфующей льдины возрастет при намерзании и убывает при таянии и т. д. Движение якоря с якорной цепью, когда все большее число звеньев цепи сходит с лебедки, -пример движения тела переменной массы. Ракеты все систем, реактивные самолеты, реактивные снаряды и мины также являются телами, масса которых изменяется во время движения.
Общие законы динамики тел с переменной массой были открыты и исследованы И. В. Мещерским и К. Э. Циолковским. Циолковским были разработаны фундаментальные проблемы реактивной техники, которые в наши дни служат основной для штурма человеком межпланетных пространств.
Для вывода основного уравнения движения тела переменной массы рассмотрим конкретный случай движения простейшей ракеты (рис. 4).
Мы будем рассматривать ракету достаточно малое тело, положение центра тяжести которого не меняется по мере сгорания пороха. В этом случае мы можем считать ракету материальной точкой переменной массы, совпадающей с центром тяжести ракеты.
Не рассматривая физико-химическую природу сил, возникающих при отбрасывании от ракеты газов, образованных при сгорании пороха, сделаем такое упрощающее вывод предположение.
Рис.4. Схема порохового снаряда: А-вырывается; В - граната с взрывателем; С - пороховая ракетная камера; D - стабилизатор.
Будем считать , что отбрасываемая от ракеты частица газа dM взаимодействует с ракетой M только в момент их непосредственного контакта. Как только частица dM приобретает скорость относительно точки M, ее воздействие на нее прекращается. Предположим далее, что изменение массы ракеты M происходит непрерывно, без скачков. (Это значит, что мы не рассматриваем многоступенчатые ракеты, масса которых меняется скачкообразно. ) Это предположение позволяет считать, что существует производная от массы по времени.
Пусть в момент t масса ракеты M, а ее скорость относительно неподвижной системы координат (рис. 5). Положим, за время dt от ракеты отделилась частица массы (-dM) со скоростью (относительно той же неподвижной системы координат ), равной .
Знак «минус» перед приращением массы указывает на то, что приращение это отрицательное, масса ракеты убывает.
Положим, равнодействующая внешних сил, действующих на ракету (силы тяжести и сопротивления среды), F. Как сказано выше, в момент отделения частицы массы (-dM) между ней и ракетой действует неизвестная нам реактивная сила . Сила для системы ракета - частица является внутренней. Чтобы исключить
Рис.5.К выводу уравнения движения тела переменной массы.
ее из смотрения, вспользуеамя законом изменения количества движения. Количество движения системы ракета - частица а момент t, т. е. перед отделением частицы:
Количество движения системы в момент (после отделения частицы) складывается из количества движения массы , получившей скорость , и количества движения массы частицы - dM, летящей со скоростью :
Изменение количества движения системы за время dt:
(мы отбросили член второго порядка малости ). Величина должна быть приравнена импульсу равнодействующей внешних сил:
Отсюда, перегруппировав члены и разделив на dt, получим основное уравнение движения точки переменной массы:
Это уравнение иначе называют уравнением Мещерского. Для ракеты , так как при полете масса ее убывает. Если масса тела во время движения увеличивается, то . При уравнение (1.22) переходит в уравнение второго закона Ньютона для случая постоянной массы. Величина есть скорость выбрасываемых ракетой частиц относительно системы координат, движущейся с ракетой. Эту скорость называют обычно просто относительной скоростью V. Тогда равенство (1.22) запишется в виде
Второй член правой части равенства (1.23) представляет собой реактивную силу, действующую на массу M со стороны вылетевшей частицы dM.
Для любого момента времени произведение массы тела на его ускорение равно векторной сумме равнодействующей приложенных к телу внешних сил и реактивной силы. При движении ракеты вблизи Земли равнодействующая внешних сил представляет собой сумму силы тяжести и силы сопротивления воздуха. Ускорение ракеты зависит еще и от реактивной силы, изменяя величину и направление которой можно управлять полетом ракеты.
Если относительная скорость отбрасываемых частиц равна нулю: ,то из формулы(1.22) следует:
т. е. если относительная скорость отбрасываемых частиц равна нулю, то уравнение движения точки переменной массы имеет формально тот же вид, что и для точки постоянной массы, но в этом случае масса M- функция времени t.
Важный вклад в механику тел переменной массы применительно к конкретным задачам реактивной техники внесен знаменитым русским ученым Константином Эдуардовичем Циолковским. В 1903 г. была издана его работа «Исследование мировых пространств реактивными приборами», в которой К. Э. Циолковский исследовал ряд случаев прямолинейных движений ракет. К. Э. Циолковским обоснована и доказана возможность практического использования реактивного движения. Им найдены условия, при которых можно получить скорости, достаточные для осуществления космического полета. Полученная им формула, связывающая скорость ракеты с ее начальной массой, до сих пор используется для предварительных расчетов. В работах 1911-1914 гг. он изучил вопрос о величине запасов топлива, необходимых для преодоления сил тяготения Земли, и предложил высококалорийное топливо, позволяющее получить большие скорости истечения газовых струй. К. Э. Циолковского по праву считают изобретателем жидкостных ракет дальнего действия и основоположником теории межпланетных полетов.
Ему принадлежит идея разработки теории так называемых многоступенчатых ракет, когда на некоторых интервалах времени масса ракеты меняется непрерывно, а в некоторые моменты - скачком. Им проведены большие исследования по оценке сил сопротивления при движении тел переменной массы. К. Э. Циолковским поставлен целый ряд оригинальных проблем, имеющих решающее значение для развития реактивной техники.
Для того чтобы выяснить основные факторы, создающие возможность реактивного движения с большими скоростями, рассмотрим движение точки переменной массы безвоздушном пространстве (отсутствует сопротивление движению тела), без действия внешних сил (силы тяготения) . предположим, что скорость истечения частиц направлена прямо противоположно вектору скорости тела . Эти условия соответствуют так называемой первой задаче Циолковского. В результате получаем формулу Циолковского и следствие из нее. Найдем при сделанных предположениях скорость движения тела (точки) и закон ее движения.
При сформулированных условиях уравнение движения приобретает вид:
Положим, , где - функция, определяющая закон изменения массы. Очевидно, так как начальная масса , то функция при должна быть . Подставив в (1.26) значение M и проинтегрировав, получим:
Для определения постоянной С учетом, что при , тогда
Эта формула носит название формулы Циолковского. Из формулы следует, что скорость, приобретенная точкой переменной массы, зависит от относительной скорости V и отношения начальной массы к остающейся к концу процесса горения. Если масса точки в конце процесса горения , отброшенная масса (масса топлива) - m, то при нулевой начальной скорости () получаем для расчета скорости в конце процесса горения выражения:
Отношение называют число Циолковского. Для современных ракет можно положить . Тогда при числе Циолковского Z=0,250; 9,000; 32,333; 999,000 получим соответственно скорости .
Из формулы Циолковского (1.27) следует , что:
Скорость точки переменной массы в конце активного участка (в конце процесса отбрасывания частиц) тем больше, чем больше скорость отбрасывания частиц;
Скорость в конце активного участка тем больше, чем больше число Циолковского;
Скорость точки переменной массы в конце активного участка не зависит от закона изменения массы (режима горения). Заданному числу Циолковского соответствует определенная скорость точки в конце процесса горения не зависимо от того, быстро или медленно шло горения. Это следствие является проявлением закона сохранения количества движения;
Для получения возможно больших скоростей точки переменной массы в конце активного участка выгоднее идти по пути увеличения относительной скорости отбрасывания частиц, чем по пути увеличения запасов топлива.
§1.2 Некоторые задачи моделирования механических систем (на примере движение тела с переменной массой)
Имеется много случаев, когда масса тела изменяется в процессе движения за счет непрерывного отделения или присоединения вещества (ракета, реактивный самолет, платформа, нагружаемая на ходу, и др.).
Наша задача: найти уравнение движения такого тела.
Рассмотрим решение этого вопроса для материальной точки, называя ее для краткости телом. Пусть в некоторой момент времени масса движущего тела A равна m, а присоединяемая (или отделяемая) масса имеет скорость u относительно данного тела.
Введем вспомогательную инерциальную K-систему отсчета, скорость которой такова же, как и скорость тела A в данный момент . Это значит, что а момент тело A покоится в K- системе.
Пусть далее за промежуток времени от до тело A приобретает в K-системе импульс . Этот импульс тело A получит, во-первых, вследствие присоединения (отделения) массы , которая приносит (уносит) импульс , и, во-вторых, вследствие действия силы F со стороны окружающих тел или силового поля. Таким образом, можно записать , что
где знак плюс соответствует присоединению массы, а знак минус - отделению. Оба эти случая можно объединить, представив в виде приращения массы тела A (действительно, в случае присоединения массы , а в случае отделения ). Тогда предыдущее уравнение примет вид
где - скорость присоединяемого (или отделяемого) вещества относительно рассматриваемого тела.
Это уравнение является основным уравнением динамики материальной точки с переменной массой. Его называют уравнением Мещерского. Будучи полученным в одной инерциальной системе отсчета, это уравнение в силу принципа относительности справедливо и в любой другой инерциальной системе. Заметим , что если система отсчета неинерциальная, то под силой F следует понимать результирующую как сил взаимодействия данного тела с окружающими телами, так и сил инерции.
Последний член уравнения (1.26) носит название реактивной силы : . Эта сила возникает в результате действия на данное тело присоединяемой (или отделяемой) массы. Если масса присоединяется, то и вектор R совпадает по направлению с вектором u; если же масса отделяется, то и вектор R противоположен вектору u.
Уравнение Мещерского по своей форме совпадает с основным уравнением динамики материальной точки постоянной массы: слева - произведение массы тела на ускорение, справа - действующие на него силы, включая реактивную силу. Однако в случае переменной массы нельзя внести массу под знак дифференцирования и представить левую часть уравнения как производную по времени от импульса, ибо ,
Обратим внимание на два частных случая.
Если u=0. т. е. масса присоединяется или отделяется без скорости относительно тела, то R=0, и уравнение (1.26) принимает вид
где - масса тела в данный момент времени. Это уравнение определяет , например, движение платформы, из которой свободно высыпается песок (см. задачу 10, пункт 1-й).
Если u=-v, т. е. присоединяемая масса неподвижна в выбранной системе отсчета или отделяемая масса становится неподвижной в этой системе, то уравнение (1.28) принимает другой вид
иначе говоря, в этом частном случае - и только этом - действие силы F определяет изменение импульса тела с переменной массой. Данный случай реализуется, например, при движении платформы, нагружаемой сыпучим веществом из неподвижного бункера (см. задачу 10, пункт 2-й).
Рассмотрим пример на применение уравнения Мещерского.
Пример. Ракета движется в инерциальной K-системе отсчета в отсутствие внешнего силового поля, причем так, что газовая струя вылетает с постоянной относительно ракеты скоростью u. Найти зависимость скорости ракеты от ее массы , если в момент старта ее масса была равна .
В данном случае F=0 и из уравнения (1.28) следует
Проинтегрировав это выражение с учетом начальных условий, получим
где знак минус показывает, что вектор v (скорость ракеты) противоположен по направлению вектору u. Отсюда видно, что скорость ракеты в данном случае (u=const) не зависит от времени сгорания топлива: v определяется только отношением начальной массы ракеты к оставшейся массе m.
Заметим, что если бы вся масса горючего была одновременно выброшена со скоростью u относительно ракеты , то скоростью последней оказалась бы иной. Действительно, если ракета вначале покоилась в выбранной инерциальной системе отсчета, а после одновременного выброса всего горючего приобрела скорость v, то из закона сохранения импульса для системы ракета - горючее следует
где u+v - скорость горючего относительно данной системы отсчета. Отсюда
скорость ракеты v в этом случае оказывается меньше, чем в предыдущем (при одинаковых значениях отношения ). В этом нетрудно убедиться, сравнив характер зависимости v от в обоих случаях. С ростом в первом случае (когда вещество отделяется непрерывно) скорость v ракеты, согласно (1), растет неограниченно, во втором же (когда вещество отделяется одновременно) скорость v, согласно (2), стремится к пределу, равному - u.
1.1. Частица движется с импульсом под действием силы F(t). Пусть a и b - постоянные векторы, причем a b. Полагая, что:
, где - положительная постоянная, найти вектор F в те моменты времени, когда F p;
, где - вектор, противоположный по направлению вектору а, найти вектор p в момент , когда он окажется повернутым на 90 _ по отношению к вектору .
Решение. 1. Сила , т. е. вектор F все время перпендикулярен вектору a. Следовательно, вектор F будет перпендикулярен вектору p в те моменты, когда коэффициент при b в выражении для обращается в нуль. Отсюда и соответствующие значения вектора F равны:
2. Приращение вектора p за промежуток времени есть Интегрируя это уравнение с учетом начальных условий, находим
где, по условию, противоположен вектору а . Вектор p окажется перпендикулярным вектору в момент , когда . В этот момент .
1 .2 . Через блок (рис. 6) перекинут шнур на одном конце которого находится лестница с человеком А, а на другом - уравновешивающий груз массы М. Человек , масса которого m, совершил вверх перемещение относительно лестницы и затем остановился. Пренебрегая массами блока и шнура, а также трением в оси блока, найти перемещение центра инерции этой системы.
Решение. Сначала все тела системы покоились, поэтому приращение импульсов тел при движении равно самим импульсам. Силы натяжения шнура слева и справа одинаковы, а следовательно импульсы груза и лестницы с человеком в каждый момент времени будут равны между собой, т. т. , или
где v 1 , v и v 2 - - скорости груза, человека и лестницы. Учитывая , что v 2 = -v 1 и v=v 2 + v, где v - скорость человека относительно лестницы, получим
С другой стороны , импульс всей системы. Отсюда с учетом (1) найдем
Другой способ решения основан на свойстве центра инерции данной системы характеризуется радиусом - вектором
где - радиусы-векторы центров инерции груза M, лестницы и человека относительно некоторой точки О данной системы отсчета. Отсюда перемещение центра инерции равно
-перемещения груза M, лестницы и человека относительно данной системы отсчета. Имея в виду, что получим в результате
1 .3. система состоит из двух шариков с массами , которые соединены между собой невесомой пружинкой. Шарикам сообщили скорости , как показано на рис.7, после чего система начала двигаться в однородном поле сил тяжести Земли. Пренебрегая сопротивлением воздуха и считая, что в начальный момент пружинка не деформирована, найти:
скорость центра инерции этой системы в зависимости от времени;
внутреннюю механическую энергию системы в процессе движения.
Решение. 1. Приращение вектора скорости центра инерции, есть . проинтегрировав это уравнение, получим , где -начальная скорость центра инерции. Отсюда
Внутренняя механическая энергия системы - это ее энергия
4. Шарик с кинетической энергией T, испытав лобовое соударение с первоначально покоившейся упругой гантелью (рис. 8), отлетел в противоположном направлении с кинетической энергией . Массы всех трех шариков одинаковы. Найти энергию колебаний гантели после удара.
Решение. пусть -импульсы налетающего шарика до и после удара, а -импульс и кинетическая энергия гантели как целого после удара, Е -энергия колебаний. Согласно законам сохранения импульса и энергии,
Из этих двух уравнений с учетом того, что , получим
5 В К-системе частица 1 массы налетает на покоящуюся частицу 2 массы . Заряд каждой частицы равен . Найти минимальное расстояние, на которое они сблизятся при лобовом соударении, если кинетическая энергия частицы 1 вдали от частицы 2 равна .
Решние . Рассмотрим этот процесс как в К-системе, так и в Ц-системе.
В К-системе в момент наибольшего сближения обе частицы будут двигаться как единое целое со скоростью , которую можно определить на основании закона сохранения импульса:
где p 1 -импульс налетающей частицы,
С другой стороны, из закона сохранения энергии следует
где приращение потенциальной энергии системы
Исключив из этих двух уравнений, найдем
В Ц-системе решение наиболее просто: здесь суммарная кинетическая энергия частиц идет целиком на приращение потенциальной энергии системы в
Разработка анимационно-обучающей программы механической системы дипломная работа. Программирование, компьютеры и кибернетика.
Реферат: Последовательные правила различения сложных гипотез
Курсовая Анализ Оао
Курсовая работа: Налогообложение предприятий 6
Менің Сүйікті Мезгілім Жаз Эссе
Астана Экспо 2022 Эссе
Курсовая работа по теме Административное пресечение
Реферат На Тему Боль В Пояснице При Урологических Заболеваниях
Экспериментальные модели
Сочинение На Тему Дубровский 2 Страницы
Основные Фразы Для Декабрьского Сочинения
Субъекты Административного Права Реферат
Пятерочка Сигареты Эссе
Доклад: Триада власти: сила, богатство и знание
Тетрадь Лабораторных Работ 7 Класс
Дипломная работа по теме Обязанности государственных служащих
Реферат: Преимущества и недостатки различных стилей руководства. Психологические типы руководителей. Эффективный психологический портрет
Реферат по теме К вопросу об элементах сакральности в революционном мировоззрении
Курсовая работа: Маркетинговые стратегии цен. Скачать бесплатно и без регистрации
Реферат по теме Теория семьи
Курсовая работа по теме Формы организации производственного процесса
Исследование удовлетворенности потребителя в ООО "АтлантАвто" - Маркетинг, реклама и торговля курсовая работа
PR-технологии в формировании имиджа компании как работодателя - Маркетинг, реклама и торговля дипломная работа
Предварительное обращение в Конституционный Суд Российской Федерации. Конституционное регулирование статуса Президента - Государство и право контрольная работа