Проектирование и диагностика режимов электроэнергетической системы - Физика и энергетика курсовая работа

Главная
Физика и энергетика
Проектирование и диагностика режимов электроэнергетической системы
Обоснование выбора параметров и математическое моделирование воздушных линий, трансформаторов и автотрансформатора при проектировании электрической сети. Технико-экономическое сравнение двух вариантов сети. Спецификация оборудования и материалов.
посмотреть текст работы
скачать работу можно здесь
полная информация о работе
весь список подобных работ
Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
На основании заданных в относительных единицах зимних суточных графиков нагрузок составим графики нагрузок потребителей для зимы и лета, результаты расчетов сведем в табл.1.
Графики электрических нагрузок потребителей и потоки мощности от ГЭС и системы.
Из приведенной таблицы видно, что режим наибольшей нагрузки имеет место зимой с 20 до 24 часов (потребляемая мощность - 772/702 МВт), а режим наименьшей нагрузки - летом с 12 до 16 часов (потребляемая мощность 250,6/368,1 МВт).
Годовое потребление электроэнергии:
Число часов использования наибольшей нагрузки:
ч, где - максимальная мощность потребителей, МВт.
Рис.1 Два варианта конфигурации линий
Выбор номинальных напряжений и числа цепей линий проектируемой сети тесно связан и в общем случае представляет сложную технико-экономическую задачу, при решении которой требуется учитывать множество факторов: надежность электроснабжения потребителей, обеспечение нормируемого качества электроэнергии на зажимах электроприемников, перспективу развития сети и т.д. В данном случае выбор номинального напряжения осуществляется по формуле:
Выполним расчёт экономического напряжения UЭК для 1-го варианта схемы (участок ГЭС - ПС1):
Результаты расчетов для всех участков схем сведены в таблицы 4 и 5. По полученным экономическим значениям напряжений принимаем номинальные напряжения линий. Полученные значения для удобства так же представлены в таблицах 4 и 5.
После определения номинальных напряжений, устанавливается количество цепей ВЛ -исходя из условий надёжности питания потребителей I и II категорий ([1], п.1.2.17-1.2.19) (принимаем, что ремонт ВЛ или замена трансформатора менее, чем за сутки невозможны).
Все ЛЭП, кроме ПС4-ПС2,ПС5-ПС4, ПС3-ПС5, ПС2-ПС3 (входят в кольцо) выполняются двухцепными в варианте II, а в варианте I - все ЛЭП -двухцепные линии. Максимальные потоки по ЛЭП для схемы 1 представлены в таблице 2, а 2-й схемы - в таблице 3.
Расчёт максимальных перетоков мощности в кольце выполнен с учетом всех возможных случаев обрывов ВЛ кольца.
Максимально возможные потоки мощностей дляЛЭП схемы 1
Мощность перетока линии, МВт по временным интервалам
Максимально возможные потоки мощностей дляЛЭП схемы 2.
Мощность перетока линии, МВт по временным интервалам
Выбор сечения линии производится по следующим условиям ГЭС-ПC1:
1. По короне: По ([2], табл.3.7) минимальное сечение провода 500 кВ по условиям короны 3хАС300/66 или 2хАС 700/86. Для напряжения 220 кВ минимальное сечение(марка) АС 240/39.Для напряжения 110кВ минимальное сечение(марка) АС 70/11.
2. По допустимым потерям и отклонениям напряжения ВЛ35 кВ и выше проверке не подлежат ([3], с.160).
3. По экономической плотности тока.
4. По допустимой токовой нагрузке по нагреву:
Расчётная токовая нагрузка участка ГЭС-ПС1 схемы 1и 2:
где - максимальная мощность, протекающая по линии, - заданный коэффициент мощности.
По ([3], табл.7.12) максимально допустимый ток для одного провода АС 600/72составляет1050 А ( А, что превышает расчётное значение), однако по условию короны возможно применение провода марки 3хАС 300/66
( А на три провода, что превышает расчётный ток) и проводов с большими сечениями.
По экономической плотности рекомендуемое сечение:
Следовательно, принимаем ближайшее сечение - провод марки 3хАС 300/66.
Выбор сечений проводов остальных ВЛ производится аналогично и представлен в таблицах4, 5. Для удобства в данных таблицах представлены результаты выбора напряжений ЛЭП.
Выбор напряжений и сечений проводов ЛЭП схем 1
Выбор напряжений и сечений проводов ЛЭП схем 2
Выбор трансформаторов связи между двумя сетями зависит от многих факторов:
- номинальных напряжений объединяемых сетей;
-нагрузок на сторонах высокого, среднего и низкого напряжений подстанций;
- требования к надёжности электроснабжения потребителей;
- требований к регулированию напряжений;
Потоки мощности через автотрансформаторы для схем 1,2 представлены в таблице 6.
Потоки мощности через трансформаторы (автотрансформаторы)
По условиям надёжности электроснабжения потребителей I и II категорий у всех потребителей устанавливаемдвухтрансформаторные ПС.
Выбор номинальной мощности трансформаторов (автотрансформаторов) производится по следующей зависимости:
Для автотрансформаторов подстанции ПС1:
- максимальный поток мощности через трансформатор, МВА (МВт);
1,4 - коэффициент, учитывающий аварийную перегрузку трансформатора.
Выбор марок трансформаторов осуществлялся по табл.5.18-5.25 [2]. Результаты выбора сведены в таблицы 7 и 8.
Трансформаторы и автотрансформаторы, установленные на ПС для схемы 1.
Трансформаторы и автотрансформаторы, установленные на ПС для схемы 2
Два блока с выключателями и неавтоматической перемычкой со стороны линии (4Н)
Одна рабочая секционированная выключателем система шин (9)
Два блока с выключателем и неавтоматической перемычкой со стороны линии (4Н)
Мостик с выключателями в цепях линии и ремонтной перемычкой со стороны линии (5Н)
Мостик с выключателями в цепях линии и ремонтной перемычкой со стороны линии (5Н)
Мостик с выключателями в цепях линии и ремонтной перемычкой со стороны линии (5Н)
Мостик с выключателями в цепях линии и ремонтной перемычкой со стороны линии (5Н)
где - стоимость открытого распределительного устройства подстанции, тыс. руб.; - стоимость трансформаторов, тыс. руб.; - постоянная часть затрат, тыс. руб.
ПС-1: Сторона ВН ПС-1: 500кВ «Полуторная схема», тогда по ([3] табл. 9.15,с.334) тыс.руб.
Учтём стоимость устанавливаемых трансформаторов:
ПС-1: UВН-Т = 500 кВ, UНН-Т = 13,8 кВ, SТ=400 МВА, тыс.руб. ([3] табл.9.22): тыс.руб.;
Для ВН ПС-1: 500 кВ, «Полуторная» по ([3] табл.9.35) тыс.руб.
Результаты расчётов капитальных вложений в подстанции схемы 1, 2 представлены в таблицах13, 14.
Капитальные вложения в подстанции схемы 1
Капитальные вложения в подстанции схемы 2
Суммарные издержки , где - издержки на амортизацию, обслуживание и ремонт ВЛЭП и ПС, тыс. руб.; - издержки на стоимость потерянной в сети электроэнергии, тыс. руб.
где - ежегодные издержки на амортизацию, обслуживание и ремонт ВЛЭП в процентах от капитальных затрат; - стоимость сооружения линии, тыс. руб.
По ([3], табл.8.2,с. 315) %, тыс.руб.
По ([3], табл.8.2,с. 315) %, тыс.руб.
Издержки на амортизацию, обслуживание и ремонт ВЛЭП схемы 1 и 2:
где - ежегодные издержки на амортизацию, обслуживание и ремонт ПС в процентах от капитальных затрат; - стоимость сооружения ПС, тыс. руб.
Издержки на амортизацию, обслуживание и ремонт ПС схемы 1 и 2
Издержки на стоимость потерянной в электроэнергии:
, тыс. руб., где коп/кВтч - стоимость 1 кВт ч потерянной электроэнергии.
Число часов использования наибольшей нагрузки и время потерь определяются на основании графиков электрических нагрузок табл.1.
Зимний, летний и годовой потоки электроэнергии через С-ГЭС схем 1 и 2:
Число часов использования наибольшей нагрузки:
ч, где - максимальная активная мощность, протекающая через линию, МВт.
где - активная мощность i-й ступени годового графика нагрузки (упорядоченной диаграммы), МВт; - длительность появления мощности в году, ч.ч
Годовые потери электроэнергии в линии С-ГЭС:
где =70МВт ч/км -средне годовые потери на корону (для ВЛ 500 кВ ), ([3], табл.7.7); n - число цепей линии; L - длина линии, км;
МВт - потери активной мощности в линии; - поправочный температурный коэффициент.(среднегодовая температура выше +5 ° С).
Результаты расчётов для остальных ВЛ схемы 1 и 2 приведены в таблицах17 и 18 :
Стоимость потерянной в линиях схемы1 электроэнергии
Стоимость потерянной в линиях схемы 2 электроэнергии
Рассмотрим определение стоимости потерь электроэнергии для автотрансформаторов подстанции ПС4 для схемы 1.
Зимний, летний и годовой потоки мощности через обмотки автотрансформаторов определяются на основании графиков потоков мощности (см. таблицу 6).
Для обмотки ВН трансформатора АТ4 подстанции ПС4:
= (314+309+180+210+379+287)•4 = 6716МВт•ч;
= (217,6+213,9+129,2+147,35+261+201,65)•4 = 4682,8МВт•ч;
= 215•6716+ 150•4682,8 = 2146360МВт•ч.
Число часов использования наибольшей нагрузки
где - максимальная активная мощность, перетекающая через автотрансформаторы подстанции, МВт.
- активная мощность i-й ступени годового графика нагрузки (упорядоченной диаграммы), МВт; - длительность появления мощность в году, ч.
Для остальных обмоток автотрансформатора расчёт производится аналогично и представлен в таблице 19.
Потоки мощности через обмотки автотрансформатора АТ4, число часов максимальной нагрузки и число часов наибольших потерь
Ступень напряжения автотрансформатора
Годовые потери электроэнергии в автотрансформаторах подстанции ПС4 определяются по следующей формуле [4]:
где n - число автотрансформаторов на подстанции;
- потери холостого хода автотрансформатора, МВт;
, , - потери короткого замыкания в обмотках ВН, СН и НН, МВт;
, , - число часов наибольших потерь на сторонах ВН, СН и НН автотрансформаторов, ч;
, , - максимальный поток мощности через обмотки ВН, СН и НН автотрансформаторов, МВА;
- номинальная мощность, автотрансформаторов, МВА.
Для автотрансформаторов подстанции ПС4 схемы варианта 2 расчёт проводится аналогично. Результаты расчёта потерь электроэнергии в автотрансформаторах схемы 1 представлены в таблице 20.
Расчёт потерь электроэнергии в автотрансформаторах для схемы 1 и схемы 2
Суммарные потери электроэнергии в линиях и трансформаторах для схем 1 и 2:
Суммарные издержки для каждого варианта схем (учитываются издержки на подстанции).
Суммарные издержки для каждого варианта схем (учитываются издержки на подстанции).
Вывод по пункту : В результате проведенного технико-экономического расчёта получили два примерно одинаковых по экономическим затратам варианта. Второй вариант с кольцевым исполнением системы (см.рис.2) оказался на 2,9% дороже первого варианта, однако он обеспечивает большие возможности по расширению и дальнейшему развитию электрической сети, кроме того кольцо выполнено на напряжение 220 кВ, в то время как в первом варианте используется 2 ступени 220 и 110 кВ. Таким образом принимаем в качестве наиболее рационального, второй вариант исполнения электрической сети.
ГЛАВА 4 . Математическое моделирование элементов сети
В данной главе рассматривается моделирование всех элементов электрической сети: воздушных линий, трансформаторов, реакторов, нагрузок и источников.
Линии 220 кВ выполняются на одноцепных свободностоящих железобетонных опорах ПБ220-4 ([5], табл.4-4-10, рис.4-16д) рис. 5.
Линии 500 кВ выполняются на одноцепных свободностоящих опорах железобетонных опорах ПВС-500Ц-2 ([5], табл.4-4-12, рис.4-18в) рис. 6.
По ([5], табл.2.10.57, [5], 2.3.6.) для линий напряжением 500 кВ необходима гирлянда из 24 изоляторов ПС160-Б (ПС16-Б) высотой , где H = 170 мм - высота одного изолятора. Аналогично рассчитываются параметры ВЛ 220, 110 кВ. Конструктивные параметры воздушных линий электропередачи [5] приведены в таблице 21.
Таблица 21 Конструктивные параметры воздушных линий электропередачи
Удельное активное сопротивление фазы, Ом/км
Удельное активное сопротивление троса, Ом/км
При расчёте режима сети для прямой последовательности ВЛ представляются многополюсниками, параметры которых определяются на основании расчётных данных ВЛ ([3], табл.7.5,c.277).
Для воздушных линий электропередачи принимаю П-образную схему замещения [1], представленную на рис. 8.
Рис. 8 Схема замещения воздушной линии электропередачи
Заданными считаются продольные сопротивления Z12 и поперечные сопротивления Z10 и Z20. Численные значения указанных параметров рассчитываются по данным табл.28:
Таблица 23 Параметры схем замещения ВЛ для прямой последовательности
Расчёт параметров схемы замещения на примере воздушной линии ГЭС-С.
Удельная активная проводимость линии, См/км
- номинальное напряжение воздушной линии электропередачи, кВ;
Удельное комплексное сопротивление линии электропередачи
Удельная комплексная проводимость линии электропередачи
Так как длина линии электропередачи составляет 510 км, то учитываю коэффициент распределённости параметров:
Продольное сопротивление схемы замещения
Поперечная проводимость схемы замещения
Поперечное сопротивление схемы замещения
Параметры схем замещения для остальных линий электропередачи определяются аналогично. Результаты расчёта параметров схем замещения для линий электропередачи электрической сети представлены в таблице 24.
Таблица 24 Параметры схем замещения воздушных линий электропередачи
Для двухобмоточных трансформаторов принята Г-образная схема замещения, а для автотрансформаторов - Y-образная, которые составляются на основе каталожных данных:
Рис.9 Схемы замещения трансформаторов: а) Г-образная; б) Y-образная
Таблица 25 Каталожные данные автотрансформаторов
Реактивное сопротивление обмоток, Ом
Расчёт поперечного сопротивления схемы замещения на примере автотрансформатора АТДЦТН-167000/500/220 подстанции ПС4.
Полная мощность холостого хода, МВА (расчет для трех трансформаторов):
- потери холостого хода в автотрансформаторе, МВт;
- номинальная (проходная) мощность автотрансформатора, МВА.
- сопряжённый комплекс полной мощности холостого хода, МВА;
- номинальное напряжение обмотки ВН автотрансформатора, кВ.
Поперечные сопротивления для схем замещения остальных трансформаторов и автотрансформаторов определяются аналогично. Результаты расчёта представлены в таблице 26.
Таблица 26 Параметры Y-образной схемы замещения автотрансформатора
Таблица 27 Параметры Г-образной схемы замещения трансформатора
ГЛАВА 5 . Расчеты и анализ характерных режимов
В этой главе проводится расчёт характерных режимов сети, анализ результатов и, при необходимости, корректировка параметров сети и повторный расчёт.
Имеет место зимой с 20 до 24 ч, когда потребляемая мощность составляет 772МВт. ГЭС вырабатывает 800 МВт, остальная мощность отдается в систему.
Примеры справочного и рабочего файлов приведены в приложении.
В результате расчета режима было видно, что значения напряжений узлах схемы не выходили за рамки допустимых («+/-»5% от номинальных значений), это было достигнуто применением компенсирующих устройств на стороне высокого и низкого напряжений, для чего была проведена оптимизация Q. Для нормального функционирования системы необходимо в узел (1) добавить 11*РОМБСМ-60000/500У1, в узел (2)5*УРТД-180000/500, в узел (3) 2*РОМБСМ-60000/500У1, в узел (5) 3*РОМБСМ-60000/500У1 в узел (12) 5*БСК-10МВАр-10,5кВ. Значение напряжения у потребителей приведены в приложении.
Таким образом, после установки компенсирующих устройств режим удовлетворителен по напряжению и количеству выдаваемой потребителям мощности.
Имеет место летом c12 до 16 ч, когда потребляемая мощность составляет 250,6 МВт. ГЭС вырабатывает 600 МВт, 349,4 МВт уходит в систему.
Примеры справочного и рабочего файлов приведены в приложении.
В результате расчета режима было видно, что значения напряжений узлах схемы не выходили за рамки допустимых («+/-»5% от номинальных значений), это было достигнуто применением компенсирующих устройств. При данных параметрах сети система являлась неустойчивой. Для нормального функционирования системы необходимо в узел (1) добавить 8*РОМБСМ-60000/500У1, в узел (2)17*РОМБСМ-60000/500У1, в узел (3)10*РОМБСМ-60000/500У1, в узел (4)2*БСК-10МВАр-10,5кВв узел (12) 5*БСК-10МВАр-10,5 кВ. Значение напряжения у потребителей приведены в приложении. Таким образом, после установки компенсирующих устройств режим удовлетворителен по напряжению и количеству выдаваемой потребителям мощности.
В качестве послеаварийного принят режим сети при одной отключенной ВЛГЭС-ПС1 (2-3) в режиме максимальных нагрузок.
В результате расчета режима было видно, что значения напряжений узлах схемы не выходили за рамки допустимых («+/-»5% от номинальных значений), это было достигнуто применением компенсирующих устройств. При данных параметрах сети система являлась неустойчивой. Для нормального функционирования системы необходимо в узел (1) добавить 9*РОМБСМ-60000/500У1, в узел (2) 11*РОМБСМ-60000/500У1, в узел (7) 6*БСК-10МВАр-10,5 кВ, в узел (4) 5*БСК-10МВАр-10,5кВ в узел (12) 5*БСК-10МВАр-10,5 кВ. Значение напряжения у потребителей приведены в приложении. Таким образом, после установки компенсирующих устройств режим удовлетворителен по напряжению и количеству выдаваемой потребителям мощности.
Таблица 28 Капитальные вложения в линии
Таблица 30 Стоимость трансформаторов
Потери электроэнергии делятся на условно- постоянные и условно-переменные.
1. На холостой ход трансформаторов:
Таблица 32 Потери электроэнергии на холостой ход трансформаторов
Таблица 33 Потери электроэнергии на корону ВЛ
Годовые условно-постоянные потери электроэнергии
Потери мощности в сети в режиме наибольшей нагрузки:
Годовые условно-переменные потери электроэнергии
6.1 Спецификация основного оборудования и материалов
Таблица 34 Спецификация основного оборудования и материалов
1. Правила устройства электроустановок/Минэнерго СССР. - 6-е изд., перераб. и доп. - М.: Энергоатомиздат, 1986. - 648 с.: ил.
2. Неклепаев Б.Н., Крючков И.П. Электрическая часть станций и подстанций: справочные материалы для курсового и дипломного проектирования. Учеб. Пособие для вузов. - 4-е изд., перераб. и доп. - М.: Энергоатомиздат, 1989. - 608 с., ил.
3. Справочник по проектированию электроэнергетических систем. В.В. Ершевич, А.Н. Зейлигер, Г.А. Илларионов и др.; Под ред. С.С. Рокотяна и И.М. Шапиро. - 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 1985. - 352 с .
4. Справочник по электрическим установкам высокого напряжения. С.А. Бажанов, И.С. Батхон, И.А. Баумштейн и др.; Под ред. И.А. Баумштейна и М.В. Хомякова. - 2-е изд., перераб. и доп. - М.: Энергоиздат, 1981. - 656 с., ил
Проектирование электрической сети районной электроэнергетической системы. Сравнение технико-экономических вариантов сети, выбор мощности трансформаторов подстанций. Расчет сети при различных режимах. Проверка токонесущей способности проводов линий. курсовая работа [1,6 M], добавлен 16.04.2012
Предварительный выбор числа и мощности трансформаторов. Выбор сечений линий электропередач для различных вариантов схемы развития. Экономическое сравнение вариантов электрической сети. Исследование аварийных и послеаварийных режимов электрической сети. курсовая работа [1,4 M], добавлен 25.12.2014
Выбор вариантов развития существующей сети. Выбор номинальных напряжений сооружаемых воздушных линий радиального варианта сети. Определение сечений проводов сооружаемых линий радиального варианта сети. Выбор понижающих трансформаторов на подстанции. курсовая работа [2,9 M], добавлен 22.07.2014
Анализ различных вариантов развития сети. Выбор номинального напряжения сети, определение сечения линий электропередачи, выбор трансформаторов на понижающих подстанциях. Расчет установившихся режимов сети для двух наиболее экономичных вариантов развития. дипломная работа [1,1 M], добавлен 20.08.2014
Составление вариантов схемы электрической сети и выбор наиболее рациональных из них. Расчет потокораспределения, номинальных напряжений, мощности в сети. Подбор компенсирующих устройств, трансформаторов и сечений проводов воздушных линий электропередачи. курсовая работа [1,6 M], добавлен 24.11.2013
Разработка вариантов конфигураций и выбор номинальных напряжений сети. Выбор компенсирующих устройств при проектировании электрической сети. Выбор числа и мощности трансформаторов на понижающих подстанциях. Электрический расчет характерных режимов сети. курсовая работа [599,7 K], добавлен 19.01.2016
Разработка вариантов конфигурации электрической сети. Выбор номинального напряжения сети, сечения проводов и трансформаторов. Формирование однолинейной схемы электрической сети. Выбор средств регулирования напряжений. Расчет характерных режимов сети. контрольная работа [616,0 K], добавлен 16.03.2012
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .
© 2000 — 2021
Проектирование и диагностика режимов электроэнергетической системы курсовая работа. Физика и энергетика.
Эссе На Тему Инновация
Курсовая работа по теме Проектирование центральных и периферийных устройств ЭВС-2
Контрольная Работа По Геометрии 8 Погорелов
Реферат: Монтаж кабельных линий в земле
Эссе Герои Отечества
Реферат: Аналіз розвитку системи освіти в Італії
Организационная Деятельность Реферат
Реферат: Заболевание отит, его симптомы и лечение
Сочинение На Лист Про Зиму
Подготовка К Сочинению Описание Памятника
Дипломная работа по теме Модернизация выталкивателя заготовок нагревательной печи стана
Реферат: Winslow Homers
Экономика Современной России Реферат
Мотивация и стимулирование персонала. Конфликты
Курсовая Работа На Тему Учет Основных Фондов
Курсовая работа по теме Проектирование первичной сети связи на железнодорожном участке
Реферат по теме Брусчатка, опаленная войной. Из истории Москвы
Понятие Инновационное Образование Реферат
Реферат: Сооружения из природного камня в Италии
Методы Инструментальной Диагностики Эндокринной Системы Реферат Скачать
The neologisms and their word building means in Modern English - Иностранные языки и языкознание курсовая работа
Проектирование и исследование механизмов передвижения корзины коксонаправляющей - Производство и технологии курсовая работа
Эволюция органа слуха - Биология и естествознание реферат