Радиоактивное излучение - Безопасность жизнедеятельности и охрана труда реферат

Радиоактивное излучение - Безопасность жизнедеятельности и охрана труда реферат



































Радиоактивное излучение, его виды. Воздействие радиации на ткани живого организма. Предельно допустимые дозы облучения. Естественные источники радиации. Внутреннее облучение от радионуклидов земного происхождения. Воздействие радиации на человека.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику.
Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, отрицательное влияния радиации на здоровье. Подобный факт не мог пройти мимо внимания общественности. И чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности.
К сожалению, отсутствие достоверной информации вызывает неадекватное восприятие данной проблемы. Радиоактивность следует рассматривать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно реально оценить ситуацию.
Таким образом, проблема радиационного загрязнения стала одной из наиболее актуальных проблем нашего времени.
В 1895 г. Вильгельм Рёнтген открыл рентгеновские лучи, а в 1896 г. Антуан Беккерель открыл радиоактивность. В 1903 г. Джозеф Томсон зафиксировал радиоактивность колодезной воды. Позже оказалось, что воды многих известных курортных источников тоже радиоактивны. В 1898 г. Пьер и Мария Кюри открыли радий. Радиоактивность целебной воды была объяснена "эманацией радия" (радиоактивным газом, который мы сегодня называем радоном). Врачи перечисляли болезни, которые лечит эта живая вода: различных форм подагры и ревматизма, невралгию, желудочную диспепсию, хронический понос, хронические поражения кожи. Радиоактивность предотвращает безумие, вызывает благородные эмоции, замедляет приход старости и позволяет радоваться жизни.
Однако воду из целебных источников приходилось использовать на месте. Радон из бутылок улетучивался в атмосферу и довольно быстро распадался. Решение было найдено. Например, в продажу поступили бутылочки с раствором радия (в основном радия-226). В каждой бутылочке 60 см2 воды с растворенным в ней 2 мкг радия. Радий постоянно распадался, образовывался радон. [4]
В 1920-х и начале 1930-х, в продажу, например в США, поступили содержащие радий мази, косметические кремы, зубные пасты (считалось, что они помогают против кариеса и улучшают пищеварение), беруши, шоколадные батончики, мыло, суппозитории, и даже противозачаточные средства.
Впервые природу воздействия радиации на живой организм установили в 1925 году русские ученые Р.С.Филиппов и Р.А Надсон, изучая дрожжи. Два года спустя их открытие подтвердил американский генетик Г.Д.Меллер на дрозофиле. Оказалось, что радиоактивное излучение оказывает сильное мутагенное воздействие на живые клетки, многократно ускоряя их спонтанные мутации.
Международный знак радиации впервые появился в 1946 году в радиационной лаборатории университета Калифорнии в Беркли. В то время знак был пурпурным на синем фоне. Современная версия -- чёрный знак на жёлтом фоне. 19 февраля 2007 года IAEA и ISO анонсировали новый символ ионизирующей радиации в придачу к традиционному. (Рис. 6 и 7) [8]
Радиамция (от лат. radiвtiф «сияние», «излучение») - обобщенное понятие. Оно включает различные виды излучений, часть которых встречается природе, другие получаются искусственным путем.
Прежде всего следует различать корпускулярное излучение состоящее из частиц с массой отличной от нуля, и электромагнитное излучение. Корпускулярное излучение может состоять как из заряженных, так и из нейтральных частиц.
Различают следующие виды корпускулярного излучение:
1. Альфа-излучение - представляет собой ядра гелия, которые испускаются при радиоактивном распаде элементов тяжелее свинца или образуются в ядерных реакциях.
2. Бета-излучение - это электроны или позитроны, которые образуются при бета-распаде различных элементов от самых легких (нейтрон) до самых тяжелых.
3. Космическое излучение приходит на Землю из космоса. В его состав входят преимущественно протоны и ядра гелия. Более тяжелые элементы составляют менее 1%. Проникая вглубь атмосферы, космическое излучение взаимодействует с ядрами, входящими состав атмосферы, и образует потоки вторичных частиц (мезоны, гамма-кванты, нейтроны и др.).
4. Нейтроны образуются в ядерных реакциях (в ядерных реакторах и в других промышленных и исследовательских установках, а также при ядерных взрывах).
5. Продукты деления содержатся в радиоактивных отходах переработанного топлива ядерных реакторов.
6. Протоны, ионы. В основном получаются на ускорителях.
Электромагнитное излучение имеет широкий спектр энергий и различные источники: гамма-излучение атомных ядер и тормозное излучение ускоренных электронов, радиоволны (табл.1). [2]
Различные виды радиации по разному взаимодействуют с веществом в зависимости от типа испускаемых частиц, их заряда, массы и энергии. Заряженные частицы ионизируют атомы вещества, взаимодействуя с атомными электронами. Нейтроны и гамма-кванты, сталкиваясь с заряженными частицами в веществе, передают им свою энергию, в случае гамма-квантов возможно также рождение электрон-позитронных пар. Эти вторичные заряженные частицы, тормозясь в веществе, вызывают его ионизацию.
Воздействие излучения на вещество на промежуточном этапе приводит к образованию быстрых заряженных частиц и ионов. Радиационные повреждения вызываются в основном этими вторичными частицами, так как они взаимодействуют с большим количеством атомов, чем частицы первичного излучения. В конечном итоге энергия первичной частицы трансформируется в кинетическую энергию большого количества атомов среды и приводит к ее разогреву и ионизации.
В реакции организма на облучение можно выделить четыре фазы.
Первая, физическая фаза ионизации и возбуждения атомов длится 10-13 сек (все фазы занимают примерно такое же время). Вo второй, химико-физической фазе образуются высокоактивные в химическом отношении радикалы, которые, взаимодействуя с различными соединениями, дают начало вторичным радикалам, имеющим значительно большие по сравнению с первичными сроки жизни. В третьей, химической фазе, образовавшиеся радикалы, вступают в реакции с органическими молекулами клеток, что приводит к изменению биологических свойств молекул.
Описанные процессы первых трех фаз являются первичными и определяют дальнейшее развитие лучевого поражения. В следующей за ними четвертой, биологической фазе химические изменения молекул преобразуются в клеточные изменения. Наиболее чувствительным к облучению является ядро клетки, а наибольшие последствия вызывает повреждение ДНК, содержащей наследственную информацию. Время протекания четвертой фазы очень различно и в зависимости от условий может растянуться на годы или даже на всю жизнь.
Различные виды излучений характеризуются различной биологической эффективностью, что связано с отличиями в их проникающей способности (рис. 1) и характером передачи энергии органам и тканям живого объекта, состоящего в основном из легких элементов.
Альфа-излучение имеет малую длину пробега частиц и характеризуется слабой проникающей способностью. Оно не может проникнуть сквозь кожные покровы. Пробег альфа-частиц с энергией 4 Мэв в воздухе составляет 2.5 см, а в биологической ткани лишь 31 мкм. Альфа-излучающие нуклиды представляют большую опасность при поступлении внутрь организма через органы дыхания и пищеварения, открытые раны и ожоговые поверхности.
Бета-излучение обладает большей проникающей способностью. Пробег бета-частиц в воздухе может достигать нескольких метров, а в биологической ткани нескольких сантиметров. Так пробег электронов с энергией 4 Мэв в воздухе составляет 17.8 м, а в биологической ткани 2.6 см.
Гамма-излучение имеет еще более высокую проникающую способность. Под его действием происходит облучение всего организма. [5]
Эффект облучения зависит от величины поглощенной дозы, ее мощности, вида излучения, объема облучения тканей и органов. Для его количественной оценки введены специальные единицы, которые делятся на внесистемные и единицы в системе СИ. (Табл. 2)
По отношению к облучению население делится на 3 категории.
Категория А облучаемых лиц или персонал (профессиональные работники) - лица, которые постоянно или временно работают непосредственно с источниками ионизирующих излучений.
Категория Б облучаемых лиц или ограниченная часть населения - лица, которые не работают непосредственно с источниками ионизирующего излучения, но по условиям проживания или размещения рабочих мест могут подвергаться воздействию ионизирующих излучений.
Категория В облучаемых лиц или население - население страны, республики, края или области.
Устанавливается три группы критических органов:
1 группа - все тело, гонады и красный костный мозг.
2 группа - мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталики глаз и другие органы, за исключением тех, которые относятся к 1 и 3 группам.
3 группа - кожный покров, костная ткань, кисти, предплечья, голени и стопы.
Дозовые пределы облучения для разных категорий лиц даны в таблице 3.
Помимо основных дозовых пределов для оценки влияния излучения используют производные нормативы и контрольные уровни. Расчет допустимого содержания радионуклида в организме проводят с учетом его радиотоксичности и непревышения ПДД в критическом органе. Контрольные уровни должны обеспечивать такие низкие уровни облучения, какие можно достичь при соблюдении основных дозовых пределов.
Для категории А (персонала) установлены:
- предельно допустимое годовое поступление ПДП радионуклида через органы дыхания;
- допустимое содержание радионуклида в критическом органе ДСА;
- допустимая мощность дозы излучения ДМДА;
- допустимая плотность потока частиц ДППА;
- допустимая объемная активность (концентрация) радионуклида в воздухе рабочей зоны ДКА;
- допустимое загрязнение кожных покровов, спецодежды и рабочих поверхностей ДЗА .
Для категории Б (ограниченной части населения) установлены:
- предел годового поступления ПГП радионуклида через органы дыхания или пищеварения;
- допустимая объемная активность (концентрация) радионуклида ДКБ в атмосферном воздухе и воде;
- допустимая плотность потока частиц ДППБ;
- допустимое загрязнение кожных покровов, одежды и поверхностей ДЗБ .
Численные значения допустимых уровней в полном объеме содержатся в "Нормах радиационной безопасности". [3]
Жизнь на Земле возникла и продолжает развиваться в условиях постоянного облучения. Радиационный фон Земли складывается из трех компонентов :
2. излучение от рассеянных в земной коре, воздухе и других объектах внешней среды природных радионуклидов;
3. излучение от искусственных (техногенных) радионуклидов.
Облучение по критерию месторасположения источников излучения делится на внешнее и внутреннее. Внешнее облучение обусловлено источниками, расположенными вне тела человека. Источниками внешнего облучения являются космическое излучение и наземные источники. Источником внутреннего облучения являются радионуклиды, находящиеся в организме человека. [2]
Космическое излучение складывается из частиц, захваченных магнитным полем Земли, галактического космического излучения и корпускулярного излучения Солнца. В его состав входят в основном электроны, протоны и альфа-частицы. Это так называемое первичное космическое излучение, взаимодействуя с атмосферой Земли, порождает вторичное излучение. В результате на уровне моря излучение состоит почти полностью из мюонов (подавляющая часть) и нейтронов.
Поглощенная мощность дозы космического излучения в воздухе на уровне моря равна 32 нГр/час и формируется в основном мюонами. Для нейтронов на уровне моря мощность поглощенной дозы составляет 0.8 нГр/час и мощность эквивалентной дозы составляет 2.4 нЗв/час. За счет космического излучения большинство населения получает дозу, равную около 0.35 мЗв в год.
Космическому внешнему облучению подвергается вся поверхность Земли. Однако облучение это неравномерно. Интенсивность космического излучения зависит от солнечной активности, географического положения объекта и возрастает с высотой над уровнем моря. Наиболее интенсивно оно на Северном и Южном полюсах, менее интенсивно в экваториальных областях. Причина этого - магнитное поле Земли, отклоняющее заряженные частицы космического излучения. Наибольший эффект действия космического внешнего облучения связан с зависимостью космического излучения от высоты (рис.2).
Солнечные вспышки представляют большую радиационную опасность во время космических полетов. Космические лучи, идущие от Солнца, в основном состоят из протонов широкого энергетического спектра (энергия протонов до 100 МзВ), Заряженные частицы от Солнца способны достигать Земли через 15-20 мин после того, как вспышка на его поверхности становится видимой. Длительность вспышки может достигать нескольких часов.
Величина дозы радиоактивного облучения, получаемая человеком, зависит от географического местоположения, образа жизни и характера труда. Например, на высоте 8 км мощность эффективной дозы составляет 2 мкЗв/час, что приводит к дополнительному облучению при авиаперевозках.
При трансконтинентальном перелете на обычном турбовинтовом самолете, летящем со скоростью ниже скорости звука (Тполета ? 7.5 часа), индивидуальная доза, получаемая пассажиром (50 мкЗв), на 20 % больше, чем доза, полученная пассажиром сверхзвукового самолета (Тполета ? 2.5 часа) (40 мкЗв), хотя последний подвергается более интенсивному облучению из-за большей высоты полета. Коллективная эффективная доза от глобальных авиаперевозок достигает 104 чел-Зв, что составляет на душу населения в мире в среднем около 1 мкЗв за год, а в Северной Америке около 10 мкЗв. [2]
В результате ядерных реакций, идущих в атмосфере (а частично и в литосфере) под влиянием космических лучей, образуются радиоактивные ядра - космогенные радионуклиды. Например:
В создание дозы наибольший вклад вносят 3H, 7Be, 14C и 22Na которые поступают вместе с пищей в организм человека (табл.3)
Взрослый человек потребляет с пищей 95 кг углерода в год при средней активности на единицу массы углерода 230 Бк/кг. Суммарный вклад космогенных радионуклидов в индивидуальную дозу составляет около 15 мкЗв/год.
В организме человека постоянно присутствуют радионуклиды земного происхождения, поступающие через органы дыхания и пищеварения. Наибольший вклад в формирование дозы внутреннего облучения вносят 40К, 87Rb, и нуклиды рядов распада 238U и 232Th (табл.4).
Средняя доза внутреннего облучения за счет радионуклидов земного происхождения составляет 1.35 мЗв/год. Наибольший вклад (около 3/4 годовой дозы) дают не имеющий вкуса и запаха тяжелый газ радон и продукты его распада. Поступив в организм при вдохе, он вызывает облучение слизистых тканей легких. Радон высвобождается из земной коры повсеместно, но его концентрации в наружном воздухе существенно различается для различных точек Земного шара. Однако большую часть дозы облучения от радона человек получает, находясь в закрытом непроветриваемом помещении. В зонах с благоприятным климатом концентрация для радона в закрытых помещениях в среднем примерно в 8 раз выше, чем в наружном воздухе. Источниками радона являются также строительные материалы. Так, например, большой удельной радиоактивностью обладают гранит и пемза, кальций-силикатрий, шлак и ряд других материалов. Радон проникает в помещение из земли и через различные трещины в межэтажных перекрытиях, через вентиляционные каналы и т.д. Источниками поступления радона в жилые помещения являются также природный газ и вода (табл. 5).
Доля домов, внутри которых концентрация радона и его ядерных продуктов равна от 103 до 104 Бк/см3, составляет от 0.01 до 0.1% в различных странах. Это означает, что значительное число людей подвергаются заметному облучению из-за высокой концентрации радона внутри домов, где они живут.
В качестве удобрений ежегодно используются несколько десятков млн. тонн фосфатов. Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий в довольно высокой концентрации. Содержащиеся в удобрениях радиоизотопы проникают из почвы в пищевые продукты, приводят к повышению радиоактивности молока и других продуктов питания.
Таким образом, эффективная доза от внутреннего облучения за счет естественных источников (1.35 мЗв/год) в среднем примерно в два раза превышает дозу внешнего облучения от них (0.65 мЗв/год). Следовательно, суммарная доза внешнего и внутреннего облучения от естественных источников радиации в среднем равна 2 мЗв/год. Для отдельных контингентов населения она может быть выше. Причем максимальное превышение над средним уровнем может достигать одного порядка. [6]
В результате деятельности человека во внешней среде появились искусственные радионуклиды и источники излучения. В природную среду стали поступать в больших количествах естественные радионуклиды, извлекаемые из недр Земли вместе с углем, газом, нефтью, минеральными удобрениями, строительными материалами. Сюда относятся геотермические электростанции, создающие в среднем выброс около 4*1014 Бк изотопа 222Rn на 1 ГВт выработанной электроэнергии; фосфорные удобрения, содержащие 226Ra и 238U (до 70 Бк/кг в Кольском апатите и 400 Бк/кг в фосфорите); уголь, сжигаемый в жилых домах и электростанциях, содержит естественные радионуклиды 40К, 232U и 238U в равновесии с их продуктами распада. Роль различных искусственных источников излучений в создании радиационного фона иллюстрируется таблицей 6.
За последние несколько десятилетий человек создал несколько тысяч радионуклидов и начал использовать их в научных исследованиях, в технике, медицинских целях и др. Это приводит к увеличению дозы облучения, получаемой как отдельными людьми, так и населением в целом.
В настоящее время основной вклад в дозу от источников, созданных человеком, вносит внешнее радиактивное облучение при диагностике и лечении. В развитых странах на каждую тысячу населения приходятся от 300 до 900 таких обследований в год, не считая массовой флюорографии и рентгенологических обследований зубов.
Для исследования различных процессов, протекающих в организме и для диагностики опухолей используются также радиоизотопы, вводимые в организм человека. В промышленно развитых странах ориентировочно проводится 10 - 40 обследований на 1 млн. жителей в год. Коллективные эффективные эквивалентные дозы составляют 20 чел-Зв на 1 млн. жителей в Австралии и 150 чел-Зв в США.
Средняя эффективная эквивалентная доза, получаемая от всех источников облучения в медицине, в промышленно развитых странах составляет 1 мЗв в год на каждого жителя, т.е. примерно половину средней дозы от естественных источников. [7]
Радиологические последствия испытаний ядерного оружия определяются количеством испытаний, суммарными энерговыделением и активностью осколков деления, видами взрывов (воздушные, наземные, подводные, надводные, подземные) и геофизическими факторами окружающей среды в период испытаний (район, метеообстановка, миграция радионуклидов и др.). Испытания ядерного оружия, которые особенно интенсивно проводились в период 1954-1958 и 1961-1962 гг. стали одной из основных причин повышения радиационного фона Земли и, как следствие этого, глобального повышения доз внешнего и внутреннего облучения населения.
В США, СССР, Франции, Великобритании и Китае в общей сложности проведено не менее 2060 испытаний атомных и термоядерных зарядов в атмосфере, под водой и в недрах Земли, из них непосредственно в атмосфере 501 испытание. Испытания в атмосфере в СССР были завершены в 1962 г., подземные взрывы на Семипалатинском полигоне - в 1989 г., на Северном полигоне - в 1990 г. Франция и Китай до последнего времени продолжали испытывать ядерное оружие. По оценкам во второй половине 20-го века за счет ядерных испытаний во внешнюю среду поступило 1.81*1021 Бк продуктов ядерного деления (ПЯД), из них на долю атмосферных испытаний приходится 99.84 %. Распространение радионуклидов приняло планетарные масштабы (Рис. 3, 4 ).
Продукты ядерного деления (ПЯД) представляют собой сложную смесь более чем 200 радиоактивных изотопов 36 элементов (от цинка до гадолиния). Большую часть активности составляют короткоживущие радионуклиды. Так, через 7, через 49 и через 343 суток после взрыва активность ПЯД снижается соответственно в 10, 100 и 1000 раз по сравнению с активностью через час после взрыва. Кроме ПЯД радиоактивное загрязнение обусловлено радионуклидами наведенной активности ( 3Н,14С, 28Al, 24Nа, 56Mn, 59Fe, 60Cо и др.) и неразделившейся частью урана и плутония. Особенно велика роль наведенной активности при термоядерных взрывах.
При ядерных взрывах в атмосфере значительная часть осадков (при наземных взрывах до 50%) выпадает вблизи района испытаний. Часть радиоактивных веществ задерживается в нижней части атмосферы и под действием ветра перемещается на большие расстояния, оставаясь примерно на одной и той же широте. Находясь в воздухе примерно месяц, радиоактивные вещества во время этого перемещения постепенно выпадают на Землю. Большая часть радионуклидов выбрасывается в стратосферу (на высоту 10-15 км), где происходит их глобальное рассеивание и в значительной степени распад. Нераспавшиеся радионуклиды выпадают по всей поверхности Земли. Дозы облучения населения от глобальных выпадений незначительны (табл. 7). [7]
радиоактивный облучение радионуклид организм
Источником облучения, вокруг которого ведутся наиболее интенсивные споры, являются атомные электростанции. Преимущество атомной энергетики состоит в том, что она требует существенно меньших количеств исходного сырья и земельных площадей, чем тепловые станции, не загрязняет атмосферу дымом и сажей. Опасность состоит в возможности возникновения катастрофических аварий реактора, а также в реально не решенной проблеме утилизации радиоактивных отходов и утечке в окружающую среду небольшого количества радиоактивности.
К концу 1984 г. в 26 странах работало 345 ядерных реакторов, вырабатывающих электроэнергию. Их мощность составляла 220 ГВт или 13% суммарной мощности всех источников электроэнергии. К 1994 году в мире работало 432 атомных реактора, их суммарная мощность составила 340 ГВт.
В процессе работы ядерных реакторов в них накапливается огромное количество продуктов ядерного деления и трансурановых элементов.
В условиях нормальной эксплуатации АЭС выбросы радионуклидов во внешнюю среду незначительны и состоят в основном из радионуклидов йода и инертных радиоактивных газов (Хе, Сг), периоды полураспада которых (за исключением изотопа 85Кг) в основном не превышают нескольких суток. Эти нуклиды образуются в процессе деления урана и могут просачиваться через микротрещины в оболочках твэлов (тепловыделяющие элементы, содержащие внутри себя уран).
90% всей дозы облучения, возможной в результате выброса на атомной станции и обусловленной короткоживущими изотопами (йод, ИРГ), население получает в течение года после выброса, 98% - в течение 5 лет. Почти вся доза приходится на людей, живущих вблизи АЭС.
Долгоживущие продукты выброса (137Сз, 90Ce,85Кг и др.) распространяются по всему земному шару. Оценка ожидаемой коллективной эквивалентной дозы от облучения такими изотопами составляет 670 чел-Зв на каждый ГигаВатт вырабатываемой электроэнергии.
Самая первая крупная авария на атомной электростанции произошла в штате Онтарио, Канада 12 декабря в 1952 году.
В результате перегрева и частичного расплавления активной зоны огромное количество продуктов деления попали в окружающую среду, а радиоактивно загрязнённая вода была сброшена прямо на землю около реки Оттава.
В результате утечки радиоактивных материалов из лаборатории по производству плутония (Ливерпуль, Великобритания), заболели раком и погибли 39 человек.
В 1969 году в Швейцарии на подземном ядерном реакторе произошла значительная утечка радиации. В этом же году во Франции при перегрузке топлива на работающем реакторе АЭС «Сант-Лаурен» по ошибке оператора в топливный канал была загружена не тепловыделяющая сборка, а устройство для регулирования расхода газов. По этой причине около 50 килограммов расплавленного топлива попало внутрь корпуса реактора и произошёл выброс радиации во внешнюю среду. Реактор остановили на один год.
20 марта 1975 года произошёл пожар на одной из самых крупных атомной электростанции Америки в г.Декатур произошёл пожар. Он длился 7 часов и за это время были выведены из строя более чем на год два реакторных блока. Этот пожар произошёл из-за воспламенения кабельных вводов, проходивших через стену реакторного зала, что явилось следствием несоблюдения мер безопасности при герметизации вводов.
30 ноября этого же года произошла авария на Ленинградской атомной электростанции в г.Сосновый Бор. Из-за расплавления нескольких тепловыводящих элементов в одном из технологических каналов, частично разрушилась активная зона реактора первого энергоблока и произошёл выброс большого количества радиоактивных веществ. На этой же атомной электростанции в 1987г. Произошло несанкционированное увеличение мощности реактора и выброс радиоактивных веществ в окружающую среду.
На чехословацкой атомной электростанции в г.Ясловске-Богунице произошли сразу две аварии в 1976 и 1977 годах. Первая авария случилась из-за перегрузки топлива, вторая - при загрузке ядерного топлива на первом энергоблоке. После этих аварий электростанция была закрыта.
В результате сбоев в работе оборудования и ошибок операторов на втором энергоблоке атомной электростанции Three Vile Island в г.Харрисбург в США произошла крупнейшая авария. Произошло расплавление 53 процентов активной зоны реактора и в атмосферу попали радиоактивные газы - ксенон и йод. В протекающую рядом реку было сброшено 185 кубометров слаборадиоактивной воды, были эвакуированы 200 тысяч человек из близлежащих районов. На атомной электростанции TVA Sequoyah произошла утечка 40 тыс. литров радиоактивных материалов.
В 1981 года при аварии на электростанции Tsugura в Японии разные дозы радиации получили 56 рабочих, ещё 278 работников атомной электростанции получили повышенное радиоактивное облучение при аварийно-восстановительных работах. Пострадали люди при повреждении контейнера с радиоактивными веществами на электростанции Kerr - McGee в США.
Но, наверное, самая страшная авария произошла на атомной электростанции в Чернобыле. В результате двух мощных взрывов на четвёртом блоке атомной электростанции разрушились часть реакторного блока и машинного зала.
Трагедия случилась 26 апреля 1986 года. В окружающую среду было выброшено около 190 тонн радиоактивных веществ. Разные дозы радиоактивного заражения получили десятки тысяч человек, многие из которых впоследствии стали инвалидами, сразу погибли 28 человек (пожарные и работники станции), более 400 тысяч человек были эвакуированы из зоны заражения. Огромные территории (более 160 тыс. квадратных километров) были подвергнуты сильному радиоактивному заражению.
Считается, что эта авария самая масштабная в истории развития ядерной энергетики. Помимо гибели людей и загрязнения окружающей среды страна потеряла крупнейшую энергостанцию. На тот момент она действительно была крупнейшей в СССР. В результате возник энергетический кризис, который долгое время не могли решить.
Ещё две аварии на Чернобыльской атомной электростанции произошли в этом же году - пожар на аварийном четвёртом блоке и сход с рельсов спецвагона с отработанным ядерным топливом. [8]
Авария на АЭС Фукусима-1 -- крупная радиационная авария (по заявлению японских официальных лиц -- 7-го уровня по шкале INES), произошедшая 11 марта 2011 года в результате сильнейшего в истории Японии землетрясения и последовавшего за ним цунами. Землетрясение и удар цунами вывели из строя внешние средства электроснабжения и резервные дизельные генераторы, что явилось причиной неработоспособности всех систем нормального и аварийного охлаждения и привело к расплавлению активной зоны реакторов на энергоблоках 1, 2 и 3 в первые дни развития аварии.
Эффекты воздействия радиации на человека обычно делятся на две категории (Табл. 9):
1) Соматические (телесные) - возникающие в организме человека, который подвергался облучению.
2) Генетические - связанные с повреждением генетического аппарата и проявляющиеся в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки человека, подвергшегося облучению.
Различают пороговые (детерминированные) и стохастические эффекты. Первые возникают когда число клеток, погибших в результате облучения, потерявших способность воспроизводства или нормального функционирования, достигает критического значения, при котором заметно нарушаются функции пораженных органов. Зависимость тяжести нарушения от величины дозы облучения показана в таблице 10.
Хроническое облучение слабее действует на живой организм по сравнению с однократным облучением в той же дозе, что связано с постоянно идущими процессами восстановления радиационных повреждений. Считается, что примерно 90% радиационных повреждений восстанавливается.
Стохастические (вероятностные) эффекты, такие как злокачественные новообразования, генетические нарушения, могут возникать при любых дозах облучения. С увеличением дозы повышается не тяжесть этих эффектов, а вероятность (риск) их появления. Для количественной оценки частоты возможных стохастических эффектов принята консервативная гипотеза о линейной беспороговой зависимости вероятности отдаленных последствий от дозы облучения с коэффициентом риска около 7 *10-2 /Зв.
Радионуклиды накапливаются в органах неравномерно. В процессе обмена веществ в организме человека они замещают атомы стабильных элементов в различных структурах клеток, биологически активных соединениях, что приводит к высоким локальным дозам. При распаде радионуклида образуются изотопы химических элементов, принадлежащие соседним группам периодической системы, что может привести к разрыву химических связей и перестройке молекул. Эффект радиационного воздействия может проявиться совсем не в том месте, которое подвергалось облучению. Превышение дозы радиации может привести к угнетению иммунной системы организма и сделать его восприимчивым к различным заболеваниям. При облучении повышается также вероятность появления злокачественных опухолей.
Организм при поступлении продуктов ядерного деления подвергает
Радиоактивное излучение реферат. Безопасность жизнедеятельности и охрана труда.
Контрольная работа: Новые индустриальные страны в мировом хозяйстве
Реферат: Барзани, Мустафа
Составить Сочинение Про Твои Впечатления По Дубровскому
Сочинение По Картине Васнецова Аленушка 5 Класс
Сочинение: Смысл названия повести Куприна «Поединок»
Курсовая работа по теме Расчет одноступенчатого цилиндрического редуктора в приводе к мешалке
Реферат: Бухгалтерский учёт финансовых вложений на предприятиях различных форм собственности 2
О Георгии Евгеньевич Львове Краткий Реферат
Курсовая работа по теме Анализ калькулирования себестоимости продукции
Реферат: Концепция духовно-нравственного воспитания российских школьников Москва
Эссе Русская Правда
Реферат по теме Икона: основные правила построения и восприятия
Реферат по теме Юридическая ответственность. Понятие и виды
Сочинение Об Охране Природы 1 Класс
Сочинение По Картине Мальчишки
Сайт Докладов И Рефератов
Сочинение По Картине Т Яблонской Утро Кратко
Чудеса Современной Медицины Эссе Описание
Дипломная работа по теме Особенности перевода специфической военной лексики c английского языка на русский (на примере полевого устава американской армии)
Темы Диссертаций По Педагогике Для Аспирантов
Прогнозирование и обеспечение защиты от чрезвычайных ситуаций техногенного характера на объектах АПК - Безопасность жизнедеятельности и охрана труда контрольная работа
Правила уникнення електронебезпеки - Безопасность жизнедеятельности и охрана труда реферат
Проектирование системы безопасности объекта торговли - Безопасность жизнедеятельности и охрана труда курсовая работа


Report Page