Расчёт теплообменника - Физика и энергетика курсовая работа

Расчёт теплообменника - Физика и энергетика курсовая работа




































Главная

Физика и энергетика
Расчёт теплообменника

Теплообменные аппараты – устройства передачи тепла от одной среды к другой, их классификация; схемы движения теплоносителей. Гидравлическое сопротивление элементов теплообменного аппарата. Подбор нормативного вертикального подогревателя сетевой воды.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Если в теплообменном аппарате первичный (горячий) и вторичный (холодный) теплоносители протекают параллельно в одном направлении, то такая схема движения называется прямотоком. Если теплоносители протекают параллельно, но в противоположных направлениях, то такая схема называется противотоком. Если жидкости протекают во взаимно перпендикулярных направлениях, то схема движения называется поперечным током. Помимо таких простых схем движения, на практике осуществляются и более сложные: одновременно прямоток и противоток, многократно перекрестный ток и др.
Изменение температур рабочих жидкостей для простейших случаев можно получить аналитически. Рассмотрим простейший теплообменный аппарат, работающий по схеме прямотока. Для элемента поверхности теплообмена dF уравнение теплопередачи запишется как:
При этом температура первичного теплоносителя понизится на , а вторичного теплоносителя повысится на . Следовательно,
Изменение температурного напора при этом
Подставив в уравнение значение из уравнения теплопередачи, найдем:
Обозначив , последнее уравнение запишем как
Принимая m и k постоянными, проинтегрируем последнее уравнение от 0 до F:
Из уравнения следует, что вдоль поверхности теплообмена температурный напор изменяется по экспоненциальному закону. Следовательно, в аппаратах прямого тока перепад температур между теплоносителями вдоль поверхности теплообмена непрерывно убывает.
Эта формула может применятся как при прямотоке, так и в противотоке.
В тех случаях, когда температура теплоносителей вдоль поверхности теплообмена изменяется незначительно, среднюю разность температур можно вычислять как среднюю арифметическую из крайних напоров:
При расчете средней температурной разности для сложных систем движения теплоносителя поступают следующим образом:
1. Определяют температурный напор по формуле
2. Вычисляют вспомогательные величины P и R
3. По значениям P и R берется поправка.
Например, для теплообменника с перекрестным током и противоточной схемой включения температурный напор найдется как:
Уравнение теплового баланса. Изменение энтальпии теплоносителя вследствие теплообмена определяется соотношением:
Для конечных изменений энтальпии, полагая, что расход массы неизменен,
где h' и h”- начальная и конечная энтальпии теплоносителя.
Если теплота первичного (горячего) теплоносителя воспринимается вторичным (холодным), то уравнение теплового баланса без учета потерь теплоты запишется как
или для конечного изменения энтальпии
здесь и в дальнейшем индекс «1» означает, что данная величина отнесена к горячей жидкости, а индекс «2»- к холодной. Обозначение (штрих) соответствует данной величине на входе в теплообменник, (два штриха)- на выходе.
Полагая, что и , предыдущее уравнение можно записать так:
Удельная теплоемкость с р зависит от температуры. Поэтому в практических расчетах в уравнение (4) подставляется среднее значение изобарной теплоемкости в интервале температур от t' до t''.
В тепловых расчетах часто пользуются понятием полной теплоемкости массового расхода теплоносителя в единицу времени, определяемой выражением (5) и измеряющейся в Вт/К.
Последнее уравнение указывает на то, что отношение изменений температур однофазных теплоносителей обратно пропорционально отношению их расходных теплоемкостей. Нетрудно видеть, что при изменении агрегатного состояния теплоносителя температура его сохраняется постоянной. Следовательно, для такого теплоносителя теплоемкость массового расхода
Соотношение (6) справедливо как для конечной поверхности теплообмена, так и для любого элементарного участка.
Уравнение теплопередачи. Чаще всего для определения поверхности теплообмена используют следующее уравнение
t 1 и t 2 - соответственно температуры первичного и вторичного теплоносителей;
F- площадь поверхности теплопередачи.
Уравнение справедливо в предположении, что температуры остаются постоянными по всей поверхности теплообмена, однако это частный случай. В общем случае температуры изменяются по поверхности и, следовательно, изменяется и температурный напор, изменяется и коэффициент теплоотдачи на поверхности теплообмена. Значения изменения температур и коэффициента теплопередачи можно принять постоянными только пределах элементарной площадки поверхности теплообмена. Следовательно, уравнение теплопередачи справедливо лишь в дифференциальной форме для элемента теплообмена: (8)
Для решения уравнения необходимо знать закон изменения по поверхности. Коэффициент тепло передачи k, Вт/(м 2 *К), в большинстве случаев изменяется незначительно и его можно принять постоянным. Для случаев, когда коэффициент теплопередачи существенно изменяется на отдельных участках поверхности теплообмена, его усредняют:
Приняв, таким образом, постоянное значение коэффициента теплопередачи по всей поверхности, умножить и разделив на F, то получим:
Выражение (10) является вторым основным уравнением при тепловом расчете теплообменных аппаратов и называется уравнением теплопередачи.
При конструктивном расчете теплообменных устройств тепловая производительность Q, Вт, задается; требуется определить площадь поверхности теплообмена F. Последняя найдется из уравнения (10):
Из этого уравнения следует, что при нахождении поверхности теплообмена задача сводится к вычислению коэффициента теплопередачи и усредненного по всей поверхности температурного напора.
Для плоской стенки, например, коэффициент теплопередачи находим из уравнения
Коэффициенты теплоотдачи могут учитывать не только конвективную теплопередачу, но и теплопередачу излучением. В этом случае, например, .
Член в знаменателе представляет собой полное термическое сопротивление теплопроводности твердой стенки, разделяющей теплоносители. Разделяющая стенка может быть как многослойной, так и однородной.
1.4 Гидравлическое сопротивление элементов теплообменного аппарата
Полный перепад давления, необходимый при движении жидкости или газа через теплообменник, определяется формулой
где - сумма сопротивления трения на всех участках поверхности теплообмена (каналов, пучков труб, стенок и др.);
- сумма потерь давления в местных сопротивлениях;
- сумма потерь давления, обусловленных ускорением потока;
- суммарная затрата давления на преодоление самотяги.
Потери давление на преодоление сил трения при течении несжимаемой жидкости в каналах на участке безотрывного движения в общем случае рассчитывается по формуле
d- гидравлический диаметр, который в общем случае ищется как (f- поперечное сечение канала; u- периметр поперечного сечения);
- средняя плотность жидкости или газа в канале, кг/м 3 , и средняя скорость, м/с;
- коэффициент сопротивления трения. Он является безразмерной величиной, характеризующей отношение сил трения и инерционный сил потока и остается постоянным для канала l>30d; если l<30d, необходимо учитывать изменение его на входном участке канала;
Коэффициент сопротивления трения зависит от режима движения потока и поэтому при ламинарном и турбулентном течении определяется по-разному.
Местные сопротивления определяются по формуле
где - коэффициент местного сопротивления;
Коэффициент местного сопротивления зависит от характера препятствия, которым вызываются указанные сопротивления.
Потеря давления, обусловленная ускорением потока вследствие изменения объема теплоносителя при постоянном сечении канала,
где - скорость, м/с; и плотность газа, кг/м 3 ; соответственно во входном и выходном сечениях потока.
Для капельных жидкостей , Па, мало по сравнению с общим сопротивлением потока, и это сопротивление можно не принимать во внимание.
Если аппарат сообщается с окружающей средой, необходимо учитывать сопротивление самотяги. Это сопротивление можно вычислить по формуле
где h- расстояние по вертикали между входом и выходом теплоносителя, м;
- средние плотности теплоносителя и окружающего воздуха, кг/м 3 ;
Знак «+» берется при движении теплоносителя сверху вниз, знак «-»- при движении снизу вверх. Это значит, что в первом случае общее сопротивление движению теплоносителя увеличивается на , а во втором случае- уменьшается на . Если теплообменник не сообщается с окружающим воздухом (включен в замкнутую систему), то =0.
Для получения полного сопротивления теплообменного устройства выбранной конструкции и с конкретным теплоносителем полученные составляющие подставляются в уравнение (13).
1.5 Расчет мощности, необходимой для перемещения жидкости
Гидравлическое сопротивление , подсчитанное по формуле (13), предопределяет мощность, необходимую для перемещения теплоносителя через теплообменный аппарат.
Мощность N, Вт, на валу насоса или вентилятора определяется по формуле
где V - объемный расход жидкости, м 3 /с;
- плотность жидкости или газа, кг/м 3 ;
При выборе оптимальных форм и размеров поверхности нагрева теплообменника принимают наивыгоднейшее соотношение между поверхностью теплообмена и расходом энергии на движение теплоносителей. Добиваются, чтобы указанное соотношение было оптимальным, т.е. экономически наиболее выгодным. Это соотношение устанавливается на основе технико-экономических расчетов.
теплообменный аппарат вертикальный подогреватель
Конструкция и принцип работы подогревателя сетевой воды. Теплопередача при конденсации и движении жидкости по трубам. Оценка прочности крышки теплообменника. Тепловой, гидравлический и прочностной расчет параметров рекуперативного теплообменного аппарата. курсовая работа [186,8 K], добавлен 02.10.2015
Конструктивные признаки теплообменных аппаратов, их виды. Схемы движения теплоносителей. Назначение и схемы включения, конструкция сетевых подогревателей. Тепловой и гидравлический расчёты подогревателя сетевой воды, площадь поверхности нагрева. курсовая работа [791,2 K], добавлен 12.03.2012
Классификация теплообменных аппаратов (ТОА), требования к ним. Выбор схемы движения теплоносителей при расчете устройства, определение их теплофизических свойств. Коэффициент теплоотдачи в ТОА, уточнение температуры стенки и конструктивный расчет. курсовая работа [1,2 M], добавлен 17.11.2013
Конструкторский расчет вертикального подогревателя низкого давления с пучком U–образных латунных труб диаметром d=160,75 мм. Определение поверхности теплообмена и геометрических параметров пучка. Гидравлическое сопротивление внутритрубного тракта. контрольная работа [230,6 K], добавлен 18.08.2013
Определение характера течения горячего и холодного теплоносителей в каналах теплообменника. Выбор вида критериального уравнения для потоков. Составление уравнения теплового баланса. Нахождение поверхности нагрева рекуперативного теплообменного аппарата. практическая работа [514,4 K], добавлен 15.03.2013
Подогреватели сетевой воды вертикальные. Расчет средней температуры воды. Определение теплоемкости воды, теплового потока, получаемого водой. Коэффициент теплоотдачи от стенки трубы. Теплофизические параметры конденсата при средней температуре конденсата. курсовая работа [507,5 K], добавлен 28.11.2012
Физические свойства теплоносителей. Расчет числа Нуссельта. Определение количества тепла, получаемого нагреваемой водой. Средний температурный напор. Графики изменения температур теплоносителей вдоль поверхности нагрева для прямотока и противотока. контрольная работа [199,6 K], добавлен 03.12.2012
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Расчёт теплообменника курсовая работа. Физика и энергетика.
Контрольная работа по теме Понятие стратегии, стратегия дифференциации, стратегия диверсификации в неродственной отрасли
Основные Принципы Профессиональной Этики Педагога Эссе
Каменные Конструкции Курсовая
Сочинение: Романтический мир лирики Жуковского
Сочинение Художественный Мир
Доклад: Кио Игорь Эмильевич
Учебное пособие: Методические указания по выполнению контрольных работ и курсовому проектированию по маркетингу студентов ооп фдо по спец. 060800
Статья На Тему Вплив Нітропрусиду Натрію У Букальній Лікарській Формі
Курсовая Работа На Тему Применение Инструментария Технического Анализа На Forex При Развороте Тренда
Реферат: Присоединение к ВТО как инструмент интеграции РК в мировую экономику
Реферат: Мировой фондовый рынок
Отчет по практике по теме Механическая желтуха
Реферат: Restaurant Business Essay Research Paper The restaurant
Курсовая На Тему Заключение Договоров
Анатомия Сердца Реферат
Сочинение На Тему Дружба Обломова И Штольца
Курсовая работа: Расчёт настроек ПИ-регулятора методом РЧХ
Памятник Екатерине 2 Сочинение
Реферат по теме Рак ободочной кишки
Реферат: Умови існування організмів
Русский флот в XVIII в. - История и исторические личности реферат
Проект массового взрыва - Геология, гидрология и геодезия курсовая работа
Зовнішня політика Америки: перипетії відносин з найдавнішим стратегічним партнером – Францією - Международные отношения и мировая экономика статья


Report Page