Ptj 007

Ptj 007




🛑 ALL INFORMATION CLICK HERE 👈🏻👈🏻👈🏻

































Ptj 007


发表于 2020-10-29 12:18:08
|
只看该作者

| 倒序浏览
| 阅读模式

之前有个坛友弄了个在线的,看了两眼觉得眼熟想起来自己好像有库存,发上来给大家吧,一起的有个003个头不大,一起传了。
预览图片PTJ-07 链接: https://pan.baidu.com/s/1WGdgP7pUrtTvTLp8PCbDDQ




PTJ-03 链接 : https://pan.baidu.com/s/1-lgYxIdAkyaSe9rvNlQlFA


发表于 2020-10-31 17:36:58
来自手机
|
只看该作者



 楼主 |
发表于 2020-11-2 09:25:35
|
只看该作者



 楼主 |
发表于 2020-11-7 09:32:59
|
只看该作者


GMT+8, 2022-5-23 01:43
, Processed in 0.125240 second(s), 20 queries
.


Powered by Discuz! X3.4 Designed by Tsmini



首页
网盘分类
分享达人
奇番网 奇下载字幕



当前位置: Girls Live Show > 作品列表 > PTJ-010


片长:244分钟  出版日期:2013-08-19

发行商: ドグマ




美人鱼


澳门风云3


西游记之孙悟空三打白骨精


功夫熊猫3


国产


三打白骨精


heyzo


avi等多个文件


寻龙诀


唐人街探案


太子妃升职记





Copyright 2022 稀奇搜索 版权所有 网站收录 | 法律声明 联系我们 





Dashboard
Publications
Account settings
Log out







Journal List



Front Neurosci



v.11; 2017



PMC5517482






Published online 2017 Jul 20. doi: 10.3389/fnins.2017.00400
1 Research Institute of Translational Medicine, Pirogov Russian National Research Medical University,
Moscow, Russia
2 Laboratory of Mathematical Neurobiology of Learning of Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences,
Moscow, Russia
3 Department of Neurorehabilitation and Physiotherapy of Research Center of Neurology, Russian Academy of Medical Sciences,
Moscow, Russia
4 Department of Neurology, Vladimirsky Moscow Regional Research Clinical Institute,
Moscow, Russia
5 Medical Faculty, Pirogov Russian National Research Medical University,
Moscow, Russia
6 Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University,
Moscow, Russia
Edited by: Mikhail Lebedev, Duke University, United States
Reviewed by: Christoph Guger, Guger Technologies OEG, g.tec medical engineering GmbH, g.tec neurotechnology USA Inc., Austria; Surjo R. Soekadar, University Hospital of Tübingen, Germany; Marc A. Maier, Paris Diderot University, France
*Correspondence: Olesya Mokienko ur.xednay@dm.ayseL
This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience
Received 2017 Jan 9; Accepted 2017 Jun 26.
Copyright © 2017 Frolov, Mokienko, Lyukmanov, Biryukova, Kotov, Turbina, Nadareyshvily and Bushkova.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
This article has been cited by other articles in PMC.
Keywords: brain-computer interface, motor imagery, rehabilitation, stroke, paresis, exoskeleton
Ang K. K., Chua K. S., Phua K. S., Wang C., Chin Z. Y., Kuah C. W., et al.. (2015). A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke . Clin. EEG Neurosci.
46 , 310–320. 10.1177/1550059414522229 [ PubMed ] [ CrossRef ] [ Google Scholar ] Ang K. K., Guan C., Phua K. S., Wang C., Zhou L., Tang K. Y., et al.. (2014). Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke . Front. Neuroeng.
7 :30. 10.3389/fneng.2014.00030 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Biryukova E. V., Pavlova O. G., Kurganskaya M. E., Bobrov P. D., Turbina L. G., Frolov A. A., et al. (2016). Recovery of the motor function of the arm with the aid of a hand exoskeleton controlled by a brain–computer interface in a patient with an extensive brain lesion . Hum. Physiol.
42 , 19–30. 10.1134/S0362119716010035 [ CrossRef ] [ Google Scholar ] Bobrov P. D., Korshakov A. V., Roshchin V., Frolov A. A. (2012). [Bayesian classifier for brain-computer interface based on mental representation of movements] . Zh. Vyssh. Nerv. Deiat. Im. I P Pavlova
62 , 89–99. [ PubMed ] [ Google Scholar ] Bocti C., Legault V., Leblanc N., Berger L., Nasreddine Z., Beaulieu-Boire I., et al.. (2013). Vascular cognitive impairment: most useful subtests of the montreal cognitive assessment in minor stroke and transient ischemic attack . Dement. Geriatr. Cogn. Disord.
36 , 154–162. 10.1159/000351674 [ PubMed ] [ CrossRef ] [ Google Scholar ] Bohannon R. W., Smith M. B. (1987). Interrater reliability of a modified ashworth scale of muscle spasticity . Phys. Ther.
67 , 206–207. 10.1093/ptj/67.2.206 [ PubMed ] [ CrossRef ] [ Google Scholar ] Buch E. R., Modir Shanechi A., Fourkas A. D., Weber C., Birbaumer N., Cohen L. G. (2012). Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke . Brain J. Neurol.
135 ( Pt 2 ), 596–614. 10.1093/brain/awr331 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Compston A. (2010). Aids to the investigation of peripheral nerve injuries. Medical Research Council: Nerve Injuries Research Committee. His Majesty's Stationery Office: 1942; pp. 48 (iii) and 74 figures and 7 diagrams; with aids to the examination of the peripheral nervous system. By Michael O'Brien for the Guarantors of Brain. Saunders Elsevier: 2010; pp. [8] 64 and 94 figures . Brain J. Neurol.
133 , 2838–2844. 10.1093/brain/awq270 [ PubMed ] [ CrossRef ] [ Google Scholar ] Coupar F., Pollock A., Rowe P., Weir C., Langhorne P. (2012). Predictors of upper limb recovery after stroke: a systematic review and meta-analysis . Clin. Rehabil.
26 , 291–313. 10.1177/0269215511420305 [ PubMed ] [ CrossRef ] [ Google Scholar ] Doussoulin S. A., Rivas S. R., Campos S. V. (2012). [Validation of “Action Research Arm Test” (ARAT) in Chilean patients with a paretic upper limb after a stroke] . Rev. Med. Chil.
140 , 59–65. 10.4067/S0034-98872012000100008 [ PubMed ] [ CrossRef ] [ Google Scholar ] Frolov A. A., Gusek D., Bobrov P. D., Mokienko O. A., Chernikova L. A., Konovalov R. N. (2014). [Localization of brain electrical activity sources and hemodynamic activity foci during motor imagery] . Fiziol. Cheloveka
40 , 45–56. 10.1134/s0362119714030062 [ PubMed ] [ CrossRef ] [ Google Scholar ] Frolov A. A., Husek D., Biryukova E. V., Bobrov P. D., Mokienko O. A., Alexandrov A. V. (2017). Principles of motor recovery in post-stroke patients using hand exoskeleton controlled by the brain-computer interface based on motor imagery . Neural Netw. World
27 , 107–137. 10.14311/NNW.2017.27.006 [ CrossRef ] [ Google Scholar ] Frolov A., Husek D., Bobrov P. (2011). Comparison of four classification methods for brain computer interface . Neural Netw. World
21 , 101–111. 10.14311/NNW.2011.21.007 [ CrossRef ] [ Google Scholar ] Frolov A., Húsek D., Bobrov P., Korshakov A., Chernikova L., Konovalov R., et al. (2012). Sources of EEG activity most relevant to performance of brain-computer interface based on motor imagery . Neural Netw. World
22 , 21
10.14311/NNW.2012.22.002 [ CrossRef ] [ Google Scholar ] Grosse-Wentrup M., Mattia D., Oweiss K. (2011). Using brain-computer interfaces to induce neural plasticity and restore function . J. Neural Eng.
8 :025004. 10.1088/1741-2560/8/2/025004 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Hatem S. M., Saussez G., Della Faille M., Prist V., Zhang X., Dispa D., et al.. (2016). Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery . Front. Hum. Neurosci.
10 :442. 10.3389/fnhum.2016.00442 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Jackson P. L., Lafleur A. F., Malouin F., Richards C., Doyon J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation . Arch. Phys. Med. Rehab.
82 , 1133–1141. 10.1053/apmr.2001.24286 [ PubMed ] [ CrossRef ] [ Google Scholar ] Kotov S. V., Turbina L. G., Bobrov P. D., Frolov A. A., Pavlova O. G., Kurganskaia M. E., et al. (2016). Rehabilitation of stroke patients with a bioengineered “Brain–computer interface with exoskeleton” system . Neurosci. Behav. Physiol.
46 , 518–522. 10.1007/s11055-016-0270-5 [ CrossRef ] [ Google Scholar ] Lang C. E., Edwards D. F., Birkenmeier R. L., Dromerick A. W. (2008). Estimating minimal clinically important differences of upper-extremity measures early after stroke . Arch. Phys. Med. Rehabil.
89 , 1693–1700. 10.1016/j.apmr.2008.02.022 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Langhorne P., Bernhardt J., Kwakkel G. (2011). Stroke rehabilitation . Lancet
377 , 1693–1702. 10.1016/S0140-6736(11)60325-5 [ PubMed ] [ CrossRef ] [ Google Scholar ] Maciejasz P., Eschweiler J., Gerlach-Hahn K., Jansen-Troy A., Leonhardt S. (2014). A survey on robotic devices for upper limb rehabilitation . J. Neuroeng. Rehabil.
11 :3. 10.1186/1743-0003-11-3 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Mokienko O. A., Chernikova L. A., Frolov A. A., Bobrov P. D. (2013a). Motor imagery and its practical application . Zh. Vyssh. Nerv. Deiat. Im. I P Pavlova
63 , 195–204. [ PubMed ] [ Google Scholar ] Mokienko O. A., Chervyakov A. V., Kulikova S. N., Bobrov P. D., Chernikova L. A., Frolov A. A., et al.. (2013b). Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects . Front. Comput. Neurosci.
7 :168. 10.3389/fncom.2013.00168 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Mokienko O. A., Lyukmanov R. K., Chernikova L. A., Suponeva N. A., Piradov M. A., Frolov A. A. (2016). Brain–computer interface: the first experience of clinical use in Russia . Hum. Physiol.
42 , 31–39. 10.1134/S0362119716010126 [ PubMed ] [ CrossRef ] [ Google Scholar ] Nicolas-Alonso L. F., Gomez-Gil J. (2012). Brain computer interfaces, a review . Sensors
12 , 1211–1279. 10.3390/s120201211 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory . Neuropsychologia
9 , 97–113. 10.1016/0028-3932(71)90067-4 [ PubMed ] [ CrossRef ] [ Google Scholar ] Ono T., Shindo K., Kawashima K., Ota N., Ito M., Ota T., et al.. (2014). Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke . Front. Neuroeng.
7 :19. 10.3389/fneng.2014.00019 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Page S. J., Hade E., Persch A. (2015). Psychometrics of the wrist stability and hand mobility subscales of the Fugl-Meyer assessment in moderately impaired stroke . Phys. Ther.
95 , 103–108. 10.2522/ptj.20130235 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Page S. J., Levine P., Sisto S. A., Johnston M. V. (2001). Mental practice combined with physical practice for upper-limb motor deficit in subacute stroke . Phys. Ther.
81 , 1455–1462. 10.1093/ptj/81.8.1455 [ PubMed ] [ CrossRef ] [ Google Scholar ] Pfurtscheller G., Aranibar A. (1979). Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement . Electroencephalogr. Clin. Neurophysiol.
46 , 138–146. 10.1016/0013-4694(79)90063-4 [ PubMed ] [ CrossRef ] [ Google Scholar ] Ramos-Murguialday A., Broetz D., Rea M., Laer L., Yilmaz O., Brasil F. L., et al.. (2013). Brain-machine interface in chronic stroke rehabilitation: a controlled study . Ann. Neurol.
74 , 100–108. 10.1002/ana.23879 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Sanford J., Moreland J., Swanson L. R., Stratford P. W., Gowland C. (1993). Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke . Phys. Ther.
73 , 447–454. 10.1093/ptj/73.7.447 [ PubMed ] [ CrossRef ] [ Google Scholar ] Shelton F. D., Volpe B. T., Reding M. (2001). Motor impairment as a predictor of functional recovery and guide to rehabilitation treatment after stroke . Neurorehabil. Neural Repair
15 , 229–237. 10.1177/154596830101500311 [ PubMed ] [ CrossRef ] [ Google Scholar ] Shih J. J., Krusienski D. J., Wolpaw J. R. (2012). Brain-computer interfaces in medicine . Mayo Clin. Proc.
87 , 268–279. 10.1016/j.mayocp.2011.12.008 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] Soekadar S. R., Birbaumer N., Slutzky M. W., Cohen L. G. (2015). Brain-machine interfaces in neurorehabilitation of stroke . Neurobiol. Dis.
83 , 172–179. 10.1016/j.nbd.2014.11.025 [ PubMed ] [ CrossRef ] [ Google Scholar ] Stinear C. (2010). Prediction of recovery of motor function after stroke . Lancet Neurol.
9 , 1228–1232. 10.1016/S1474-4422(10)70247-7 [ PubMed ] [ CrossRef ] [ Google Scholar ] Teo W. P., Chew E. (2014). Is motor-imagery brain-computer interface feasible in stroke rehabilitation?
PM R
6 , 723–728. 10.1016/j.pmrj.2014.01.006 [ PubMed ] [ CrossRef ] [ Google Scholar ] van der Lee J. H., Beckerman H., Lankhorst G. J., Bouter L. M. (2001a). The responsiveness of the action research arm test and the Fugl-Meyer assessment scale in chronic stroke patients . J. Rehabil. Med.
33 , 110–113. 10.1097/MRR.0b013e32834d330a [ PubMed ] [ CrossRef ] [ Google Scholar ] van der Lee J. H., De Groot V., Beckerman H., Wagenaar R. C., Lankhorst G. J., Bouter L. M. (2001b). The intra- and interrater reliability of the action research arm test: a practical test of upper extremity function in patients with stroke . Arch. Phys. Med. Rehabil.
82 , 14–19. 10.1053/apmr.2001.18668 [ PubMed ] [ CrossRef ] [ Google Scholar ] Winstein C. J., Stein J., Arena R., Bates B., Cherney L. R., Cramer S. C., et al.. (2016). Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the american heart association/american stroke association . Stroke
47 , e98–e169. 10.1161/STR.0000000000000098 [ PubMed ] [ CrossRef ] [ Google Scholar ]
Articles from Frontiers in Neuroscience are provided here courtesy of Frontiers Media SA
Page S. J., Levine P., Sisto S. A., Johnston M. V. (2001). Mental practice combined with physical practice for upper-limb motor deficit in subacute stroke . Phys. Ther.
81 , 1455–1462. 10.1093/ptj/81.8.1455 [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Jackson P. L., Lafleur A. F., Malouin F., Richards C., Doyon J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation . Arch. Phys. Med. Rehab.
82 , 1133–1141. 10.1053/apmr.2001.24286 [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Winstein C. J., Stein J., Arena R., Bates B., Cherney L. R., Cramer S. C., et al.. (2016). Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the american heart association/american stroke association . Stroke
47 , e98–e169. 10.1161/STR.0000000000000098 [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Grosse-Wentrup M., Mattia D., Oweiss K. (2011). Using brain-computer interfaces to induce neural plasticity and restore function . J. Neural Eng.
8 :025004. 10.1088/1741-2560/8/2/025004 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Shih J. J., Krusienski D. J., Wolpaw J. R. (2012). Brain-computer interfaces in medicine . Mayo Clin. Proc.
87 , 268–279. 10.1016/j.mayocp.2011.12.008 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Mokienko O. A., Chervyakov A. V., Kulikova S. N., Bobrov P. D., Chernikova L. A., Frolov A. A., et al.. (2013b). Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects . Front. Comput. Neurosci.
7 :168. 10.3389/fncom.2013.00168 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Soekadar S. R., Birbaumer N., Slutzky M. W., Cohen L. G. (2015). Brain-machine interfaces in neurorehabilitation of stroke . Neurobiol. Dis.
83 , 172–179. 10.1016/j.nbd.2014.11.025 [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Mokienko O. A., Chernikova L. A., Frolov A. A., Bobrov P. D. (2013a). Motor imagery and its practical application . Zh. Vyssh. Nerv. Deiat. Im. I P Pavlova
63 , 195–204. [ PubMed ] [ Google Scholar ] [ Ref list ]
Frolov A. A., Gusek D., Bobrov P. D., Mokienko O. A., Chernikova L. A., Konovalov R. N. (2014). [Localization of brain electrical activity sources and hemodynamic activity foci during motor imagery] . Fiziol. Cheloveka
40 , 45–56. 10.1134/s0362119714030062 [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Pfurtscheller G., Aranibar A. (1979). Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement . Electroencephalogr. Clin. Neurophysiol.
46 , 138–146. 10.1016/0013-4694(79)90063-4 [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Nicolas-Alonso L. F., Gomez-Gil J. (2012). Brain computer interfaces, a review . Sensors
12 , 1211–1279. 10.3390/s120201211 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Maciejasz P., Eschweiler J., Gerlach-Hahn K., Jansen-Troy A., Leonhardt S. (2014). A survey on robotic devices for upper limb rehabilitation . J. Neuroeng. Rehabil.
11 :3. 10.1186/1743-0003-11-3 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Ramos-Murguialday A., Broetz D., Rea M., Laer L., Yilmaz O., Brasil F. L., et al.. (2013). Brain-machine interface in chronic stroke rehabilitation: a controlled study . Ann. Neurol.
74 , 100–108. 10.1002/ana.23879 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Ang K. K., Guan C., Phua K. S., Wang C., Zhou L., Tang K. Y., et al.. (2014). Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke . Front. Neuroeng.
7 :30. 10.3389/fneng.2014.00030 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Ang K. K., Chua K. S., Phua K. S., Wang C., Chin Z. Y., Kuah C. W., et al.. (2015). A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke . Clin. EEG Neurosci.
46 , 310–320. 10.1177/1550059414522229 [ PubMed ] [ CrossRef ] [ Google Scholar ] [ Ref list ]
Ono T., Shindo K., Kawashima K., Ota N., Ito M., Ota T., et al.. (2014). Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke . Front. Neuroeng.
7 :19.
Cumming On Sleeping Girls
Japanese Deepthroat Puke
Ebony Scat Princes

Report Page