Расчет конструкции силового кабеля на напряжение - Физика и энергетика курсовая работа

Расчет конструкции силового кабеля на напряжение - Физика и энергетика курсовая работа




































Главная

Физика и энергетика
Расчет конструкции силового кабеля на напряжение

Обзор достижений в кабельной технике и конструкций силовых кабелей. Расчёт конструктивных элементов кабеля: токопроводящей жилы, изоляции; электрических и тепловых параметров кабеля. Зависимость тока короткого замыкания от времени срабатывания защиты.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В больших городах, где прокладка воздушных линий электропередач представляет собой огромные трудности, основным средством передачи электрической энергии становятся подземные высоковольтные кабельные линии на напряжение 220 кВ и выше, что делает их основой современной энергосистемы города.
Несмотря на то, что кабельные линии широко используются уже на протяжении половины века, только сейчас современные технологии проектирования и производства позволяют стать им эффективной альтернативой воздушных линий электропередач.
Отличительными возможностями высоковольтные кабельные линий являются:
Гибкость при проектировании систем энергоснабжения
Подземные кабели обладают уникальными свойствами по передаче энергии - они невидимы на поверхности земли и не требуют глубокого закапывания, не излучают электрических полей и могут быть спроектированы, так чтобы не излучать магнитные поля, имеют улучшенные характеристики по потери мощности, высокую стойкость при аварийных нагрузках. В результате подземные кабели можно использовать в местах плотной застройки, реках и сложных геологических условиях, местах, где требуется сохранения окружающей среды, ландшафтов, значимых строений, памятников искусства, местах зарезервированных для будущего строительства и т.п.
Основным сдерживающим фактором использования подземных кабелей в прошлом была их высокая стоимость. Сегодня себестоимость их производства значительно снизилась за счет применения новых технологий и увеличения производительности оборудования, что приблизило стоимость подземных кабельных сетей к стоимости воздушных линий электропередач. Это означает, что проектировщики систем электроснабжения все чаще будут останавливать свой выбор на подземных кабельных сетях как на экономически выгодном и технологически эффективном средстве создания энергетической системы города.
Особенно необходимо подчеркнуть, что подземные кабельные сети не только снижают визуальное воздействие, но и значительно сокращают стоимость обслуживания по сравнению с воздушными линиями. Они так же менее восприимчивы к тяжелым погодным условиям таким как: штормы, землетрясения. В дополнение скажем, что подземные кабели содержат большое количество меди, наиболее токопроводящего металла, в результате чего на 30% снижаются потери при высоких нагрузках по сравнению с воздушными линиями электропередач, а следовательно повышается рентабельность всей энергосистемы.
Современные кабельные сети используют поперечно сшитый полиэтилен (XLPE) в качестве основного изоляционного материала, который уже 20 лет подтверждает свою высокую надежность.
Снижение потерь мощности (энергосбережение)
Подземные высоковольтные кабели используют в качестве проводника более эффективные медные сплавы, которые работают при более низких температурах. Сочетание этих особенностей позволяют снабжать электроэнергией потребителей с максимальной эффективностью, что особенно важно в целях сохранения окружающей среды и экономии энергоресурсов.
Новые технологии сочленения участков кабеля и прокладки его в грунте позволяют реализовывать проекты создания энергетических систем в течение нескольких месяцев притом что раньше на это уходили годы. В тех местах, где невозможно прокапать кабельную траншею или канал, кабели монтируются в туннелях. В некоторых случаях использование существующих туннелей позволяет значительно снизить стоимость работ.
Возможность мониторинга состояния кабеля
Для сокращения времени аварийного отключения, операторы энергетических систем могут измерять температуру высоковольтного кабеля по всей его длине с шагом пол метра с помощью оптического волокна вмонтированного в наружную оболочку кабеля. Такой мониторинг позволяет управлять общей нагрузкой всей сети, оптимально перераспределяя её между линиями не допуская перегрузок. В случае повреждения кабеля вследствие перегрузки или внешнего воздействия система мониторинга с точностью до метра определит место повреждения, что значительно сократит время на устранение аварии.
Интеллектуальная система мониторинга высоковольтных кабельных сетей ПТС-1000 позволяет решить три основных проблемы эксплуатации подземных кабелей из сшитого полиэтилена, которые в значительной степени определяют его срок службы в связи с технологическими особенностями конструкционных материалов:
1. Превышал ли кабель свою нормальную рабочую температуру если да то, как долго и в каком месте?
2. Превышал ли кабель свою максимально допустимую температуру если да то, как долго и в каком месте?
3. Предсказывать допустимую нагрузку, в случае если кабель достигнет своей максимальной расчетной температуры?
Обладая этой информацией, эксплуатирующая организация может оперативно определять остаточный срок службы высоковольтного кабеля, а, следовательно, более эффективно управлять своими капиталовложениями [2].
ЗАО «АББ Москабель» идет в ногу со временем и использует в производстве кабелей только лучшие материалы ведущих мировых производителей.
В своей работе компания уделяет много внимания развитию и совершенствованию технологий, которые обеспечивают высокое качество выпускаемых изделий. Именно поэтому для изоляции кабелей среднего и высокого напряжения она использует лишь пероксидосшиваемые полиэтилены - триингостойкий (ТСПЭ) и сополимерный (ССПЭ), что гарантирует отличные эксплуатационные характеристики продукции АББ Москабель.
Технология создания кабельной изоляции из сшитого полиэтилена появилась в 70-х годах 20 века. Сшивка - создание пространственной решетки за счет образования продольно-поперечных связей между макромолекулами полимера - увеличивает жесткость изоляции при повышенных температурах. В процессе старения (деструкции) сшитого полиэтилена его эксплуатационные характеристики снижаются. Основная причина этого - водные триинги - повреждения полимера, развивающиеся на технологических дефектах изоляции при совместном действии электрического поля и влаги, диффундирующей из окружающей среды. Вместе с влагой в изоляцию проникают агрессивные вещества. Они разрушают полимерные цепи, приводя к образованию микрополостей, которые в свою очередь служат резервуарами для накопления влаги. Под воздействием электрического поля полярные молекулы воды образуют древовидные структуры, направленные вдоль силовых линий электрического поля, - водные триинги. Различают два вида триингов: «бант» (зарождаются в объеме изоляции, заполненном водой, или на включениях инородных материалов) и «веер» (развиваются с поверхности электропроводящих экранов).
Электрическая прочность изоляции в области триингов существенно снижается, что повышает напряженность на неповрежденной части изоляции и ускоряет процесс роста триинга. С этим явлением в 70-е годы были связаны многократные отказы кабелей с изоляцией из высокомолекулярного термопластичного полиэтилена и СПЭ. Лабораторные испытания прояснили механизм его образования и развития в изоляционных материалах, что позволило подобрать новые добавки, обеспечивающие высокую устойчивость сшитых полиэтиленов к образованию водных триингов.
Рис. 1. Водный триинг а) типа «веер» с каналом пробоя б) типа «бант»
В настоящее время существуют две концепции снижения негативного влияния водных триингов на свойства изоляции:
· согласно первой в полиэтилен вводятся специальные химические добавки, в итоге получается триингостойкий сшитый полиэтилен - ТСПЭ;
· в соответствии со второй создаются макромолекулы, в состав которых, помимо этилена, входит более 5% других химических соединений, в итоге получается сополимерный сшитый полиэтилен - ССПЭ (механическая смесь полиэтилена низкой плотности, сополимера - этилена и этилакрилата или бутилакрилата и антиоксиданта, снижающего скорость окислительных процессов).
ТСПЭ применяется с 1983 года. В течение 23 лет лабораторные испытания подтверждают его устойчивость к электрическому старению в присутствии влаги. В частности, длина триингов в ТСПЭ почти в 2 раза ниже, а степень их разветвленности значительно меньше, чем в гомополимере. Так, в рамках испытательной программы на наружную поверхность кабелей с защитной оболочкой воздействие оказывала вода при температурном режиме, сопоставимом с реальными условиями их эксплуатации. В течение пятилетнего старения кабеля с изоляцией из пероксидосшиваемого ТСПЭ не было зарегистрировано ни одного отказа, у СПЭ-кабелей наблюдалось около 10% отказов, а у кабелей с изоляцией из этиленпропиленовой резины (ЭПР) зафиксировано около 55% отказов.
В ходе ускоренных испытаний на стойкость к развитию триингов, проведенных в Северной Америке по методике Ассоциации осветительных компаний имени Эдисона, ТСПЭ подтвердил свои характеристики. Главное преимущество изоляции из ТСПЭ - это незначительное по сравнению с изоляцией СПЭ снижение электрических характеристик во времени. Электрическая прочность изоляции из СПЭ за год испытаний на старение снижается на 60%, а изоляции из пероксидосшиваемого ТСПЭ за год старения снижается только на 30%. За последние годы были проведены два исследования, в которых кабели, выведенные из эксплуатации, использовались для получения информации об их электрических характеристиках. Несмотря на то, что условия прокладки несколько отличались, результаты подтверждают высокую стабильность материалов в процессе эксплуатации (табл. 1). В 2004 году в материалах выставки «Wire. China» («Проволока. Китай») были опубликованы результаты испытания кабелей на старение, подтверждающие устойчивое сохранение электрической прочности и меньшее количество триингов типа «бант» у ТСПЭ-изоляции в сравнении со СПЭ-изоляцией (рис. 1). Причем на срок службы кабеля влияют качество производства и опыт производителя (рис. 2).
ССПЭ также проходит испытания на стойкость к водным триингам. Например, в 1983 году для оценки скорости роста триингов использовались короткие образцы кабеля на напряжение 15 кВ, которые были подвергнуты старению при напряженности 5 кВ/мм в течение 3000 ч. В жилу кабеля подавалась водопроводная вода, и ежедневно в течение 8 ч поддерживалась температура 90°С. После этого измерялось распределение триингов типа «бант» по длинам. Результаты экспериментов показывают, что в изоляции из ССПЭ водных триингов значительно меньше, чем в изоляции из СПЭ, а их максимальная длина в 2 раза ниже. Пероксидосшиваемый ССПЭ демонстрирует такие же отличные результаты, как и пероксидосшиваемый ТСПЭ.
Рис. 2. Зависимость электрической прочности при переменном напряжении от длительности высоковольтных испытаний
Испытания на модельных кабелях показали существенное превосходство изоляции из ТСПЭ и ССПЭ, что связано со способностью этих материалов противостоять развитию триингов типа «веер».
Итак, пероксидосшиваемые ТСПЭ и ССПЭ обладают очень схожими электрическими характеристиками и являются отличными изоляционными материалами, стойкими к возникновению и росту водных триингов [3].
Кабельные композиции на основе полиэтилена и поливинилхлорида. Тенденции развития в России
Поливинилхлоридные пластикаты и композиции на основе полиэтилена в настоящее время являются наиболее распространенными полимерными материалами, применяемыми в кабельной промышленности России и других стран СНГ. Структура потребления кабельных полимерных материалов в РФ представлена на рис. 1. Видно, что в общем объеме потребления полимерных материалов на долю ПВХ-пластикатов приходится около 61%, а на композиции полиэтилена и других полиолефинов - остальное.
Кабельные композиции на основе полиэтилена
Свойства композиций во многом определяются характеристиками основного сырья - полиэтилена, которого содержится до 99% в составе кабельных композиций. Динамика выпуска полиэтилена в России представлена на рис. 3.
Рис. 3. Структура потребления в России кабельных композиций на основе полиэтилена
В 2005 году объем производства полиэтилена в России составил 1046,8 тыс. т, в том числе полиэтилена высокой плотности (ПЭВП) - 484,6 тыс. т, полиэтилена низкой плотности (ПЭНП) - 562,2 тыс. т. На кабельные композиции в России приходится около 6-7% от общего объема производства полиэтилена. В отечественной кабельной промышленности традиционно используются композиции на основе полиэтилена низкой и высокой плотности. Наиболее широко эти композиции применяются для производства кабелей связи, силовых кабелей, кабелей для питания погружных электронасосов добычи нефти и т.д.
Основными изготовителями кабельных композиций в течение многих десятилетий являются такие мощные предприятия, как ОАО «Казаньоргсинтез» (ПЭНП, ПЭВП), ОАО «Уфаоргсинтез» (ПЭНП), ООО «Ставролен» (ПЭВП). В последнее время в России появились и другие предприятия - небольшие производства кабельных композиций, оснащенные новейшим импортным смесительным оборудованием.
В России преимущественно применяются кабельные композиции на основе ПЭНП (см. рис. 3). Характеристики выпускаемых композиций регламентируются требованиями ГОСТ 16336-77 и ряда технических условий, согласованных с ОАО «ВНИИКП».
К сожалению, в России отсутствует производство композиций на основе линейного полиэтилена, который широко используется в кабельном производстве в зарубежной практике. Кроме того, в рецептуры композиций, выпускаемых по ГОСТу, не введены дезактиваторы меди, а марочный ассортимент выпускаемых композиций недостаточен.
В последние годы расширяется потребность в следующих специальных композициях, необходимых для выпуска современных кабельных изделий:
- для физического и химического вспенивания;
- безгалогенных пониженной горючести.
С учетом изложенного основные направления развития работ в России в области кабельных композиций на основе полиэтилена могут быть сформулированы следующим образом.
1. Разработка и освоение производства широкой серии кабельных композиций на основе линейного полиэтилена.
2. Разработка и освоение кабельных композиций с использованием расширенного ассортимента марок базового полиэтилена новых производств.
3. Повышение технического уровня композиций полиэтилена за счет использования стабилизаторов нового поколения. В рецептурах композиций полиэтилена, выпускаемых по ГОСТ 16336-77, не предусмотрено применение дезактиваторов меди, широко используемых за рубежом. Применение дезактиваторов меди снижает каталитическое воздействие меди на термоокислительную деструкцию полиэтилена, позволяет повысить стойкость к растрескиванию полиэтилена и ресурс кабелей.
4. Разработка и освоение промышленного производства полиолефиновых безгалогенных композиций пониженной горючести.
5. Разработка и освоение промышленного производства силанольносшиваемых композиций полиэтилена. Применение этих материалов позволит получить также сшитые структуры, придающие изоляции или оболочке улучшенные эксплуатационные свойства (более высокую рабочую температуру, стойкость к токам короткого замыкания и т.д.).
6. Разработка и освоение производства композиций полиэтилена для химического и физического вспенивания. В связи с техническим перевооружением кабельных предприятий и производством кабельных изделий с использованием вспененной изоляции (LAN-кабели, телефонные и радиочастотные кабели) потребность в таких композициях будет возрастать. Благодаря своим преимуществам композиции для физического вспенивания в перспективе будут превалировать. Предприятиями химической промышленности России освоено производство только композиций для химического вспенивания марки 107-ВК для использования в качестве изоляции городских телефонных кабелей. Что касается композиций для физического вспенивания, то в настоящее время ОАО «ВНИИКП» совместно с рядом химических предприятий планируют завершение разработки и освоение производства широкой гаммы таких композиций.
Поливинилхлоридные кабельные пластикаты
Поливинилхлоридные (ПВХ) пластикаты продолжают оставаться самыми крупнотоннажными полимерными материалами, применяемыми в отечественной кабельной промышленности. В 2005 году в России было выпущено около 135 тыс. т кабельных ПВХ-пластикатов. Динамика выпуска ПВХ-пластикатов представлена на рис. 4. Особенностью отечественного рынка ПВХ-пластикатов является то, что доля потребляемого кабельного ПВХ-пластиката составляет около 70% от общего объема потребления ПВХ, в то время как в мире для производства кабельных изделий используется в среднем не более 10% пластикатов. С учетом этого к кабельному сектору рынка пластикатов проявляется повышенный интерес производителей этих материалов.
Потребности кабельных предприятий в большей мере удовлетворяются за счет отечественного производства, сосредоточенного в основном на четырех предприятиях, которые покрывают примерно 80% потребности кабельной промышленности (ОАО «Владимирский химический завод»; ЗАО «Каустик», г. Стерлитамак; ОАО «Капролактам», г. Дзержинск; ОАО «Саянскхимпласт», г. Саянск). Мощности по выпуску ПВХ-пластикатов кабельного назначения в России примерно в 2 раза превышают потребности. Сдерживающими факторами являются временами возникающие дефициты ПВХ-смолы и пластификаторов отечественного производства.
Наиболее динамично развивается производство пластикатов пониженной горючести. Если ранее для производства кабелей, не распространяющих горение, выпускались только две марки ПВХ-пластикатов пониженной горючести (НГП 40-32 и НГП 30-32), то в настоящее время промышленностью (фирма «Проминвест-пластик», Украина, и ОАО «Владимирский химический завод», Россия) освоено производство нового поколения пластикатов пониженной пожарной опасности, разработанных совместно ОАО «ВНИИКП» и фирмой «Проминвест-пластик». Благодаря своим преимуществам по сравнению с пластикатами типа НГП (более высокая способность противостоять горению, низкая дымообразующая способность, низкая эмиссия хлористого водорода, более широкий марочный ассортимент) эти пластикаты уже активно используются при производстве кабелей типа «нг-LS» и «нг-FRLS» и их область применения непрерывно расширяется. На протяжении последних трех лет потребление пластикатов пониженной пожарной опасности увеличивалось ежегодно в среднем в 1,4 раза.
В настоящее время проблемы количественного обеспечения ПВХ-пластикатами кабельной промышленности России в основном решаются. Поэтому развитие работ в области кабельных ПВХ-пластикатов будет проходить в направлениях, связанных с разработкой и освоением производства марок ПВХ-пластикатов со специальными свойствами, удовлетворяющих современным требованиям.
К таким направлениям можно отнести следующие:
1. Разработка и освоение производства ПВХ-пластикатов пониженной пожарной опасности типа ППО с повышенным кислородным индексом (КИ).
2. Разработка и освоение производства ПВХ-пластикатов пониженной пожарной опасности типа ПП с улучшенной тропикостойкостью и пониженной дымообразующей способностью.
3. Создание серии ПВХ-пластикатов пониженной пожарной опасности с улучшенной экономичностью для кабельных изделий, применяемых в гражданском строительстве.
4. Полный переход на применение ПВХ-пластикатов пониженной пожарной опасности типа ПП взамен пластикатов типа НГП в кабельных изделиях, обеспечивающих требование по нераспространению горения.
5. Разработка и освоение производства кабельных ПВХ-пластикатов как общепромышленного, так и специального назначения, не содержащих соединений свинца.
6. Разработка и освоение производства ПВХ-пластикатов, отвечающих требованиям международных стандартов.
Таким образом, развитие работ в области кабельных композиций на основе полиэтилена и поливинил-хлоридных пластикатов в России и других странах СНГ в ближайшие годы связано с разработкой и освоением производства композиций со специальными свойствами и расширением их марочного ассортимента[4].
В настоящие время существуют запатентованные конструкции кабелей.
Рис. 4. Кабель силовой с изоляцией из сшитого полиэтилена
Силовой кабель, содержащий не менее трех токопроводящих металлических жил 1, каждая из которых изолирована не менее чем тремя слоями экструдированного сшитого полиэтилена, первый слой 2 - из электропроводящей сшитой композиции на основе полиэтилена, второй слой 3 - из изоляционного сшитого полиэтилена, третий слой 4 - из электропроводящей сшитой композиции на основе полиэтилена, изолированные жилы скручены между собой, на скрученные изолированные жилы наложен слой 5 из электропроводящих лент, поверх которого расположен экран из металлических проволок и металлической ленты 6, поверх металлического экрана - разделительный слой 7 и защитная оболочка 8, отличающийся тем, что металлические токопроводящие жилы в сечении имеют форму сектора, в качестве третьего слоя изоляции использована электропроводящая сшитая композиция на основе полиэтилена, легко отделяемая от второго слоя из изоляционного сшитого полиэтилена, а между изолированными токопроводящими жилами продольно оси кабеля уложены ленты из синтетического материала [5].
Рис. 5. Кабель силовой, не распространяющий горение
Кабель силовой, не распространяющий горение, содержащий медную или алюминиевую токопроводящую жилу 1 и последовательно расположенные на ней, наложенные экструзией первый экран 2 из электропроводящей сшитой композиции полиэтилена, изоляцию 3 из сшитой композиции полиэтилена, экран 4 из электропроводящей сшитой композиции полиэтилена, обмотку 5 лентой из электропроводящего материала, металлический экран 6 из медных проволок, скрепленных спирально наложенной медной лентой 7, разделительный слой 8 и экструдированную наружную оболочку 11, отличающийся тем, что поверх разделительного слоя 8 наложена внутренняя оболочка 9 из экструдированной полимерной композиции с кислородным индексом не менее 45 и термический барьер 10 из спирально или продольно наложенной с перекрытием медной или алюминиевой ленты, а наружная оболочка 11 выполнена из экструдированной полимерной композиции, не содержащей галогенов, с кислородным индексом не менее 45.
Кабель дополнительно может содержать поверх спирально или продольно наложенной с перекрытием медной или алюминиевой ленты обмотку по меньшей мере из одной стеклоленты или слюдосодержащей ленты [6].
Кабель силовой, имеющий две токопроводящие жилы 1 или более, изолированные полимерным материалом 2, скрепляющую обмотку 3 из синтетических лент поверх изолированных жил, поясную изоляцию 5 из экструдированного полимерного материала, металлический защитный покров 6 и защитный полимерный шланг 7, отличающийся тем, что внутреннее пространство между изолированными жилами заполняется водоблокирующими материалами 4 в виде нитей, лент, порошка [7].
Рис. 6. Кабель силовой с изоляцией из сшитого полиэтилена
1. Силовой кабель, содержащий токопроводящие жилы 1 с пропитанной бумажной изоляцией 2 и межфазный заполнитель 3 в виде жгута из кабельной бумаги, отличающийся тем, что межфазный заполнитель дополнительно содержит кабельную пряжу.
2. Силовой кабель на напряжение до 1 кВ, содержащий токопроводящие жилы 1 с пропитанной бумажной изоляцией 2 и межфазный заполнитель 3 в виде жгута из кабельной бумаги, отличающийся тем, что межфазный заполнитель выполнен в виде жгута из кабельной пряжи [8].
1. Кабель силовой на напряжение 6 и 10 кВ (рис. 8), не распространяющий горение, содержащий три медные токопроводящие жилы и последовательно расположенные на каждой из них наложенные экструзией первый экран из электропроводящей сшитой композиции полиэтилена, изоляцию из сшитой композиции полиэтилена, второй экран из электропроводящей сшитой композиции полиэтилена, обмотку лентой из электропроводящего материала, металлический экран из медных проволок, скрепленных спирально наложенной медной лентой, жилы скручены в общий сердечник, межфазное заполнение и экструдированную наружную оболочку, отличающийся тем, что он дополнительно снабжен расположенным внутри сердечника центральным заполнением, выполненным из экструдированной полиолефиновой композиции, не содержащей галогенов, с кислородным индексом не менее 35, и последовательно наложенными поверх межфазного заполнения внутреннюю оболочку, выполненную из полиолефиновой композиции, не содержащей галогенов, с кислородным индексом не менее 35, и броню в виде обмотки из двух стальных оцинкованных лент, наложенных с перекрытием, при этом межфазное заполнение выполнено из полиолефиновой композиции, не содержащей галогенов, с кислородным индексом не менее 55, и наружная оболочка выполнена из полиолефиновой композиции, не содержащей галогенов, с кислородным индексом не менее 45.
2. Кабель по п. 1, отличающийся тем, что он дополнительно содержит поверх скрученных в сердечник жил скрепляющую полимерную ленту, наложенную с зазором.
3. Кабель по пп. 1 и 2, отличающийся тем, что соотношение между номинальной толщиной внутренней оболочки () и номинальной толщиной межфазного заполнения () составляет />4,67, а номинальной толщиной наружной оболочки () и номинальной толщиной внутренней оболочки () составляет />1,75.
4. Кабель по пп. 1 и 2, отличающийся тем, что металлический экран выполнен из медных проволок номинальным диаметром 0,7-1,5 мм, расположенных на расстоянии не более 8,0 мм между соседними проволоками, скрепленных спирально наложенной медной лентой или пасьмой из медных проволок. [16]
1.2 Обзор конструкций силовых кабелей
Кабели с изоляцией из сшитого полиэтилена (российское обозначение-СПЭ, английское-XLPE, немецкое-VPE, шведское-РЕХ) в полной мере отвечают все более жестким требованиям по качественному и надежному обеспечению потребителя достаточной электрической мощностью.
Благодаря своей конструкции, современной технологии изготовления и совершенным материалам кабели среднего и высокого напряжения с СПЭ-изоляцией обладают наилучшими электрическими и механическими свойствами и самым длительным сроком службы среди других типов кабеля, выпускаемых серийно. Благодаря радиальной конструкции достигается равномерное распределение электрического поля внутри изоляции, что вкупе с диэлектрическими характеристиками СПЭ существенно увеличивает электрическую прочность изоляции. Именно за счет электрической прочности изоляции, радиальной конструкции и технологии изготовления (пероксидной сшивки) кабелей удается достичь рекордно низких показателей по количеству пробоев во время эксплуатации.
Основными преимуществами кабеля с СПЭ-изоляцией являются:
- большая пропускная способность за счет увеличения допустимой температуры жилы (допустимые токи нагрузки в зависимости от условий прокладки на 15-30% больше, чем у кабеля с бумажной изоляцией);
- высокий ток термической устойчивости при коротком замыкании, что особенно важно, когда сечение кабеля выбрано только на основании номинального тока короткого замыкания;
- низкий вес, меньший диаметр и радиус изгиба, что обеспечивает легкость прокладки кабеля как в кабельных сооружениях, так и в земле на сложных трассах;
- возможность вести прокладку кабеля при температуре до -15 °С для кабеля 110 кВ без предварительного подогрева, благодаря использованию полимерных материалов для изоляции и оболочки;
- низкая удельная повреждаемость (практика применения кабеля с СПЭ-изоляцией показывает, что она как минимум на 1-2 порядка ниже, чем у кабеля с бумажно-пропитанной изоляцией);
- отсутствие жидких компонентов (масла под давлением для кабеля 110 кВ) и, следовательно, дорогостоящего подпитывающего оборудования, что ведет к значительному уменьшению эксплуатационных расходов, упрощению монтажного оборудования, сокращению времени и стоимости работ по прокладке и монтажу и обеспечению сохранности окружающей среды;
- возможность быстрого ремонта в случае пробоя, учитывая, что основным видом повреждения на одножильном кабеле является однофазное замыкание;
- однофазная конструкция, позволяющая изготавливать кабель с жилой сечением до 1000 мм, оптимальным для передачи большой мощности;
- большие строительные длины до 1500 м для кабеля 110 кВ;
- твердая изоляция дает огромные преимущества при прокладке на местности с большими наклонами, возвышенностями и на пересеченной местности, то есть на трассах с большой разницей уровней, в вертикальных и наклонных коллекторах[9].
В таблице 1 приведены сравнительные данные изоляционных материалов.
Таблица 1 Сравнительные данные изоляционных материалов
Относительная диэлектрическая проницаемость
Удельное объемное сопротивление, при 20 °C, Ом*см
Длительно допустимая рабочая температура, °C
Максимальная температура п.т.ж. при коротком замыкании, °С
Сопротивление к деформации, при 150 °C
А - алюминиевая жила (без обозначения - медная жила) сечение = 50…800 мм 2
Пв - изоляция из сшитого полиэтилена
Пу - оболочка из полиэтилена увеличенной толщины
Внг - оболочка из ПВХ-пластиката пониженной горючести.
г - герметизация металлического экрана водоблокирующими лентами
2 г - двойная герметизация водоблокирующими лентами и алюмополимерной лент
На рисунки 2 приведен пример маркировки кабеля
Силовые кабели с изоляцией из СПЭ и их применение.
Рис. 10. Конструкция силового кабеля с изоляцией из сшитого полиэтилена
1. Токопроводящая жила - алюминиевая или медная многопроволочная, круглой формы, уплотненная, соответствует классу 2 по гост 22483-77.
2. Экран по жиле - наложен экструзией из электропроводящей пероксидносшиваемой полиэтиленовой композиции.
3. Изоляция - из пероксидносшиваемого полиэтилена.
4. Экран по изоляции - наложен экструзией из электропроводящей пероксидносшиваемой полиэтиленовой композиции.
6. Слой обмотки полупроводящим полотном.
7. Повив из медных проволок 0,7-2,0 мм. Поверх медных проволок спирально наложена медная лента толщиной не менее 0,1 мм.
9. Оболочка - из полиэтилена высокой плотности. Кабели с индексом «у» имеют усиленную полиэтиленовую оболочку с продольными ребрами жесткости, предназначенными для предотвращения повреждений оболочки при прокладке на сложных участках кабельных трасс.
Силовые кабели с медными или алюминиевыми жилами, с изоляцией из сшитого полиэтилена, с продольной герметизацией, в оболочке из полиэтилена высокой плотности.
Рис. 11. Конструкция силового кабеля с изоляцией из сшитого полиэтилена с продольной герметизацией.
1. Токопроводящая жила - алюминиевая или медная многопроволочная, круглой формы, уплотненная, соответствует классу 2 по гост 22483-77.
2. Экран по жиле - наложен экструзией из электропроводящей пероксидносшиваемой полиэтиленовой композиции.
3. Изоляция - из пероксидносшиваемого полиэтилена.
4. Экран по изоляции -
Расчет конструкции силового кабеля на напряжение курсовая работа. Физика и энергетика.
Реферат по теме Отдельные болевые синдромы
Курсовая Работа На Тему Хранение Лекарственных Средств
Сочинение Мой Друг 6 Класс
Реферат: Оценка условий труда, обусловленных факторами производственной среды
Отчет по практике: Участие в тренинге "Тренинг личностного и творческого развития"
Курсовая Работа По Психологии Воображение
Реферат по теме Лидерство в управлении организацией
Жилищно-коммунальное хозяйство
Контрольная Работа По Теме Клетка Ответы
Реферат На Тему Теневая Экономика В России
Реферат по теме Онкология (проблема болей при онкологических заболеваниях)
Курсовая работа по теме Перспективы развития строительной отрасли России
Эссе Важнейшие События Царствования Александра 1
Курсовая работа по теме Государственная социальная помощь: понятие, виды, условия и порядок предоставления
Итоговая Контрольная Работа 6 Класс Русский Язык
Дипломная работа: Оптимизация налогового бремени
Реферат: Геохимия океана. Происхождение океана. Скачать бесплатно и без регистрации
Реферат по теме Мотивация учебной деятельности
Курсовая Работа На Тему Профессиональные Риски Медработников
Реферат по теме Роль сахарозы в питании человека
Польза и вред сахара - Биология и естествознание презентация
Субъекты международного частного права - Государство и право контрольная работа
Общехозяйственные расходы сельскохозяйственного предприятия - Бухгалтерский учет и аудит курсовая работа


Report Page