Прооксидантная и антиоксидантная система - Химия курсовая работа

Прооксидантная и антиоксидантная система - Химия курсовая работа




































Главная

Химия
Прооксидантная и антиоксидантная система

Активные формы, функции и механизмы возникновения кислорода. Типы окислительных реакций. Антиоксидантная система организма, факторы клеточной защиты. Антиоксидантные ферменты крови. Виды свободных радикалов. Процессы перекисного окисления липидов.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ
Прооксидантная и антиоксидантная система
3.3 OH (гидроксил, гидроксид - радикалы)
6. Антиоксидантная система организма, факторы клеточной защиты
6.1.4 Антиоксидантные ферменты крови
6.2.1 Жирорастворимые антиоксиданты
6.2.2 Водорастворимые антиоксиданты
Основной и почти единственный источник энергии в органическом мире наше планеты - свободная энергия Солнца, которая усваивается хлоропластами зеленых растений, расходуется на разделение водорода и кислорода в молекулах воды и в конечном счете на синтез органических соединений разной степени сложности. Эта же энергия заключена в химических связях сложных органических соединений в клетках животных и человека. Она частично освобождается в процессе окисления молекулярным кислородом - клеточного дыхания. За счет результате этого процесса, обратного по своей направленности фотосинтезу, полностью удовлетворяет энергетические потребности организма - обеспечивается поддержание, работа сократительных белков, активный транспорт белков через мембраны, все биосинтетические процессы. [2]
Мы не можем представить свою жизнь без кислорода. До появления фотосинтезирующих организмов атмосфера практически его не содержала. С их появлением кислород стал побочным продуктом их жизнедеятельности, который способствовал переходу к окислительной атмосфере и развитию аэробных организмов.
Однако вместе с преимуществом кислород принес новую опасность для организма. Молекулярный кислород, который обладает высокой реакционной способностью в основном состоянии, способен образовывать высокоактивные формы, способные наносить вред организму разрушая клеточные мембраны, снижая их прочность, вызывая набухание и разрушение митохондрий, вызывать структурно-функциональные нарушения ферментных систем дыхания.
В последние 10-15 лет проблема патогенеза заболеваний сердца, а также ряда других органов обогатилась раскрытием механизма повреждения клеточных структур. Основным фактором повреждения оказался кислород - тот самый кислород, из-за недостатка которого возникает гибель клеток. Выяснилось, что так называемые активные формы кислорода (АФК), имеющие неспаренный электрон, обладают биологическим эффектом, который в зависимости от концентрации АФК может быть регуляторным или токсическим. Соответственно пробудился интерес и к соединениям, которые в обычных условиях предотвращают токсическое действие АФК - антиоксидантам. Окислительный стресс играет важную, если не ключевую роль в патогенезе старения и широкого спектра сердечно-сосудистых заболеваний, в том числе кардиомиопатии, атеросклероза, ИБС, клапанных поражений и застойной сердечной недостаточности. В дальнейшем обзоре будут рассмотрены механизмы возникновения АФК, механизмы действия, функции и основные способы защиты организма.
Активные формы кислорода химически очень агрессивны: они повреждают белки и ДНК и, главное, вызывают перекисное окисление липидов - самоподдерживающийся процесс, ведущий к тяжелому повреждению мембран.
К активным формам кислорода относятся супероксид (O 2 ), синглетный кислород, Н 2 О 2 и радикал гидроксила (ОН). В организме человека и животных первичным АФК служит супероксид, возникающий при одноэлектронном восстановлении молекулярного кислорода. Супероксид превращается в Н 2 О 2 под действием супероксиддисмугазы, а Н 2 О 2 неферментативно дает ОН' в присутствии ионов Fe 2 + или Сu+. ОН' - сильнейший окислитель (редокс-потенциал около +1,35 В), способный разрушить практически любое органическое вещество биологического происхождения. Одноэлектронное восстановление кислорода в принципе возможно за счет окисления веществ с редокс-потенциалом ниже или равным -0,15 В (редокс-потенциал пероксид). Эволюцией были отобраны соединения имеющие высокий кинетический барьер реакции с О 2 . Исключение составляют весьма реакционноспособные коферменты и простетические группы ферментов, действующие в начале и середине дыхательной цепи, в частности семихинон кофермента Q (CoQH). Будучи одноэлектронным переносчиком, CoQH, иногда, по-видимому, ошибается и передает электрон не своему естественному окислителю (цитохрому b1), а молекулярному кислороду.
Активные формы кислорода могут образовываться как в результате процесса "разобщения" на цитохроме Р-450, так и при окислении некоторых эндогенных субстратов. Функций активных форм кислорода, образующихся в процессе промоции канцерогенеза, несколько:
- блокирование межклеточных коммуникаций, препятствующее апоптозу,
- освобождение из ферритина ионов железа, катализирующих образование гидроксирадикалов,
- высвобождение свободной арахидоновой кислоты из мембраны с последующим ее метаболизмом на цитохроме Р-450 с образованием высокоактивных метаболитов.
Имеющаяся информация указывает на то, что митогенный эффект и блокирование межклеточных коммуникаций при действии активных форм кислорода реализуется через общее звено посредством активации продукта гена c-src. Однако вопрос, каким образом происходит этот процесс активации, остается открытым [1]
Перенос электронов являющийся сущностью окислительно-восстановительных реакций, может происходить различными путями. Различают три основных типа.
- Реакции дегидрирования протекают без непосредственного участия кислорода. Перенос электронов в них осуществляется одновременно с переносом протонов, т.е. атомов водорода. Ферменты, осуществляющие реакцию дегидрирования, называются дегидрогеназы, различаются между собой по типу субстратов. Кофакторы дегидрогеназ - пиридин и флавиннуклеотиды.
- Реакция оксигеназного окисления осуществляется путем переноса электронов непосредственно на молекулу кислорода, прямого востановления последнего с участием ферментов оксидаз, активирующих водород. Кофакторы и простетические группы оксидаз - флавинадениннуклеотид, Fe 2 +, Cu 2 +, Mo 2 +. Различают три вида оксидаз переносящих на кислород один, два или четыре электрона: а) тксантин оксидаза переносит один электрон с образованием супероксида О 2 ; б) ксидазы аминокислот переносят два электрона и образуют перииксьводорода Н 2 О 2 ; в) наконец четыре электрона транспортируют на О 2 цитохромоксидаза и аскорбатоксилаза. При этом образуется вода.
- Реакции оксигеназного окисления представляют собой прямое внедрение одного или двух атомов кислорода в окисляемый субстрат. Реализуют этот процесс ферменты оксигеназы, активирующие кислород перед его внедрением в субстрат. Кофакторы реакции - НАД?Н, НАДФ?Н, тетрагидроптерин, восстановленные флавины. Различают монооксигеназы переносящие один атом водорода, и ди оксигеназы, внедряющие в субстрат два атома кислород.
В микросомах (шероховатом эндоплазматическом ретикулуе) гепатоцитов локализована особая электронно-транспортная цепь состоящая из ферментов свободного окисления. Она осуществляет превращение разнообразных ксенобиотиков и ряда метаболитов в полярные нетоксичные продукты, проявляющие гидрофильность, растворимость и в дальнейшем экскретируемые почками. Важнейшую роль метаболизации ксенобиотикови метаболитов играет реакция гидроксилирования, осуществляемая монооксигеназами. Входящими в микросомальный ферментный комплекс.
Микросомальный ферментный комплекс гепатоцитов в присутствии НАДФ?Н и кислорода гидроксилирует ароматические гидрофобные соединения (бензол, хлорбензол, анилин и т.п.) превращая их в соответствующие растворимые и малотоксичныефенолы. В окислении полиядерных ароматических соединений участвует гидроксилаза ароматических углеводов (ГАУ), идентифицированная как циохром Р-488. При взаимодействии монооксигеназ с субсирактами происходит не только гидроксилирование, но и образование эпоксидов, дигродилов. Как правило, под влияниемпеченочных мононуклеаз токсичность субстрата резко у меньшается в результате гидроксилирования. Однако существует опасность возникновения и весьма токсичных канцерогенов.
В процессе оксидазного и особенно оксигеназного окисления возникают высокореактивные медиаты радикалной природы. Эти радикальные продукты могут выступать в качестве активаторов образования АФК. [2]
Свободные радикалы - это молекулярные частицы, имеющие непарный электрон на внешней электронной оболочке и обладающие высокой реакционной способностью. Основные радикалы, образующиеся в клетках - это радикалы кислорода (супероксид и гидроксильный радикал), монооксид азкатализаторовота, радикалы ненасыщенных жирных кислот, радикалы, образующиеся в окислительно-восстановительных реакциях (например, убихинол). Радикалы образуются также при действии ультрафиолетовых лучей и в ходе метаболизма некоторых чужеродных соединений (ксенобиотиков). Основные виды радикалов образующихся в нашем организме приведены в таблице 1. [1]
В случае нарушения метаболизма АФК при разных патологических условиях и не контролированном увеличенном образовании свободных радикалов в организме, при так называемом оксидативном стрессе, происходит усиление процессов пероксидации липидов (ПОЛ), последствием чего является нарушение свойств биологических мембран и функционирования клеток. В норме процессы ПОЛ четко контролируются антиоксидантами системы организма, поэтому их интенсивность незначительна.
Процессы перекисного окисления липидов являются важной причиной накопления клеточных дефектов. Основным субстратом ПОЛ являются полиненасыщенные цепи жирных кислот (ПНЖК), входящих в состав клеточных мембран, а также липопротеинов. Их атака кислородными радикалами приводит к образованию гидрофобных радикалов, взаимодействующих друг с другом. [17]
Вначале окисления происходит атака сопряженных двойных связей ненасыщенных жирных кислот со стороны НО* и НО2*, что приводит к появлению липидных радикалов:
кислород антиоксидантный фермент окисление
Липидный радикал может реагировать с О 2 с образованием пероксильного радикала, который, в свою очередь, взаимодействует с новыми молекулами ненасыщенных жирных кислот и приводит к появлению липидных пероксидов, которые достаточно стабильны при температуре тела:
Скорость этих реакций зависит от активности антиоксидантной системы клетки. При взаимодействии с комплексами железа гидроперекиси липидов превращаются в активные радикалы, продолжающие цепь окисления липидов:
LOOH + Fe 2 + -> Fe(III) + OH- + LO*
Образующиеся липидные радикалы, а также малоновый диальдегид и диеновые конъюгаты, могут атаковать молекулы белков и нуклеиновых кислот. Альдегидные группы этих соединений образуют межмолекулярные сшивки, что сопровождается нарушением структуры макромолекул и дезорганизует их функционирование. Окисление липидов приводит к нарушению нормальной упаковки мембранного бислоя, что может вызвать повреждение и мембраносвязанных белков. Так, например, ПОЛ может приводить к инактивации мембранных рецепторов, а также таких ферментов, как глюкозо- 6-фосфатаза и Na/K-АТФаза, принимающая непосредственное участие в поддержании ионного гомеостаза клетки. В митохондриях могут повреждаться как ферменты матрикса, так и компоненты дыхательной цепи. Поврежденные мембраны утрачивают энергетический потенциал, электровозбудимую функцию, контроль за ионными потоками и медиаторными системами, возникают патологические (воспалительные, нейродегенеративные, злокачественные) изменения в тканях, что, в конце концов, приводит организм к гибели. Пероксинитрит, индуцирует процессы ПОЛ в мембранах и липопротеинах сыворотки крови, что усиливает их захват макрофагами и лежит в основе атерогенеза.
Химические соединения и физические воздействия, влияющие на скорость перекисного окисления липидов, принято делить на прооксиданты (усиливают процессы перекисного окисления) и антиоксиданты (тормозят процессы перекисного окисления липидов). К оксидантам в живой клетке относятся высокие концентрации кислорода (например, при длительной гипербарической оксигенации больного), ферментные системы, генерирующие супероксидные радикалы (например, ксантиноксидазы, ферменты плазматической мембраны фагоцитов и др.), ионы двухвалентного железа. Хотя сам процесс перекисного окисления развивается в виде цепных реакций в липидной фазе мембран и липопротеинов, начальные (а возможно, и промежуточные) стадии этой сложной системы реакций протекают в водной фазе. Часть защитных систем клетки также локализуется в липидной фазе, а часть - в водной фазе. В зависимости от этого можно говорить о водорастворимых и гидрофобных антиоксидантах.[1]
Таблица 1. Свободные радикалы, образующиеся в клетках живого организма
HOCl + Fe2+ -> Fe3+ + Cl- + HO·(реакция Осипова)
Повреждение ДНК и РНК, цепное окисление липидов
Повреждение липидного бислоя и мембранных ферментов
Иногда оказывают прооксидантное действие
Радикалы, образующиеся при метаболизме ксенобиотиков
Промышленные токсины и некоторые лекарства
Радикалы, образующиеся при действии света
Ключевой активной формой кислорода является супероксид анион - радикал (О 2 ), образующейся при присоединении одного электрона к молекуле кислорода в основном состоянии. Супероксид радикал сам по себе обладает малой реакционной способностью. Он может действовать как окислитель (акцептор электрона), как восстановитель (донор электрона). В водной среде может спонтанно дисмутировать (один атом может выступать в качестве акцептора электрона, а другой в качестве донора).
Время его жизни в биологических субстратах составляет около 10-6 с. Супероксид анион-радикал представляет опасность тем, что способен повреждать белки, содержащие железо-серные кластеры, такие как аконитаза, сукцинатдегидрогеназа и НАДН-убихинон оксидоредуктаза.
При кислых значениях рН супероксид анион-радикал может протонироваться с образованием более реакционноспособного пероксильного радикала (НО 2 ), представляющего собой слабую кислоту.
Присоединение двух электронов к молекуле кислорода или одного электрона к супероксид-аниону приводит к образованию перекиси водорода, которая является окислителем умеренной силы. Однако из перекиси водорода может образовываться гидроксид-радикал (ОН.), который является весьма сильным окислителем. ОН радикал может образовываться при трехэлектронном восстановлении кислорода или при взаимодействии перекиси водорода с супероксид радикал - анионом - реакция Габера-Вейса. В процессе реакции генерируется OH (гидроксил-радикал) из H2O2 (пероксида водорода) и супероксида (O 2 ). Реакция может возникать в клетке и вызывать окислительный стресс. Реакция проходит довольно медленно, однако катализируется ионами железа. [1]
В обычных условиях эта реакция протекает достаточно слабо. Токсичность перекиси водорода резко возрастает в присутствии металлов переменной валентности, что объясняется ускорением образования ОН.
3.3 OH (гидроксил, гидроксид - радикалы.)
Гидроксид-радикал практически не участвует в образовании других АФК, но является важным фактором окислительной модификации многих клеточных структур. Он может окислять молекулы белков и липидов, особенно активно атакуя мембранные липиды, которые содержат ненасыщенные двойные связи. Этот процесс приводит к образованию липидных гидроперекисей и изменению свойств клеточных мембран. Гидроксид-радикал вызывает разрыв связей в молекуле ДНК, что может вызывать глубокие повреждения генетического аппарата клеток. Константы скоростей его взаимодействия с большинством биологически важных молекул близки к диффузионным.
Вследствие высокой химической активности гидроксид-радикала, время его жизни в клетке составляет 100 нс, а расстояние, которое он может пройти от места образования до места взаимодействия с мишенью ~100 нм.
Гипохлорит-анион (OCl-), представляющий собой активную форму хлора и условно относимый к АФК, так как он обладает сходными свойствами окислителя. В ходе миелопероксидазной реакции Н 2 О 2 ферментативно превращается в гипохлорит-анион, который является мощным окислителем. Гипохлорит - анион опасен сам по себе, а также может взаимодействовать с О 2 с образованием гидроксид-радикала и с пероксидомю водорода с образованием синглетного кислорода. [6]
К радикальным компонентам клетки относится NO-радикал, образуемый ферментом NO-синтаза и участвующий в образовании пероксинитрита при взаимодействии с супероксид. [8]
Молекулярный кислород в основном своем триплетном состоянии имеет два неспаренный электрона с одинаково ориентированными спинами, занимающих самостоятельные внешние орбитали. Каждая из этих орбиталей может принять ещё один электрон. Полное восстановление О 2 в Н 2 О требует присоединения четырех электронов. В большинстве случаев в организме восстановление кислорода происходит поэтапно, с переносом одного электрона на каждом этапе.
При присоединении первого электрона образуется супероксидный анион 2О, который имеет на внешней орбитали неспаренный электрон. Такие атомы называются свободными радикалами. Супероксид, получая ещё одни электрон превращается в пероксид водорода Н 2 О 2 , присоединение третьего приводит к образованию молекулы воды и гидроксильного радикал ОН. Четвертый электрон превращает гидроксил в воду. [3]
Таков нормальный механизм обезвреживания кислорода, общий для всех процессов в организме. Но по некоторым причинам может произойти сбой в этой системе (либо запуск определенной программы, такой как апоптоз), что приведет к нарушению присоединения электрона и как следствие появление свободный радикалов (АФК). По некоторым оценкам, даже в физиологически оптимальных условиях примерно 2-5% проходящих по ЭТЦ электронов идут на образование супероксидных радикалов. Кроме того, в определенных условиях (например, при окислении пиридиннуклеотидов и полифенолов) при физиологическом значении рН некоторые апопластные пероксидазы, проявляя свою оксидазную функцию, способны к образованию супероксидного анион-радикала.
Синглетный кислород (О 2 ) образуется в хлоропластах в результате взаимодействия молекулярного кислорода с хлорофиллом, возбужденным квантом света и находящимся в триплетном состоянии. Энергия, необходимая для этого перехода, составляет примерно 22 ккал/моль. В результате поглощения избыточной энергии (что часто имеет место в реальных условиях) происходит обращение спина одного электрона и формирование синглетного кислорода. Образование супероксидного анион-радикала (О 2 ) происходит в фотосистеме I (ФС I) и II (ФС II) хлоропластов и на комплексах дыхательной цепи в митохондриях, а также в ряде реакций, протекающих в пероксисомах (при окислении ксантина ксантиноксидазой). В ФС I появление супероксидного радикала происходит в реакции Мёллера и связано с работой 4Fe-4S-кластеров, ферредоксина и/или ферредоксин-НАДФН-редуктазы. Около 10-25% всего нециклического электронного потока может идти на образование супероксид-радикала. Генерация анион-радикала, кроме того, возможна на уровне реакционного центра ФС II, предположительно в QА и QВ сайтах. В митохондриях образование О 2 - сопряжено с функционированием дыхательной электрон-транспортной цепи (ЭТЦ) во внутренней митохондриальной мембране и захватом молекулярным кислородом электронов с гемов.
Существует ещё несколько механизмов возникновения свободных радикалов. Например, в процессе функционирования цитохрома Р-450 в микросомах образуется такой тип АФК как пероксид водорода. Принято считать, что его образование связано с тем, что в процессе цитохром Р-450-зависимого окислительного цикла образующийся тройственный комплекс, включающий цитохром Р-450, субстрат и ион супероксида (оксицитохром Р-450), может, помимо основного пути превращения - внедрения кислорода в структуру субстрата, - распадаться с образованием исходного комплекса субстрат-цитохром Р-450 и высвобождением супероксида (процесс "разобщения") с последующей его дисмутацией, с образованием пероксида водорода. В присутствии ионов железа пероксид водорода в результате одноэлектронного переноса может восстанавливаться до гидроксил-радикала - сильнейшего окислителя. Показано также, что высвобождение железа из ферритина - белка, являющегося основным депо железа в клетке, происходит в результате образования супероксида при функционировании цитохрома Р-450. [1]
Таким образом, супероксид, образующийся при "разобщении" на цитохроме Р-450, может быть источником пероксида водорода и генератором ионов железа из ферритина-компонентов, необходимых для образования различных активных форм кислорода. Действительно, образование супероксида, пероксида водорода и гидроксил радикала показано в реконструированных ферментных системах с использованием различных изоформ цитохрома Р-450.
Кроме того АФК в организме могут образовываться и ходе реакций самопроизвольного окисления ряда веществ. Одним из важнейших примеров является окисление гемоглобина в метгемоглобин, при котором образуется супероксид. При нормальном значении ph и концентрации кислорода стабильной формой железа является Fe3+. Ион Fe2+ легко окисляется в Fe3+. Однако в молекуле гемоглобина эта реакция существенно заторможена благодаря белковой части в окружении гема. И все же с большей скоростью происходит окисление оксигемоглобина кислородом с образованием метгемоглобина.
Hb (Fe 2 +) O 2 =Hb (Fe 3 +) +O 2 -
Образующийся супероксид кислорода способен окислять оксигемоглобин.
Hb (Fe 2 +) O 2 +O 2 - + 2H+= Hb (Fe 3 +) +O 2 + H 2 O 2
Пероксид водорода - тоже окислитель оксигемоглобина.
Hb (Fe 2 +) O 2 +H 2 O 2 = Hb (Fe 3 +) +OHрадикал+OH-
Гидроксильный радикал окисляет гемоглобин.
Но, тем не менее, общепринято, что дыхательная цепь митохондрий является основным источником АФК в большинстве клеток. Вместе с тем представляет интерес выяснение, какие именно компоненты дыхательной цепи и в каких условиях являются основными АФК - генераторами. Исходя из стандартных редокс-потенциалов окислительно-восстановительных центров различных Комплексов дыхательной цепи, а также на основе экспериментальных данных были выделены три основных источника АФК: НАДН - убихинон оксидоредуктаза, сукцинат-убихинон оксидоредуктаза и убихинол-цитохром с оксидо-редуктаза.
Не существует единого мнения по поводу того, в каких именно участках дыхательной цепи происходит образование АФК и каков вклад каждого из них в этот процесс. Теоретически одноэлектронное восстановление кислорода может происходить в любом из редокс-центров Комплекса I, а также в высокопотенциальных редокс-центрах Комплексов 2 и 3. По мнению большинства исследователей, основным АФК-генератором в дыхательной цепи является Комплекс I. Однако ряд авторов полагает, что Комплекс III вносит, по крайней мере, такой же вклад в образование АФК. Существует также мнение, что заметным источником АФК может служить также Комплекс II. На сегодняшний день признается, что все три комплекса образуют АФК.
В тканях аэробных организмов в процессе метаболизма постоянно образуются продукты неполного восстановления кислорода. Активные формы кислорода и радикалы синтез в организме, выполняют не только вредные, но и множество полезных для клетки функций. Так, образование супероксид-аниона и гипохлорита клетками иммунной системы используется организмом при защите от инфекций и других чужеродных факторов. Для некоторых тканей, в частности, для мозга, характерен повышенный синтез простагландинов, тромбоксанов и лейкотриенов. Этот процесс требует участия супероксид-аниона, взаимодействующего с другим компонентом этой системы, арахидоновой кислотой - соединением, высвобождающимся из мембранных фосфолипидов в ходе индуцируемого АФК перекисного окисления липидов.
АФК активно участвуют в процессах передачи клеточного сигнала. Так, например, свободные радикалы, которые образуются в цитозоле клетки в ответ на стимуляцию факторами роста, участвуют в регуляции пролиферации. Имеется много публикаций, свидетельствующих, что активные формы кислорода стимулируют деление различных типов клеток. [1, 3]
Механизм, по которому активные формы кислорода участвуют в передаче митотического сигнала, неизвестен. Возможно, что АФК могут активировать такие ферменты, как митоген-активируемую киназу p38, что, в свою очередь, приводит к активации транскрипционного фактора HIF-1 и экспрессии соответствующих генов. Показано, что они включают каскад реакций, которые передают митотический сигнал при воздействии "физиологических" агентов, таких как факторы роста: активируют в клетке различные транскрипционные факторы, но наиболее эффективно - продукт гена c-jun и ядерный транскрипционный фактор NF-kB. Свободные радикалы обладают активностью, модулирующей транскрипционные факторы, как NF-kB и активирующий белок-1 (AP-1). В случае NF-kB показано, что он становится транскрипционно активным после того, как происходит опосредованная АФК деградация IkB белка, ингибирующего NF-kB. Также показана роль АФК в качестве вторичных мессенджеров в сигнальных каскадах, запускаемых такими факторами как TGF-b1, PDGF, ATII, FGF-2 и эндотелин.
Еще одной мишенью АФК может являться Na/K-АТФаза, белок, отвечающий за электрогенный транспорт ионов калия и натрия через клеточную мембрану. В нормальных условиях нейрональная Na/K-АТФаза потребляет от 15% до 40% энергии клетки, направляя ее на поддержание ионных градиентов. Избыточная активация глутаматных рецепторов и повышение уровня АФК приводит к обратимому ингибированию фермента. Известно разнонаправленное влияние глутаматных рецепторов первой и третьей групп на активность Na/K-АТФазы. Так, АФК усиливают ингибирующее влияние NMDA-рецепторов на активность Na/K-АТФазы, а mGluI предотвращают ингибирование ее NMDA - рецепторами.[20]
6. Антиоксидантная система организма, факторы клеточной защиты
Защита от избытка кислорода биологических структур, прежде всего наиболее уязвимых мембранных образований, особенно липидный (фосфолипидных) решилась путем создания специализированных присособлений - антиокислительных механизмов, обеспечивающих «отведение» окисителной энергии свободного кислорода в безопасное русло. К этим приспособлениям относятся специализироанные ферментные системы - антиокислительные ферменты, а также химические буферные системы, способные поддерживать прооксидантно-антиоксидантное равновесие, проаксидантно-антиоксидантный гомеостаз во внутриклеточных и вне клеточных и межклеточных жидкостях и липидных структурах мембран. [1, 19]
Эффекторные компоненты антиоксидантной системы называются антиоксидантами. Число эндогенных соединений, относимых к антиоксидантам, постоянно возрастает. Нет единой универсальной классификации антиоксидантов.
Некоторыми авторами предпринята попытка классификации антиоксидантов с точки зрения их ММ на 2 группы.
Группа Высокомолекулярные соединения - ферменты антиоксидантной защиты, а также белки, способные связывать ионы Fe и Cu, являю-щиеся катализаторами свободнорадикальных процессов. Антиоксидантные ферменты (СОД, церулоплазмин, каталаза, глутатионзависимые ферменты) обеспечивают комплексную антирадикальную защиту биополимеров. Для ферментативных антиоксидантов характерны высокая специфичность, строго определенная органная и клеточная локализация, а также использование в качестве катализаторов металлов Cu, Fe, Mn, Zn, Se.
К числу белков, обладающих способностью связывать металлы с переменной валентностью и соответственно обладающих антиоксидантными свойствами, относят альбумины крови, трансферрин, ферритин, лактоферрин. Многие из них весьма эффективны в ингибировании свободнорадикальных процессов, но слабо проникают через мембраны и тканевые барьеры.
Группа Низкомолекулярные антиоксиданты: некоторые аминокислоты, полиамины, мочевина, мочевая кислота, глутатион, аскорбиновая кислота, билирубин, токоферол, витамины группы A, K, P.
При этом можно говорить о своеобразных антиоксидантных цепях переноса электронов, эффективность функционирования которых определяется работой всех компонентов.
СОД - пероксид: пероксид оксидоредуктаза. КФ 1.15.1.1. Катализирует реакцию О 2 -+ О 2 -+2Н+ О 2 +Н 2 О
СОД инактивирует супероксиданионрадикал, субстратами действия глутатионпероксидазы и каталазы являются пероксид водорода и гидроперекиси липидов.
Полагают, что уровень активности внутриклеточных ферментативных антиоксидантных систем генетически детерминирован, причем избыточное накопление в клетках супероксидного анион-радикала или перекиси водорода сопровождается депрессией участков генома, ответственного за активность внутриклеточных ферментативных антиоксидантных систем. [20]
Обнаружено несколько изоэнзимных форм СОД, отличающихся строением активного центра. У эукариотов Cu-, Zn-содержащая СОД локализуется в основном в цитозоле эритроцитов, в межмембранном пространстве митохондрий, в цитоплазме и ядре нервных клеток. Фермент чувствителен к цианиду, представляет собой металлопротеид с ММ 32000-33000, состоит из двух субъединиц, каждая из которых связывает 1 атом Cu и 1 атом Zn. СОД локализована в митохондриях печени и миокарда эукариот, вблизи анионных каналов. Для микроорганизмов характерны железосодержащий и марганецсодержащий изоферменты. Mn-СОД состоит из 4 субъединиц с ММ 20 000 каждая, механизм действия энзима, вероятно, подобен действию Cu-, Zn-СОД-фермента, то есть металл в активном центре попеременно меняет свою валентность: Mn3+, Mn2+. Супероксиддисмутазную активность могут проявлять комплексы меди с аминокислотами и пептидами, а также многие медьсодержащие белки. [4, 6]
Описанные выше изоферментные формы СОД являются внутриклеточными ферментами, в межклеточной жидкости (плазма крови, лимфа, синовиальная жидкость) они разрушаются в течение 5-10 минут. В то же время обнаружена экстрацеллюлярная высокомолекулярная форма СОД (ММ 120000 Д), хорошо связывающаяся гепаринсульфатом гликокаликса эндотелиоцитов, локально защищает их от свободных радикалов. Экстрацеллюлярная СОД не связывается с лейкоцитами и эритроцитами, не участвует в регуляции продукции активных форм O 2 гранулоцитами в процессе киллинга.
СОД существенно ускоряет дисмутации супероксиданионрадикала. Однако, несмотря на высокую специфичность фермента, при определенных условиях Cu-СОД может взаимодействовать с H 2 O 2 и выступать в качестве прооксиданта. В последние годы были синтезированы модифицированные препараты СОД и каталазы, ассоциированные с иммуноглобулинами, сывороточным альбумином, высокомолекулярными спиртами, в частности, полиэтиленгликолями, что обеспечивало стабильность ферментов и длительность их циркул
Прооксидантная и антиоксидантная система курсовая работа. Химия.
Курсовая Фронтальная Форма Организации Учебной Деятельности
Реферат: Нетарифные методы государственного регулирования
Курсовая работа по теме Применение экономико-статистических методов в экономическом анализе развития растениеводства в Колхозе племзаводе им. Калинина Новоаннинского района
Сочинение по теме Московское хлебосольство
Дипломная Работа На Тему Совершенствование Управления Персоналом В Рекламном Агентстве
Патологическая Анатомия Рефераты
Отчет По Практике На Тему Оценка Деятельности Предприятия Центр Оптовой Торговли "Avs Лэнд"
Реферат: John Paul Jones Essay Research Paper John
Реферат: Компьютеризация
Реферат: Stress Management Essay Research Paper STRESS MANAGEMENTEach
Статья: Приемы педагогической техники на уроках русского языка и литературы
Учебное пособие: Методические указания к дипломной работе для студентов специальности 080107 «Налоги и налогообложение»
Курсовая работа: Школа человеческих отношений и поведенческие науки
Купить Курсовую Работу
Реферат: Управління керівним персоналом у сфері державної служби України
Реферат: Demien Realism Essay Research Paper During the
Коматозные Состояния У Детей Реферат
Сан Нохчи Республика Сочинение
Дипломная работа: Роль мастера производственного обучения в формировании коллектива обучающихся
Методическое указание по теме Сопротивление материалов
Рефлексивность как профессионально значимое личностное качество учителя-логопеда - Педагогика курсовая работа
Механическое оборудование для производства строительных материалов - Производство и технологии дипломная работа
Основы производственного менеджмента - Менеджмент и трудовые отношения контрольная работа


Report Page