Проектирование информационной телекоммуникационной системы парома на трассе Калининград – Санкт-Петербург. Курсовая работа (т). Информатика, ВТ, телекоммуникации.

Проектирование информационной телекоммуникационной системы парома на трассе Калининград – Санкт-Петербург. Курсовая работа (т). Информатика, ВТ, телекоммуникации.




👉🏻👉🏻👉🏻 ВСЯ ИНФОРМАЦИЯ ДОСТУПНА ЗДЕСЬ ЖМИТЕ 👈🏻👈🏻👈🏻



























































Вы можете узнать стоимость помощи в написании студенческой работы.


Помощь в написании работы, которую точно примут!

Похожие работы на - Проектирование информационной телекоммуникационной системы парома на трассе Калининград – Санкт-Петербург
Нужна качественная работа без плагиата?

Не нашел материал для своей работы?


Поможем написать качественную работу Без плагиата!

«Проектирование
информационной телекоммуникационной системы парома на трассе Калининград –
Санкт-Петербург»


Стремительное
развитие телекоммуникаций вызвало в жизни Российского общества явление,
названное мобильной и беспроводной революцией. Необходимость глубокого изучения
и разработки инновационных технологий мобильного и беспроводного
широкополосного доступа в сети связи требует объединения научных сил и
потенциала ученых различных отраслей и технологической направленности. Стоящие
задачи конвергенции различных видов сетей и услуг связи могут быть решены на
основе взаимного обогащения двух важнейших научных направлений: развития
современных телекоммуникаций сетей беспроводного широкополосного доступа и
сетей мобильной связи.


Калининградская
область занимает особое географическое местоположение, она находится в центре
Европы и является связующим звеном между Россией и странами запада.
Следовательно, должна соответствовать статусу европейских стран и иметь
развитую телекоммуникационную инфраструктуру. Поэтому модернизация, развитие и
внедрение современных систем связи является актуальнейшей задачей для нашего
региона.


Таким
образом, дипломный проект ставит основной задачей развитие систем связи на
транспорте, а именно оснащение мобильной связью посредством спутниковой линии парома
сообщением Калининград – Санкт-Петербург. В задачу проекта входит
энергетический расчет системы, выбор необходимых параметров, таких как
количество каналов, скорость передачи данных, размер и форма антенны, выбор
цифровой системы.


Целью
дипломного проекта является обоснование параметров многоканальной
телекоммуникационной системы, предназначенной для обеспечения пассажиров парома
мобильной связью, а также доступом к сети Internet.


Актуальность
проекта заключается в том, что паром несколько дней плывет в нейтральных водах
и находится вне зоны досягаемости базовых станций мобильной связи, вследствие
чего пассажиры не могут обмениваться какой либо информацией с материком. Данный
проект позволит открыть доступ не только к мобильной связи, но и к «всемирной
паутине».


Первая
глава освещает проблемы покрытия сотовой сети на пассажирском судне,
представляет архитектуру мобильной связи на пароме и приводит количественный
анализ необходимого трафика.


Во второй главе произведен обзор спутниковых систем, выбрана орбита, частотный диапазон, технология передачи данных.
Третья глава посвящена энергетическому расчету спутниковой линии восходящего и нисходящего участков. Рассчитана наклонная дальность на участках радиолинии, затухание сигнала, шумовая температура, коэффициент усиления антенн земной станции и ретранслятора на приём и передачу, мощности передатчиков земной станции и ретранслятора связи на ИСЗ.
В четвертой главе произведен расчет приемной антенны по схеме Кассегрена: геометрических параметров антенны, параметров облучателя и питающей линии.


В пятой главе
описываются системы для организации покрытия сети на пароме. Обосновывается
выбор предпочтительного оборудования. Показана система построения сети для
парома, где пространство каюты экранировано. Разработаны предложения по сети
связи в каютах.









Трасса парома
сообщением Калининград-Санкт-Петербург протяженностью 700 км, пролегает в
нейтральных водах Балтийского моря. На таком расстоянии радиус покрытия базовых
станций мобильной связи, находящихся на берегу, конструктивно не достигает
трассы прохождения судна и, следовательно, связь на пароме не может быть
организована обычным способом. Корабль находится
в плавании двое судок, при этом деловые люди, а также отдыхающие могут испытывать
дискомфорт, связанный с потребностью в связи, управлением своими делами на
материке, а также с невозможностью получения новостей. Задачей данного проекта ставится обеспечение судна сотовой
связью, а также возможностью подключения к сети Internet, через спутниковую линию связи.




1.1
Архитектура мобильной связи парома




Сотовая
связь на пароме организуется так. Сигнал из наземной сотовой сети «поднимается»
на спутник связи, откуда принимается антенной, установленной на корпусе судна и
передается на фемто или пикосоту, установленную внутри салона. Сотовые телефоны
пассажиров салона связываются с этой внутренней сотой для приема сигнала,
поступившего через спутник с земли и передачи сигнала на землю по той же «цепочке».




Рис. 1.1. Архитектура сотовой
связи парома





Опыт
эксплуатации систем связи за последнее время показал возможности и параметры,
необходимые для расчета трафика при использовании различных приложений.




Таблица 1. Общие характеристики трафика разных приложений




Приложение /
Характеристика трафика

Исходя из данных таблицы 1, можем оценить
трафик сети. С учетом передачи файлов, использования приложений, обработки
транзакций и голосовой связи найдем необходимую пропускную способность.




Необходимую общую пропускную способность вычислим как:




 – необходимая пропускная способность для i-ой
услуги.


Необходимую пропускную способность в целом рассчитаем как
произведение количества пользователей и нагрузка на каждого пользователя:




Общее
количество пользователей примем равным 200, отсюда необходимая пропускная
способность .


Стандартный
ствол имеет полосу пропускания 36 МГц , что соответствует максимальной
пропускной способности около 40 Мбит/с , что удовлетворяет требованиям проекта.


·
необходимая
полоса пропускания;


·
расширяемость
и способность к масштабированию сети;


·
интеграция
разных видов трафика;


·
соответствие
требованиям по задержке пакетов в линии (не больше 250 мс );


·
высочайшая
надежность и готовность сети.


В первой
главе произведена оценка необходимой пропускной способности сети, для
реализации планового трафика. Для удовлетворения нужд абонентов в сотовой
связи, а также доступу к сети интернет. Необходима скорость порядка 20 Мбит/с,
что соответствует максимальной пропускной способности 40 Мбит/с.









2 . Анализ параметров
спутниковой системы




В
зависимости от вида предоставляемых услуг спутниковые системы связи можно
разделить на три основных класса:


1.
Системы
пакетной передачи данных (доставки циркулярных сообщений, автоматизированного
сбора данных о состоянии различных объектов, в том числе транспортных средств и
т.д.)


2.
Системы
речевой (радиотелефонной) связи.


3.
Системы
для определения местоположения (координат) потребителей.


Системы
пакетной передачи данных предназначены для передачи в цифровом виде любых
данных (телексных, факсимильных сообщений, компьютерных данных и др.) Скорость
пакетной передачи данных в космических системах связи составляет от единиц до
сотен килобайт в секунду. В этих системах, как правило, отказываются от
непрерывности обслуживания и не предъявляют жестких требований к оперативности
доставки сообщений. В таком режиме работает «электронная почта» (поступившая
информация опоминается бортовым компьютером и доставляется корреспонденту в
течение некоторого времени).


При
радиотелефонной связи в спутниковых системах используют цифровую передачу
сообщений, при этом обязательно должны выполняться общепринятые международные
стандарты. В таких системах задержка сигнала на трассе распространения не
должна превышать 0,25 с и переговоры абонентов не должны прерываться во
время сеанса связи. Обслуживание абонентов должно быть непрерывным и проходить
в реальном масштабе времени. В этом случае при построении радиотелефонной
спутниковой сети необходимо учитывать, что:


·
Спутники
должны оснащаться высокоточной системой ориентации для удержания луча их
антенны в заданном направлении


·
Количество
спутников в системе должно быть достаточным для обеспечения сплошного и
непрерывного покрытия зоны обслуживания.


Для
обеспечения достаточного количества каналов связи должны применяться
многолучевые антенные системы, работающие на высоких частотах (более 1,5 ГГц).


Значительный
прогресс в развитии спутниковых систем персональной связи достигнут благодаря
внедрению новых технических решений, ключевыми из которых можно считать:
обработку сигнала на борту спутника-ретранслятора, создание перспективных
сетевых протоколов обмена информацией и применение недорогих портативных
пользовательских терминалов с малым энергопотреблением.


Развитию
систем персональной спутниковой связи способствуют большие успехи, достигнутые
в микроминиатюризации функциональных узлов коммуникационного оборудования.
Применение арсенида галлия и фосфида индия позволило создать мощные солнечные
батареи небольших размеров, а внедрение различных композиционных материалов – уменьшить
массу спутников. Значительный прогресс ожидается и в области разработки
бортовых ЭВМ на специализированных БИС (больших интегральных схемах),
обеспечивающих высокоскоростную коммутацию при ретрансляции информационных
потоков. Применение методов многостанционного доступа с кодовым разделением
каналов ( CDMA ), который основан на использовании широкополосных сложных
сигналов, несомненно, способствует успешному развитию спутниковых систем связи.




В
космических системах, решающих задачи персональной связи, используются
спутники, которые могут находиться на различных орбитах.


Орбиты
космических аппаратов (КА) классифицируются: по форме, периодичности прохождения
над точками земной поверхности и по наклонению.


По
форме различают следующие типы орбит:


1.
Круговые
– трудно реализуемые на практике и требующие частой коррекции помощью бортовых
корректирующих двигателей КА.


2.
Близкие
к круговым. Это наиболее распространенный тип орбит в системах спутниковой
связи. На таких орбитах высоты апогея и перигея. различаются на несколько
десятков километров.


3.
Эллиптические.
Высоты Н (апогея) и Н (перигея) могут значительно различаться
(например, Н а = 38000 – 40000 км , Н п = 400 – 500 км ),
Данные орбиты также широко применяются в системах спутниковой связи.


4.
Геостационарные.
Это круговые экваториальные орбиты с периодом обращения спутника, равным
периоду обращения Земли ( Р = 23 ч 56 мин ). На
такой орбите спутник располагается на высоте 36000 км и находится
постоянно над определенной точкой экватора Земли. Космические аппараты,
находящиеся на геостационарной орбите, имеют большую площадь обзора Земли, что
позволяет с успехом использовать их в системах спутниковой связи.


5.
Параболические
и гиперболические. Применяются, как правило, при изучении планет Солнечной
системы.


По
периодичности прохождения КА над точками земной поверхности различают следующие
типы орбит:


1.
Синхронные.
Они, в свою очередь, подразделяются на синхронные изомаршрутные и синхронные
квазимаршрутные. Изомаршрутные орбиты характеризуются тем, что проекции орбиты
искусственных спутников Земли (ИСЗ) на земную поверхность (трассы) совпадают
ежесуточно. Квазимаршрутные орбиты характеризуются тем, что проекции орбиты на
земную поверхность совпадают один раз в несколько суток.


2.
Несинхронные
характеризуются тем, что трассы, соответствующие любым двум оборотам КА вокруг
Земли, не совпадают.


Под
наклонением орбиты понимается угол между плоскостями экватора Земли и орбиты
КА. Наклонение отсчитывается от плоскости экватора до плоскости орбиты против
часовой стрелки. Оно может изменяться от 0 до 180°.


По
наклонению различают следующие типы орбит:


·
Прямые
(наклонение орбиты < 90°)


·
Обратные
(наклонение орбиты > 90°)


·
Полярные
(наклонение орбиты = 90°)


·
Экваториальные
(наклонение орбиты равно 0 или 180°)


Не
сферичность Земли и неравномерность распределения ее массы приводят к изменению
(прецессии) плоскости орбиты КА что влечет за собой прецессию линии апсид (т.е.
линии соединяющей апогей и перигей) орбиты. При этом скорость названных
прецессий зависит от формы орбиты, высоты апогея и перигея, а также от
наклонения. Прецессия плоскости орбиты приводит к смещению восходящего и
нисходящего углов относительно первоначального положения (в момент вывода КА на
орбиту).


Величина
прецессии плоскости орбиты космического аппарата зависит от напряженности
гравитационного поля Земли. Увеличение напряженности приводит к «спрямлению»
орбиты вблизи экватора за счет увеличения скорости движения ИСЗ в направлении
экватора. При этом спутник движущийся по прямой орбите начинает отклоняться
влево по ходу движения, а движущийся по обратной орбите – наоборот, вправо по
ходу движения.


Таким
образом, в первом случае плоскость орбиты прецессирует в западном направлении,
а во втором – в восточном. Плоскости полярных орбит (имеющих наклонение = 90°)
не прецессируют.


В
настоящее время в космических системах для решения задач персональной
радиосвязи применяют спутники, которые могут находиться на следующих орбитах:
низких (круговых или близких к круговым), средневысотных (круговых или
эллиптических) и геостационарных.


Высота
орбит КА выбирается на основании анализа многих факторов, включая
энергетические характеристики радиолиний задержку при распространении
радиоволн, близость к орбите радиационных поясов Ван Аллена, размеры и
расположение обслуживаемых территорий. Кроме того на высоту орбиты влияют
способ организации связи и требования по обеспечению необходимого значения угла
места КА.


Анализируя
низкоорбитальные группировки различных космических систем, можно заметить, что
высоты круговых орбит КА большинства из этих группировок находятся в диапазоне
от 700 до 1500 км. Это обусловлено следующими факторами:


·
На
орбитах, расположенных ниже 700 км , плотность атмосферы достаточно
высока что вызывает уменьшение эксцентриситета и постепенное снижение высоты
апогея. Дальнейшее уменьшение высоты орбиты приводит к повышенному расходу
топлива увеличению частоты маневров для поддержания заданной орбиты.


·
На
высотах выше 1500 км располагается первый радиационный пояс Ван
Аллена, в котором невозможна работа электронной бортовой аппаратуры.


Средневысотные
орбиты (5000 – 15000 км над поверхностью Земли) находятся
между первым и вторым радиационными поясами Ван Аллена. В системах,
использующих КА, расположенные на таких орбитах, задержка распространения
сигналов через спутник-ретранслятор составляет примерно 130 мс , что
практически неуловимо для человеческого слуха и, следовательно, позволяет
использовать такие спутники для радиотелефонной связи.


Системы,
использующие спутники с высотой орбиты 700 – 1500 км , имеют лучшие
энергетические характеристики радиолиний, чем системы с высотой орбит
спутников, равной примерно 10000 км , но уступают им в
продолжительности активного существования КА. Дело в том, что при периоде
обращения КА около 100 мин (для низких орбит) в среднем 30 мин
из них приходится на теневую сторону Земли. Поэтому бортовые аккумуляторные
батареи испытывают от солнечных батарей приблизительно 5000 циклов заряда /
разряда в год. Для круговых орбит с высотой 10000 км период
обращения составляет около 6 ч , из которых лишь несколько минут КА
проводит в тени Земли.
Геостационарные
космические системы с высотой орбит спутников примерно 36000 км обладают
двумя важными преимуществами:


·
Система,
состоящая из трех геостационарных спутников, практически обеспечивает
глобальный обзор земной поверхности.


·
Спутники
всегда находятся над определенной точкой Земли, что позволяет сэкономить на
оборудовании слежения за КА.


Для
нашей системы связи актуальнее использовать спутник на геостационарной орбите,
что позволит охватить нужную площадь земной поверхности и избавиться от
использования сложной аппаратуры слежения за ИСЗ.




Любая
сеть спутниковой связи включает в себя один или несколько
спутников-ретрансляторов, через которые и осуществляется взаимодействие земных
станций (ЗС). В настоящее время наиболее широкое распространение получили
спутники, работающие в диапазонах частот C (4/6 ГГц ) и Ku
(11/14 ГГц ).




Как
правило, спутники диапазона С обслуживают довольно большую территорию, а
спутники диапазона Ku – территорию меньше, но обладают более высокой
энергетикой, что дает возможность для работы с ними применять ЗС с антеннами
малого диаметра и маломощными передатчиками.


Для
нашей системы выберем частотный диапазон Ku, с частотой передачи
радиосигнала (на линии вверх), (на линии вниз).




2.3 Выбор
технологии передачи данных




В
состав любой ЗС входит радиочастотное и каналообразующее оборудование. Первое –
это антенна и приемопередатчик, которые должны соответствовать типу выбранного
спутника и обеспечивать работу каналообразующего оборудования. Как правило, эти
два компонента ЗС поставляются в комплекте.


Каналообразующее
оборудование определяет принцип работы ЗС и всей сети. В настоящее время
существуют четыре основные технологии для сетей спутниковой связи. Все они
имеют свои достоинства и недостатки, и ни одна из них не является
универсальной. Для повышения эффективности работы во многих современных сетях
успешно сочетаются несколько технологий одновременно. Основное различие между
ними – способ использования ресурса спутникового ретранслятора. Рассмотрим эти
технологии:


·
SCPC (Single Channel Per
Carrier) активно применяют для построения небольших сетей с интенсивным
трафиком. Каждая ЗС, реализующая SCPC, имеет выделенный постоянный сегмент
емкости спутникового ретранслятора и поддерживает постоянное соединение.
Основное достоинство данной технологии состоит в том, что она гарантирует
необходимую пропускную способность канала спутниковой связи, а основной
недостаток – отсутствие в ней возможности динамического перераспределения
ресурса ретранслятора между узлами сети.


·
DAMA
(Demand Assigned Multiple Access) предоставляет ресурс спутникового ретранслятора
по требованию. В сетях с технологией DAMA канал связи выделяется
пользователю только на время проведения сеанса связи, что значительно экономит
ресурсы спутникового ретранслятора. Структура канала в этой сети аналогична
структуре канала SCPC . В некоторых реализациях технологии DAMA предусмотрена
возможность установления соединений с разной пропускной способностью для разных
сеансов связи. DAMA оптимальна для создания телефонных сетей с
полносвязной топологией. Ресурс ретранслятора распределяется центральной
станцией сети, что можно считать основным недостатком технологии, так как
функционирование всей сети зависит от состояния одной этой станции.


·
TDMA
(Time Division Multiple Access) предоставляет множеству станций динамический
доступ к общему каналу с временным разделением. В отличие от технологии DAMA
с ее достаточно большим временем установления соединения такой доступ
предоставляется значительно быстрее. Однако ЗС сети TDMA стоят довольно
дорого, поскольку любая из этих станций – даже с самым минимальным трафиком – должна
передавать данные со скоростью, равной общей пропускной способности
разделяемого по времени канала. В сетях TDMA центральная управляющая
станция, как правило, отсутствует.


·
TDM/TDMA (Time Division Multiplexing/Time Division Multiple
Access) – комбинированная технология сетей с топологией типа «звезда». В сети TDM/TDMA
центральная ЗС связывается со станциями пользователей при помощи одного или
нескольких закрепленных каналов TDM (с временным мультиплексированием),
а станции пользователей осуществляют доступ к центральной ЗС через каналы TDMA .
Поскольку все станции пользователей напрямую взаимодействуют только с
центральной ЗС, появляется возможность применять довольно маломощные станции,
скомпенсировав недостаток их энергетики использованием антенны большого
диаметра и мощного передатчика на центральной ЗС. За счет такого дисбаланса
параметров станций удается существенно снизить стоимость проектов с большим
числом станций пользователей. Обязательное наличие центральной ЗС (которая
выполняет функцию концентратора сети) обусловливает высокие требования к ее
готовности – ведь от состояния этой станции зависит функционирование всей сети.


В
сети TDM/TDMA данные, передаваемые между двумя любыми станциями
пользователей, дважды проходят через спутник-ретранслятор («двойной скачок»).
При этом возникает существенная (1–2 с ) задержка сигнала, которая делает
данную сеть малопригодной для использования телекоммуникационных приложений,
чувствительных к таким задержкам.


Поддержка
рассмотренных выше основных технологий реализована во многих современных
аппаратных средствах спутниковой связи. Очень часто имеет смысл применять в
одной сети несколько технологий одновременно. Так, например, для построения
крупномасштабной корпоративной телекоммуникационной инфраструктуры можно
рекомендовать сочетание технологий TDM/TDMA и DAMA . Последняя из них
обеспечит телефонную и факсимильную связь, сделает возможной организацию аудио-
и видеоконференций, в то время как с помощью подсети TDM/TDMA можно
будет осуществлять передачу данных.


Вторая глава
посвящена выбору параметров спутника: формы и высоты орбиты, частотного
диапазона, в котором будет транслироваться сигнал и технологии передачи данных.


Для
нашего проекта предпочтение отдано ИСЗ на геостационарной орбите, что позволит
охватить нужную площадь земной поверхности и избавиться от использования
сложной аппаратуры слежения за траекторией спутника.


Передача
сигнала будет осуществляться в Ku- диапазоне (11/14 ГГц ), что дает
возможность для работы с антеннами малого диаметра и маломощными передатчиками.


Для
передачи информации можно рекомендовать сочетание технологий TDM/TDMA и DAMA .
Последняя из них обеспечит телефонную и факсимильную связь, сделает возможной
организацию аудио- и видеоконференций, в то время как с помощью подсети TDM/TDMA
можно будет осуществлять передачу данных.









3 . Энергетический расчет
спутниковой линии




Основная
особенность спутниковых линий связи – большое затухание радиосигнала на
участках линии. Так при высоте орбиты ИСЗ в 36000 км затухание
радиосигнала на участке достигает 200 дБ. Кроме этого, радиосигнал претерпевает
случайные изменения вследствие поглощения радиоволн в атмосфере (дождь, снег,
туман), их рефракции и деполяризации, Фарадеевского вращения плоскости поляризации.
На приёмные устройства воздействуют помехи в виде излучений космоса, Солнца,
Земли и др. планет.


Правильный и точный учет всех особенностей
спутниковой связи позволяет выполнить оптимальное проектирование системы связи,
обеспечить её надежную работу в наиболее сложных условиях и в то же время
исключить излишние энергетические затраты, приводящие к неоправданному
усложнению наземной и бортовой аппаратуры.


В
энергетическом смысле для линии «ЗС-СР-ЗС» (земная станция – спутник-ретранслятор
– земная станция) оба участка напряженные и неравнозначные: первый – из-за
стремления уменьшить мощность передатчика земной станции и относительно низкой
чувствительности приемника ретранслятора, второй – из-за ограничений на массу,
габариты и энергетику ретранслятора, т.е. ограничения на мощность бортового
передатчика.


Для участка ЗС-СР мощность сигнала на входе
бортового приёмника можно определить из первого уравнения передачи




где – потери в
антенно-волноводном тракте передачи (приёма) земной станции или бортового ретранслятора;


 – коэффициент
передачи по мощности антенно-волноводного тракта передачи или приёма;


 – дополнительное
затухание радиосигнала на участке ЗС-СР (СР-ЗС).


Потери в антенно-волноводном тракте зависят от
его конструкции и диапазона рабочих частот. Обычно при расчетах принимают , , .




Полное
затухание радиосигналов в линиях спутниковой связи определяется потерями в
свободном пространстве и дополнительными потерями , обусловленными
особенностями функционирования систем спутниковой связи:




Потери
энергии радиоволн при распространении в свободном пространстве определяются в
соответствии с выражением




где – наклонная дальность на участках
радиолинии КС, определяемая как




где =6371 км – радиус Земли (при
её аппроксимации сферой);


H – высота орбиты ИСЗ (для
геостационарной орбиты Н = 35875 км , для высокоэллиптических
орбит Н – высота апогея);


 – топоцентрический параметр, который
может быть определен из выражения




где, – географическая широта подспутниковой
«точки»;


 – географическая широта земной станции;




 – географическая долгота подспутниковой «точки».


При расчете
энергетических параметров сети спутниковой связи следует
выбрать максимальным для заданной зоны обслуживания. Для выполнения этого
условия из исходных данных выберем географические координаты ЗС и СР таким
образом, чтобы ЗС находилась на максимальном расстоянии от подспутниковой «точки»
для заданной зоны обслуживания.


Дополнительное
затухание радиосигнала на участках радиолинии КС зависит от многих
факторов, проявляющихся независимо друг от друга, и может быть представлено в
виде суммы:




где – затухание в
атмосфере без осадков;


 – затухание, учитывающее неточность
наведения антенн;


 – затухание за счет деполяризации сигнала в
среде распространения.


Затухание в атмосфере
без осадков определяется главным образом поглощением в тропосфере и имеет
ярко выраженный частотно-зависимый характер с резонансными пиками на частотах 22
и 165 ГГц (для водяных паров) и 60 и 120 ГГц (для кислорода).


Потери
энергии радиосигнала в атмосфере без осадков не зависят от времени (имеют место
в течение 100% времени работы радиолинии) и определяются по графикам (рис. 3.1)
в зависимости от частоты радиосигнала Найдём на
линии вверх () и вниз ( ).


Таким
образом, и . Затухание сигнала в осадках зависит от вида
гидрометеоров (дождь, снег, туман), размеров зоны их выпадения, интенсивности
осадков в зоне и т.д. В диапазонах частот величина
затухания радиосигнала в осадках составляет .
Поэтому примем .





Рис. 3.1. Графики
для определения затухания радиосигнала в атмосфере без осадков




Дополнительное
затухание сигнала за счет неточного наведения антенн ЗС и СР друг от друга обусловлено рефракцией радиоволн, что
приводит к образованию угла между истинным и кажущимся направлениями ИСЗ.
Угловое отклонение, вызванное рефракцией, составляет несколько десятых долей
градуса и может быть скомпенсировано при автоматическом наведении антенн по
максимуму сигнала. При других методах наведения с учетом погрешностей
конструкции устройства наведения можно принять .


Поляризационные потери на участках линии КС складываются из
потерь, вызванных несогласованностью поляризации, потерь, связанных с эффектом
Фарадея, и потерь из-за деполяризации радиоволн в осадках.


Потери, вызванные несогласованностью поляризации,
имеют существенное значение при использовании на ЗС и СР узконаправленных
антенн и применении линейной поляризации. Использование круговой поляризации
позволяет эти потери сделать пренебрежимо малыми. Потери, обусловленные
эффектом Фарадея, проявляются при использовании сигналов с линейной
поляризацией, зависят от частоты и пренебрежимо малы. Потери из-за
деполяризации радиоволн при осадках больше характерны для сигналов с круговой
поляризацией, носят статистический характер, связанный со статистикой выпадения
дождей, и могут оказывать заметное влияние на энергетику систем спутниковой связи
на частотах выше 12 ГГц .


При
использовании на линиях КС круговой поляризации сигналов результирующие
поляризационные потери принимают .


Таким
образом, получаем ослабление радиосигнала на участке вниз
Хорошо видно,
что ослабление на участке вниз меньше, чем на участке вверх на 2 дБ .
Такое отличие связано с тем, что радиосигнал на более высоких частотах претерпевает
большее затухание, чем на частотах ниже. Именно этим обусловлен тот факт, что
для значения частоты радиосигнала на участке СР-ЗС всегда выбирается меньшее
значение, чем на участке ЗС-СР. Ведь на борту ИСЗ энергетика жёстко ограничена,
что сильно оказывает влияние на максимальную выходную мощность передатчика
ретранслятора связи.




Приемное
устройство СВЧ может характеризоваться некоторыми энергетическими параметрами:
реальной чувствительностью, пороговой чувствительностью, коэффициентом шума,
шумовой температурой и эффективной температурой. Все эти параметры, как
известно, имеют определенную связь между собой. Три последних из них
характеризуют линейную часть приемного устройства от антенны до детектора. В
системах спутниковой (космической) связи наибольшее распространение получили
два последних параметра.




Шумовая температура оценивает
внутренние шумы линейной части приемника, пересчитанные на его вход. Она может
быть выражена через коэффициент шума следующим
образом


где – абсолютная
температура среды, в которой работает приемник (обычно ).


Чем ниже шумовая температура приемника, тем выше
его чувствительность. Для идеального четырёхполюсника , поэтому .


Для приёмника ЗС коэффициент шума составляет или , т.е. .


Т.к. основной вклад в шум приёмного устройства
вносит первый каскад, т.е. МШУ, то коэффициент шума МШУ будет ненамного меньше
коэффициента шума всего приёмного устройства. А таким МШУ может служить
параметрический усилитель на полупроводниковых диодах ( ).


Для приёмника СР коэффициент шума составляет или , т.е. .


Такие значения позволяют первый каскад усилителя
такого приёмника реализовать на ЛБВ ( Лампа бегущей волны).


Эффективная температура () характеризует полную мощность шумов,
действующих на входе приемника, т.е. поступающих из антенно-волноводного тракта
и собственных, пересчитанных на вход. Полная эффективная температура приемного
устройства, пересчитанная на вход приемника




то же – к облучателю приёмной антенны:




где – эквивалентная
шумовая температура антенны;


 – эквивалентная
шумова
1.3 Количественный анализ трафика Курсовая работа (т). Информатика, ВТ, телекоммуникации.
Курсовая Работа На Тему Технологии Социальной Работы С Молодежью
Реферат: Международное налоговое право понятие, основные принципы
Реферат: Индийская литература
Курсовая Работа На Тему Влияние Комплексных Занятий На Развитие Речи Дошкольников
Реферат: Трудовое право домашняя работа. Скачать бесплатно и без регистрации
Реферат по теме История создания и организационная структура Евразийского (Межгосударственного) совета по стандартизации, метрологии и сертификации
Итоговая Контрольная Работа По Русскому
Реферат: The Glass Menagerie Essay Research Paper Rich
Попов Первый Снег Сочинение
Педагогическая Психология Дипломная Работа
Дипломная работа: Подготовка к единому национальному тестированию. Скачать бесплатно и без регистрации
Реферат: Площадь треугольника
Курсовая Работа Маркетинг Персонала На Предприятии
Математика Контрольные Работы Волкова 1 4
Реферат: Українська освітньо-виховна система в світлі ідей Г Ващенка
Контрольная работа: Рынoк ювелирных изделий в Украине
Реферат по теме Бизнес и наука - пути содействия
Реферат: Распределенные баз данных и распределенных СУБД
Реферат: Религиозные общины на Дальнем Востоке России
Реферат: Suicide Essay Research Paper
Реферат: Descartes Meditations Essay Research Paper Analyze in
1  
Реферат: Контрольная работа

Report Page