Проверка статистических гипотез, применение универсальных методов теории вероятностей и математической статистики. Курсовая работа (т). Математика.

Проверка статистических гипотез, применение универсальных методов теории вероятностей и математической статистики. Курсовая работа (т). Математика.




👉🏻👉🏻👉🏻 ВСЯ ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻



























































Вы можете узнать стоимость помощи в написании студенческой работы.


Помощь в написании работы, которую точно примут!

Похожие работы на - Проверка статистических гипотез, применение универсальных методов теории вероятностей и математической статистики

Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе


Скачать Скачать документ
Информация о работе Информация о работе

Нужна качественная работа без плагиата?

Не нашел материал для своей работы?


Поможем написать качественную работу Без плагиата!

В данной работе проведена проверка совпадений карт на равномерность.
Исследованы выборки жанров фильмов разных стран производства на предмет наличия
влияния жанра на страну производства. Проверка выборки влияние участия в группе
на тревогу перед ЕНТ.


Предложены способы применения показанных в данной работе методов на
практике.









this paper, audited matches cards uniformity. Investigated
sample different genres of films of the production for the presence of the
influence of the genre on the country of production. Verification sampling
influence participation in the group of anxiety before UNT.methods of
application shown in this paper, the methods in practice.









1.1 Проверка
статистической гипотезы


1.2 Проверка статистической гипотезы в
программе IBM SPSS Statistics


2. "Из
всех искусств для нас важнейшим является кино!"


2.1 Проверка непараметрической гипотезы с
помощью теста 𝝌2 для нескольких независимых выборок


2.2 Проверка непараметрической гипотезы с
помощью теста 𝝌2 для нескольких независимых выборок в программе IBM SPSS
Statistics


3.1 Проверка непараметрической гипотезы с
помощью теста МакНемара для двух зависимых выборок


3.2 Проверка
непараметрической гипотезы с помощью теста МакНемара для двух зависимых выборок
в программе IBM SPSS Statistics


Статистические представления являются важнейшей составляющей
интеллектуального багажа современного человека. Они нужны в повседневной жизни,
так как в нашу жизнь властно вошли выборы и референдумы, банковские кредиты и
страховые полисы, таблицы занятости и диаграммы социологических опросов, нужны
и для продолжения образования в таких областях, как социология, экономика,
право, медицина, демография и других.


Таблицы и диаграммы широко используются в справочной литературе, в
средствах массовой информации. Государственные и коммерческие структуры
регулярно собирают обширные сведения об обществе и окружающей среде. Эти данные
публикуют в виде таблиц и диаграмм.


Общество все глубже начинает изучать себя и стремится сделать прогнозы о
самом себе и о явлениях природы, которые требуют представлений о вероятности.
Каждый человек должен хорошо ориентироваться в потоке информации.


Мы должны научиться жить в вероятной ситуации. А это, значит, извлекать,
анализировать и обрабатывать информацию, принимать обоснованные решения в
разнообразных ситуациях со случайными исходами.


Актуальность проблемы в курсовой работе заключается в проверке гипотез о
поведении совпадений в результате эксперимента с картами, о влиянии страны
производителя фильма на просматриваемые жанры, и стоит ли абитуриентам вступать
в группы эмоциональной поддержки для успешной сдачи ЕНТ.


Цель работы - продемонстрировать знание, умение и навыки проверки
статистических гипотез и применения универсальных методов теории вероятностей и
математической статистики.


Для достижения цели необходимо решить следующие задачи:


1)     ознакомиться с механизмом проверки гипотезы для случая
единственной выборки;


)       ознакомиться с механизмом проверки гипотезы для случая двух
зависимых выборок;


)       ознакомиться с механизмом проверки гипотезы для случая
нескольких независимых выборок;


)       сделать обоснованные выводы относительно результатов полученных
после проверки статистических гипотез.


Объектами в данной работе будут являться карты, фильмы и абитуриенты.


Предметами в данной работе будут являться совпадения в результате
эксперимента, страна производителя фильмов, тревожность перед сдачей ЕНТ.


Методы исследования, применяемые в данной курсовой работе:


)       критерий 𝝌2, позволяющий определить, равномерно ли распределены
совпадения;


)       критерий 𝝌2, позволяющий определить, зависимость двух выборок;


)       тест МакНемара, позволяющий определить, зависимость двух
выборок.


Основные положения работы, выносимые автором на защиту: совпадения в
результате эксперимента не подчиняются нормальному и равномерному закону
распределения; страна производства фильма не влияет на просматриваемые Абаем
жанры фильмов; участие в работе группы влияет на уровень тревожности перед
сдачей ЕНТ.


Практическая значимость заключается в том, что проверяемые мною гипотезы
позволяют ознакомиться с характером совпадений, помощь в выборе фильма для
просмотра, и узнать помогают ли группы эмоциональной поддержки абитуриентам
перед ЕНТ.


Достоверность результатов работы достигается путем использования
математических методов теории вероятности и математической статистики в рамках
заданных погрешностей.


Эксперимент (от лат. experimentum - проба, опыт), также опыт, в научном методе
- метод исследования некоторого явления в управляемых условиях. Отличается от
наблюдения активным взаимодействием с изучаемым объектом.


Случайный эксперимент - математическая модель соответствующего реального
эксперимента, результат которого невозможно точно предсказать. Математическая
модель должна удовлетворять требованиям: она должна быть адекватна и адекватно
описывать эксперимент; должна быть определена совокупность множества
наблюдаемых результатов в рамках рассматриваемой математической модели при
строго определенных фиксированных начальных данных, описываемых в рамках
математической модели; должна существовать принципиальная возможность
осуществления эксперимента со случайным исходом сколь угодное количество раз
при неизменных входных данных; должно быть доказано требование или априори
принята гипотеза о стохастической устойчивости относительной частоты для любого
наблюдаемого результата, определенного в рамках математической модели.


Эксперимент - разложить карты мастей пики и крести по
порядку (поочередно названия), карты красной масти перетасовать и выложить
рядом. Событие - число совпадений названий.


Эксперименты проводились следующим образом: карты
черных мастей положили следующим образом:




♠, 6♣, 7♠, 7♣, 8♠, 8♣,
9♠, 9♣, 10♠, 10♣, В♠, В♣, Д♠, Д♣,
К♠, К♣, Т♠, Т♣.




Красные карты протусовали и выложили рядом, посчитали
совпадение названий. Например:




♠, 6♣, 7♠, 7♣, 8♠, 8♣,
9♠, 9♣, 10♠, 10♣, В♠, В♣, Д♠, Д♣,
К♠, К♣, Т♠, Т♣,


♦, 9♥, 6♦, Д♥, 9♦, К♥,
Т♦, К♥, 6♦, 10♥, 7♦, 10♥, 8♦, Т♥,
В♦, В♥, 8♦, Д♥.




Результат эксперимента - 1 совпадение. Подобным образом было проведено 40
экспериментов, результаты совпадений представлены в следующей таблице 1.









.1 Проверка статистической гипотезы




Внесем все данные в вычислительную среду IBM SPSS Statistics.SPSS
Statistics - это программное обеспечение для статистического анализа, которое
обеспечивает необходимые базовые функции для проведения анализа от начала до
конца. Его легко использовать, и оно включает в себя ряд процедур и методов,
помогающих увеличивать прибыль, обходить конкурентов, проводить исследования и
принимать лучшие решения [1].


IBM SPSS Statistics предлагает серьезные средства
статистического анализа на каждом шаге аналитического процесса таких как:


)       полноценный набор статистических процедур для
проведения точного анализа;


)       встроенные методы быстрой и легкой подготовки
данных для анализа;


)       тщательно разработанная функциональность для
отчетов, обеспечивающая высокоэффективное создание диаграмм;


)       мощные возможности визуализации, которые ясно
показывают смысл ваших результатов;


)       поддержка всех типов данных, включая очень
большие наборы данных.


Рабочая область IBM SPSS Statistics показана на
рисунке 1.




Рисунок 1. Рабочая область IBM SPSS Statistics




Приведем данные к удобному виду с помощью IBM SPSS Statistics в
соответствии с рисунком 2.









Рисунок 2. Данные эксперимента в вычислительной среде SPSS




На основании данных этого опроса в программе SPSS был проведен частотный
анализ. Результаты частотного анализа приведены на рисунке 3.




По частотному анализу в данном случае видно, что совокупность данных
мультимодальна, мода и медиана не равны, следовательно данные не подчиняются
нормальному закону распределения [2]. Проверим гипотезу на равномерный закон
распределения. Но для того, чтобы удобно было производить проверку гипотезы
необходимо чтобы закон распределения был равномерным.


Для проверки соответствия полученного закона распределения, равномерному
будем использовать одновыборочный тест 𝝌2. Существуют два типа задач решаемых
с помощью этого теста [3]. Во-первых, сравнение эмпирического распределения
качественных признаков с теоретическим. Во-вторых, сравнение между собой двух
или более эмпирических распределений качественных признаков. В нашем случае
будет использован первый тип [4].


Критерий согласия для проверки гипотезы о законе распределения
исследуемой случайной величины. Во многих практических задачах точный закон
распределения неизвестен. Поэтому выдвигается гипотеза о соответствии
имеющегося эмпирического закона, построенного по наблюдениям, некоторому
теоретическому. Данная гипотеза требует статистической проверки, по результатам
которой будет либо подтверждена, либо опровергнута [5].


Пусть X - исследуемая случайная величина. Требуется проверить гипотезу H0
о том, что данная случайная величина подчиняется закону распределения F(x). Для
этого необходимо произвести выборку из n независимых наблюдений и по ней
построить эмпирический закон распределения F'(x). Для сравнения эмпирического и
гипотетического законов используется правило, называемое критерием согласия. Одним
из популярных является критерий согласия хи-квадрат К. Пирсона [6].


В нем вычисляется статистика хи-квадрат:




где Oj - наблюдаемые, или эмпирические, значения;- ожидаемые, или
теоретические, значения;- количество категорий.


Если вычисленное значение статистики превосходит квантиль распределения 𝝌2 с k-p-1 степенями свободы для
заданного уровня значимости, то гипотеза H0 отвергается. В противном случае она
принимается на заданном уровне значимости. Здесь k - число наблюдений, p -
число оцениваемых параметров закона распределения.


Что касается вида теоретического распределения, то в нашем случае
используется равномерное распределение. Смысл его в том, что все результаты
считаются равновероятными. В наших экспериментах было шесть исходов это 0, 1,
2, 3, 4 и 5, то есть событие равно 1/6=0,667. Иными словами если бы
эмпирическое распределение результатов полностью совпало с теоретическим, то в
каждую ячейку таблицы попало бы одинаковое число событий, равное 40/6=6,667. С
учетом данного обстоятельства записывается окончательный вариант расчетной
таблицы 2 для задачи.




С учетом введенных обозначений перейдем от таблицы 2 к таблице 3.




Распределение теоретических и эмпирических частот


Существует два вида статистических гипотез параметрические и
непараметрические.


Предположение, которое касается неизвестного значения параметра
распределения, входящего в некоторое параметрическое семейство распределений,
называется параметрической гипотезой, другими словами можно сказать, если
заранее известно или можно предположить о каком распределении будет идти речь,
то такая гипотеза называется параметрической в противном случае
непараметрической. Чаще всего гипотезы основанные на большой выборке будут
параметрическими и иметь нормальный закон распределения.


Формируем нулевую и альтернативную гипотезы и зададим уровень значимости α
=0,05.


Нулевая гипотеза имеет следующую формулировку: события является равномерными.


Тогда альтернативная гипотеза : cобытия неравномерны.


Затем вычисляется сумма отклонений между наблюдаемыми и теоретическими
значениями по формуле (1).


Полученное значение 𝝌2эмпир сравнивается со значением 𝝌2критич, которое берется из
приложения А критических значений теста 𝝌2 в зависимости от выбранного уровня
значимости α и числа степеней свободы df. df зависит от размера расчетной
таблицы и равно =4.


Если значение??2эмпир меньше ??2критич, то нет оснований отвергнуть нулевую гипотезу. Это значит что нет значимых различий между эмпирическим и теоретическим распределений. Если значение𝝌2эмпир больше или равно 𝝌2критич, то нулевая гипотеза отвергается и принимается альтернативная.


Из таблицы 1приложения находим, что для df=5 и α=0,05 𝝌2критич=11,07. Поскольку 𝝌2эмпир больше, чем 𝝌2критич, то нулевая гипотеза
отклоняется и принимается альтернативная. Альтернативная гипотеза : cобытия неравномерны.









1.2 Проверка статистической гипотезы в программе IBM
SPSS Statistics




Переменная - "Событие". Далее вводится данные переменной. Часть
введенных данных показана на рисунке 4.




После в непараметрические критерии выбираем критерий хи-квадрат, далее
кнопка "ок". Результат теста 𝝌2 для единственной выборки представлен
на рисунке 5.




Кинематограф - отрасль человеческой деятельности, заключающаяся в
создании движущихся изображений. Иногда также упоминается как синематограф и
кинематография. Кинематограф был изобретен в конце XIX века и стал крайне
популярен в XX веке.


В понятие кинематографа входят киноискусство - вид современного
изобразительного искусства, произведения которого создаются при помощи
движущихся изображений, и киноиндустрия (кинопромышленность) - отрасль
экономики, производящая кинофильмы, спецэффекты для кинофильмов,
мультипликацию, и демонстрирующая эти произведения для зрителей. Произведения
киноискусства создаются при помощи кинотехники. Изучением кинематографа
занимается наука киноведение. Сами кинофильмы могут сниматься в различных
жанрах игрового и документального кино.


Кинематограф занимает значительную часть современной культуры многих
стран. Во многих странах киноиндустрия является значимой отраслью экономики.
Производство кинофильмов сосредоточено на киностудиях. Фильмы демонстрируются в
кинотеатрах, по телевидению, распространяются "на видео" в форме
видеокассет и видеодисков, а с появлением скоростного интернета стало доступным
скачивание кинофильмов в форме видеофайлов на специализированных сайтах или
посредством пиринговых сетей, а также просмотр онлайн [7].


По существу, для каждого параметрического критерия имеется, по крайней
мере, один непараметрический аналог. Эти критерии можно отнести к одной из
следующих групп:


·       критерии различия между группами (независимые выборки);


·       критерии различия между группами (зависимые выборки);


·       критерии зависимости между переменными.


Различия между независимыми группами. Обычно, когда имеются две выборки
(например, мужчины и женщины), которые вы хотите сравнить относительно среднего
значения некоторой изучаемой переменной, вы используете t-критерий для
независимых выборок. Непараметрическими альтернативами этому критерию являются:
критерий серий Вальда-Вольфовица, U-критерий Манна-Уитни и двухвыборочный
критерий Колмогорова-Смирнова. Если вы имеете несколько групп, то можете
использовать дисперсионный анализ. Его непараметрическими аналогами являются:
ранговый дисперсионный анализ Краскела-Уоллиса и медианный тест.


Различия между зависимыми группами. Если вы хотите сравнить две
переменные, относящиеся к одной и той же выборке, то обычно используется
t-критерий для зависимых выборок. Альтернативными непараметрическими тестами
являются: критерий знаков и критерий Вилкоксона парных сравнений. Если
рассматриваемые переменные по природе своей категориальны или являются
категоризованными, то подходящим будет критерий хи-квадрат Макнемара. Если
рассматривается более двух переменных, относящихся к одной и той же выборке, то
обычно используется дисперсионный анализ (ANOVA) с повторными измерениями.
Альтернативным непараметрическим методом является ранговый дисперсионный анализ
Фридмана или Q-критерий Кохрена. Q-критерий Кохрена используется также для
оценки изменений частот (долей) [8].


Зависимости между переменными. Для того, чтобы оценить зависимость
(связь) между двумя переменными, обычно вычисляют коэффициент корреляции.
Непараметрическими аналогами стандартного коэффициента корреляции Пирсона
являются статистики Спирмена R, тау-Кендалла и коэффициент Гамма. Если две
рассматриваемые переменные по природе своей категориальны, подходящими
непараметрическими критериями для тестирования зависимости будут: хи-квадрат,
фи-коэффициент, точный критерий Фишера. Дополнительно доступен критерий
зависимости между несколькими переменными так называемый коэффициент
конкордации Кендалла. Этот тест часто используется для оценки согласованности
мнений независимых экспертов (судей), в частности, баллов, выставленных одному
и тому же субъекту.


Описательные статистики. Если данные не являются нормально
распределенными, а измерения, в лучшем случае, содержат ранжированную
информацию, то вычисление обычных описательных статистик (например, среднего,
стандартного отклонения) не слишком информативно. Например, в психометрии
хорошо известно, что воспринимаемая интенсивность стимулов (например,
воспринимаемая яркость света) представляет собой логарифмическую функцию
реальной интенсивности (яркости, измеренной в объективных единицах - люксах). В
данном примере, обычная оценка среднего (сумма значений, деленная на число
стимулов) не дает верного представления о среднем значении действительной
интенсивности стимула. Модуль Непараметрическая статистика вычисляет
разнообразный набор мер положения (среднее, медиану, моду и т.д.) и рассеяния
(дисперсию, гармоническое среднее, квартильный размах и т.д.), позволяющий
представить более "полную картину" данных [9].




Абай любитель кинофильмов и ему захотелось узнать - влияет ли страна
производства фильма на просматриваемый им жанр фильма. Абай выбрал 100 фильмов
просмотренных им за последние годы.


Для начала выберем страны производства. Выберем странами производства
Россию, и иностранные страны (Европа и США). В таблице 4 представлены
количество просмотренных жанров для каждого страны производства фильмов.









В том случае, когда экспериментальные данные имеют неизвестный или
отличный от нормального закон распределения, нельзя использовать методы проверки
статистических гипотез, базирующиеся на свойствах и параметрах нормального
распределения. Еще одним важным фактором, обеспечивающим надежную проверку
статистических гипотез, является размер выборки. В данном случае размер выборки
небольшой и закон распределения неизвестен, следовательно, будут использоваться
непараметрические методы проверки гипотез [10].


Непараметрических методов проверки гипотез очень много, но не каждый
может подойти к данному случаю. Тест хи-квадрат является универсальным тестам
для данных, выраженных в шкале наименований представленных в виде таблицы
размеров (k×r), где k - число столбцов в ней, а r - число сток. Для
корректного использования теста хи-квадрат достаточная по объему выборка. Если
более 20% ожидаемых частот имеют значение меньше 5 или если хотя бы одна из
ожидаемых частот имеет значение меньше 1, применять тест хи-квадрат нельзя
[11]. В данном случае это тест рассматривается в самом общем виде, когда число
выборок произвольно. Общий вид таблицы показан на рисунке 6.









Значение хи-квадрат вычисляется по формуле:




где Oij - наблюдаемые, или эмпирические значения;- ожидаемые, или
теоретически, значения;рассчитывается по формуле:




·       выберем уровень значимости α =0,05;


·       Н0: независимо от страны выпуска фильма просматриваемые жанры
фильмов были одинаковы;


·       Н1: от страны выпуска фильма зависит просматриваемые жанры фильмов.


Определим по приведенной выше формуле значения ожидаемых частот Eij, а
затем вычислим значение 52.


Ожидаемые частоты Eij, представлены в таблице 5.







Находим степень свободы df=(k-1)(r-1)=(5-1)(2-1)=4.


В таблице 1 приложения находим критическое значение 𝝌2критич для уровня значимости α=0,05 и степеней свободы df=4 𝝌2критич=9,49. Поскольку 𝝌2эмпир(1,932)<𝝌2критич(9,49) нет оснований отвергнуть
нулевую гипотезу. Независимо от страны выпуска фильма просматриваемые жанры
фильмов были одинаковы.




Создадим переменную "Жанр", и еще одну переменную "Страна
производства", и поместим в переменные данные как показано на рисунке 7.









После чего в меню анализ выберем таблицы сопряженности. Перенесем
переменные жанр и Страна производства в строки и колонки соответственно. В меню
"Статистики" ставим галочку на значении Хи-квадрат и получаем
решение. Результат вычисления критерия 52 показан на рисунке 8.




Рисунок 8. Результат вычисления критерия 52









Тревога - отрицательно окрашенная эмоция, выражающая ощущение
неопределенности, ожидание негативных событий, трудноопределимые предчувствия.
В отличие от причин страха, причины тревоги обычно не осознаются, но она
предотвращает участие человека в потенциально вредном поведении, или побуждает
его к действиям по повышению вероятности благополучного исхода событий. Тревога
представляет собой расплывчатый, длительный и смутный страх по поводу будущих
событий.


Единое Национальное Тестирование (ЕНТ) - система оценки знаний
выпускников, применяемая в Республике Казахстан. От количества баллов,
получаемых учеником на ЕНТ, зависят оценки итогового аттестата зрелости, а
также возможность поступления в ВУЗы республики. Баллы ЕНТ также имеют значение
при присуждении Президентской стипендии "Болашак".


Аналогом ЕНТ для выпускников школ прошлых лет, выпускников колледжей и
некоторых других групп абитуриентов выступает Комплексное Тестирование (КТ).


ЕНТ проходит в один этап и оценивается по 125-балльной шкале. Ученики в
один день сдают пять предметов: математика, история Казахстана, русский язык,
казахский язык, и предмет по выбору (история мира, иностранный язык, биология,
география, химия, физика, литература) по 25 заданий на каждый. На проведение
ЕНТ отводится 3,5 часа, то есть 210 минут. Минимальный проходной балл для
поступающих в ВУЗы в 2014 году был 50 из 125 (ежегодно этот балл меняется), так
как русский язык для казахских школ и казахский язык для русских школ не
учитывается во время конкурса грантов.


ЕНТ является также серьезным психологическим испытанием [14].


Рустаму через неделю предстоит сдавать ЕНТ. Он хочет поступить в ВУЗ и
очень тревожится, что плохо сдаст ЕНТ. Его пригласили в группу по эмоциональной
подготовки к ЕНТ. Рустам склонен на участие, но он не уверен, сможет ли участие
в группе снизить его тревогу. Он решил пообщаться с людьми, у которых был опыт
участия в подобных группах. Расспросив 35 людей, Рустам получил следующие результаты:


)       из 20 людей, которые до начала участия в группе имели повышенный
уровень тревожности, 6 человек сказали, что группа им не помогла. 14 человек
сказали, что их тревога значительно снизилась;


)       из 15 человек, которые не имели проблем с тревожностью, 4
человека сказали, что после участие в группе их тревожность повысилась,
остальные 11 человек не заметили каких-либо изменений.


Можно ли на основании полученных данных утверждать, что участи в работе
группы влияет на тревожность?




Тест МакНемара применяется исключительно при наличии дихотомических
переменных. При этом для двух зависимых переменных выясняется, происходят ли
какие-либо изменения в структуре распределения их значений. В большинстве
наблюдений сравнение проводится с учетом временного фактора по схеме "до -
после" [15].


Представим результаты "до и после" в виде таблицы 2×2 как показано на рисунке 9.




Рисунок 9. Тревожность до и после участия в группе




Где "+" - высокий уровень тревожности, "-" - низкий
или нормальный уровень тревожности. Индикаторы изменений являются A и D,
значения B и C отсутствие изменений.


Выберем уровень значимости α =0,05 и сформируем гипотезы.


Н0: участие в работе группы не влияет на уровень тревожности перед сдачей
ЕНТ.


Н1: участие в работе группы влияет на уровень тревожности перед сдачей
ЕНТ.


Построим таблицу 6 для полученных Рустамом данных.




Значения тревожности до и после участия в работе группы


Имеются две альтернативы для возможных изменений: высокая тревожность
после участия в группе понизится, низкая тревожность после участия в группе
повысится. Обе альтернативы равновероятны (то есть p=q=0,5), в пользу одной из
них получено А результатов, в пользу другой - D результатов.


Необходимо определить вероятность получения такого результата.
=14, B=6, C=11, D=4, k=min(14,4)=4.


Подставим в формулу Бернулли необходимые значения.









С учетом того, что альтернативная гипотеза была сформулирована для
двусторонней критической области, удваиваем полученное значение вероятности
p=0,031.


Поскольку полученное значение вероятности меньше выбранного уровня значимости,
нулевая гипотеза отвергается и принимается альтернативная. На уровне значимости
α
=0,05 можно считать, что
участие в группе влияет на уровень тревожности перед сдачей ЕНТ.


Рустам так и не выяснил, в какую сторону изменилась тревожность. Тогда он
сформулировал другую альтернативную гипотезу.


Н1: участие в работе группы снижает уровень тревожности перед сдачей ЕНТ.


По полученным ранее данным снова отвергаем нулевую гипотезу и принимаем
альтернативную. Участие в работе группы снижает уровень тревожности перед
сдачей ЕНТ.


В случае когда (A+D)>10, можно воспользоваться мене точной, но более
удобной формулой, по которой вычисляется эмпирический показатель:




Полученное по этой формуле значение 52эмпир сравнивается с 52критич.
Поскольку в тесте МакНемара всегда используются таблицы 2×2, число степеней свободы будет равно
df=1.


Подставим в расчетную формулу 𝝌2 необходимые значения:







В таблице 1 приложения находим 52критич для df=1 и α=0,05:
52критич=3,84.


Поскольку 52эмпир (5,56)>52критич (3,84) нулевая гипотеза отвергается
и принимается альтернативная. Участие в работе группы снижает уровень
тревожности перед сдачей ЕНТ.




.2 Проверка непараметрической гипотезы с помощью теста МакНемара для двух
зависимых выборок в программе IBM SPSS Statistics




Создаем 2 переменные: "до" и "после". В переменные
перенесем данные о тревожности, где 0 - низкая тревожность, 1 - высокая
тревожность согласно рисунку 10.




Далее в непараметрические критерии выбираем для двух связных выборок.
Предварительно поставив галочку на Критерий МакНемана, жмется кнопка
"ок".


Результат теста представлен на рисунке 11.









Рисунок 11. Результат теста МакНемара




Поскольку полученное значение вероятности меньше выбранного уровня
значимости (p=0,031<α=0,05), нулевая гипотеза отвергается и
принимается альтернативная. На уровне значимости α =0,05 можно считать, что участие в группе
влияет на уровень тревожности перед сдачей ЕНТ.









выборка совпадение статистический гипотеза


По итогам данной курсовой работы было установлено, что, согласно критерию
52, совпадения карт не подчиняются равномерному с необходимым уровнем
значимости . Проведенные эксперименты показывают, что совпадения не
равномерны, и в полнее можно предположить, что совпадения карт могут носить
случайный характер. Большое число совпадений в результате эксперимента не
появлялось. Эксперимент показывает в играх, где число совпадений влияет на
победу, то чаще всего будет выпадать малое число совпадений. Так как совпадения
не равномерны, у каждого из игроков одинаковые шансы на победу.


Касательно сравнения фильмов разных стран производства, при помощи
критерия 52 для двух независимых выборок было установлено, что страна
производства не влияет на просматриваемые Абаем жанры фильмов, при уровне
значимости . Можно предположить что, Абаю нравится просматривать фильмы
определенного жанра чаще, чем других жанров.


Последняя нулевая гипотеза предполагала что, участие в группе не влияло
на уровень тревожности. Тест МакНемара показал что, закономерности все такие есть,
значит, участие в группе все-таки влияет на уровень тревожности.









1.     Покер,
#"815998.files/image026.gif">



Похожие работы на - Проверка статистических гипотез, применение универсальных методов теории вероятностей и математической статистики Курсовая работа (т). Математика.
Реферат На Тему Жизнь И Творчество Достоевского
Темы Эссе Для 11
Реферат по теме История и охрана деревьев Крыма
Курсовая работа по теме Хроматографические методы анализа и их использование в анализе объектов окружающей природной среды
Математика 6 Класс Контрольные Работы 1
Сочинение Про Женщину
Курсовая Роль Ребенка В Семье
Сочинение Станционный Смотритель Вступление
Курсовая работа по теме Анализ финансово-хозяйственного состояния ОАО "Воронежэнергоремонт"
Контрольная работа: Контрольная работа по Бухгалтерскому делу
Реферат: Статира
Реферат: Разделение властей. Скачать бесплатно и без регистрации
Реферат На Тему Тактические Приёмы В Стратегии Отказа
Дипломная работа по теме Ответственность за хищения в форме мошенничества
Курсовая работа по теме Технічний захист інформації
Контрольная работа по теме Финансовые ресурсы предприятия. Стоимость денег
Реферат: Грипп: новые методы профилактики и лечения
Анализ Баланса Предприятия Курсовая
Рефераты По Физкультуре 8 Класс Темы
Курсовая работа по теме Информационная система финансового управления предприятием
Реферат: Xvii iнаучно-практическая конференция учащихся «Шаг в будущее» Муниципальное образовательное учреждение «Гимназия №33»
Реферат: Услуга "встречи-проводы"
Реферат: Ritalin Essay Research Paper RitalinThe Babysitter of

Report Page