Проектирование цифровых каналов и трактов - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа

Проектирование цифровых каналов и трактов - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа



































Расчет параметров системы цикловой синхронизации и устройств дискретизации аналоговых сигналов. Исследование защищенности сигнала от помех квантования и ограничения, изучение операции кодирования, скремблирования цифрового сигнала и мультиплексирования.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Московский Технический Университет Связи и Информатики
Кафедра Многоканальной Электросвязи
"Проектирование цифровых каналов и трактов"
U огр =1.15В U вх =0.35 В А зкв =41.5 дБ
U огр =1.15В U вх1 = -0.02 В U вх2 = 0.91 В N кодового слова с ошибкой =5 N позиции с ошибкой =2;7
p ош =0.19 . 10 -4 , r 1 =3 , r 2 =1 , b=7, b k =1;7
Число для перевода в двоичную систему - 119
10101110 0 001111011110 1 0000000010
Задание №1 . Выбор параметров устройств дискретизации аналоговых сигналов
1.1 Выберите частоту дискретизации широкополосного аналогового цифрового сигнала, рассчитайте период дискретизации.
1.2 Выберите частоту дискретизации узкополосного аналогового сигнала, рассмотрев два варианта: с переносом спектра аналогового сигнала вниз по частоте и без переноса. Для варианта с переносом укажите значения несущей.
Все частоты дискретизации и несущая частота должны выражаться целыми числами, а промежутки на расфильтровку составлять примерно 5-10% от верхней частоты среза соответствующего фильтра.
1.3 Рассчитайте и постройте спектральные диаграммы сигналов АИМ, отвечающие каждой из рассмотренных ситуаций, отметив на них расчётные значения частот. Укажите способы демодуляции сигналов АИМ.
Спектры аналоговых сигналов 21-767 кГц, 59-7 5кГц
1.1 Частоту дискретизации широкополосного сигнала выбирают по теореме Котельникова в её классическом варианте: (с учётом запаса на расфильтровку).
С учётом полосы расфильтровки (10% от Fв):
1.2 Частота дискретизации узкополосного аналогового сигнала (59-75кГц)
т.е. спектр преобразуемого сигнала меньше октавы, следовательно возможно использовать менее высокую, чем по Котельникову, частоту дискретизации можно определить двумя способами:
Метод переноса исходного спектра в область нижних частот:
Исходя из того, что мы должны приблизить исходный спектр сигнала максимально к нулю,
С учётом полосы расфильтровки (10% от Fв):
Метод " последовательного приближения "
Рассмотрим выбор Fд методом "последовательного приближения" для сигналов
исходя из этого условия, можно найти Fд без переноса спектра вниз, применяя условие демодуляции:
2 Fн/ n > Fд > 2 Fв / n+1, где n=1,2,3.. (формула 1)
По формуле 1, путем подбора находим:
Выберем частоту дискретизации: Fд=39 кГц. Однако, при выбранном значении n нет 10% полосы расфильтровки, поэтому уменьшим n на единицу. Тогда Fд=55 кГц, но при этой n тоже нет 10% полосы расфильтровки, поэтому уменьшим n еще на единицу:
Fд =97 кГц нам подходит, т.к. выполняется условие расфильтровки. Найдем минимальные условия для полосы расфильтровки, по расчетам возьмем:
Исходя из расчетов, Fд =83 кГц является оптимальной частотой дискретизации при fрmin = 8кГц
2) узкополосного с переносом спектра
3) узкополосного без переноса спектра
Вывод: При дискретизации узкополосного сигнала частота дискретизации, найденная по теореме Котельникова, получается слишком высокой. Чтобы её уменьшить целесообразно перенести спектр аналогового сигнала до дискретизации вниз по частоте.
Задание №2 . Исследование защищенности сигнала от помех квантования и ограничения
2.1 Определите минимальное количество разрядов m в кодовом слове, при котором обеспечивается заданная защищённость гармонического колебания с амплитудой Um от шумов квантования Азкв при равномерном квантовании. Постройте зависимость защищённости от уровня гармонического колебания при изменении его амплитуды от Um до напряжения ограничения U огр.
2.2 Приведем для наглядности характеристику помехозащищенности и характеристику компандирования для А87.6/13
Исходные данные : Uогр=Uo=1.15В, Uвх= Uв=0.35В, Азкв=Аз=41,5 дБ.
, где Р с и Р ш - мощность сигнала и помехи
Для построения характеристики защищенности определим:
Теперь рассчитаем реальную величину защищенности от помех квантования:
Рис.1 Характеристика защищенности от сигнала.
2.2 Приведем для наглядности характеристику помехозащищенности и характеристику компандирования.
Рис.2 Характеристика защищенности от шумов квантования для характеристики А87.6/13 [2]
Рис.8 Амплитудная характеристика неравномерного квантующего устройства
Вывод: Для обеспечения требуемой защищенности необходимо использовать 9 разрядов. При этом характеристика будет линейно возрастать и лежать выше Азкв.тр.
Задание №3 . Изучение операции кодирования и декодирования
3.1 Для двух отсчётов аналогового сигнала с амплитудами U 1 и U 2 выполните операции неравномерного квантования и кодирования, осуществляемые в нелинейном кодере с сегментированной характеристикой компрессии А-типа. Определите абсолютные и относительные величины ошибок квантования этих отсчётов и изобразите полученные в результате кодовые слова в виде последовательности токовых и бестоковых посылок в коде БВН.
3.2 Осуществите нелинейное декодирование кодовых слов, полученных в предыдущем пункте, если в указанных заданием разрядах произошли ошибки, то есть вместо символа " 1 " принят символ " 0 " и наоборот.
Исходные данные: Uогр=1.15В, U1=-0.02В, U2=0.91В, N=5, n=2, 7
Рис.4 Структурная схема кодера с нелинейным квантованием
Рис. 5 Структурная схема декодера кодека с нелинейным квантованием
Таблица 2 Параметры амплитудной характеристики квантующего устройства А87,6/13
В соответствии с этой характеристикой 8-и разрядное кодовое слово мгновенного значения сигнала имеет структуру PXYZABCD . В этой структуре P - старший разряд указывает полярность сигнала ( " 1 " - положительная, " 0 " - отрицательная), XYZ - код номера сегмента, а ABCD - код номера шага внутри сегмента.
Согласно заданным значениям, при неравномерном квантовании получим два кодовых слова:
3. 1 На вход код ера поступает сигнал величиной -36 0 . В первом разряде будет сформирован " 0 " : Р=0 (сигнал имеет отрицательную величину). В течение следующих трёх тактов формируются разряды кода номера сегмента ( XYZ ) по следующему алгоритму:
Код сегмента 010, шаг квантования h=2 с Хн =32
Далее осуществляем кодирование методом взвешивания:
Полученная кодовая комбинация: 0010 0010
При декодировании будет восстановлено значение:
Изобразим сигналы в коде NRZ (код БВН)
На вход кодера поступает сигнал величиной 1621 0
Р=1 (сигнал имеет положительную величину)
Код сегмента 111, шаг квантования с Хн =
Далее осуществляем кодирование методом взвешивания:
Полученная кодовая комбинация: 1111 1001
При декодировании будет восстановлено значение:
Относительная ошибка квантования составит при этом:
Изобразим сигналы в коде NRZ (код БВН)
3.2 Согласно заданию ошибка произошла во 2 и 7 разрядах второй кодовой комбинации.
· Была комбинация 0010 0100, стала 0110 0100 (ошибка в 2 разряде)
"0" в первом разряде соответствует отрицательному мгновенному значению. Следующие три разряда "110" соответствуют шестому сегменту, шаг квантования в котором равен 32.
Последние четыре разряда "0100" соответствуют значению согласно линейному декодированию. На выход декодера поступит
Расчет абсолютной ошибки декодирования:
· Была комбинация 0010 0100, стала 0010 0110 (ошибка в 7 разряде)
"0" в первом разряде соответствует отрицательному мгновенному значению. Следующие три разряда "010" соответствуют второму сегменту, шаг квантования в котором равен 2. Последние четыре разряда "0110" соответствуют значению согласно линейному декодированию. На выход декодера поступит
Расчет абсолютной ошибки декодирования:
· Была комбинация 1111 1001 , стала 1011 1001 (ошибка в 2 разряде) "1" в первом разряде соответствует положительному мгновенному значению. Следующие три разряда "011" соответствуют третьему сегменту, шаг квантования в котором равен 4.
Последние четыре разряда "1001" соответствуют значению согласно линейному декодированию. На выход декодера поступит
Расчет абсолютной ошибки декодирования:
· Была комбинация 1111 1001 , стала 1111 1011 (ошибка в 7 разряде)
"1" в первом разряде соответствует положительному мгновенному значению. Следующие три разряда "111" соответствуют седьмому сегменту, шаг квантования в котором равен .
Последние четыре разряда "1011" соответствуют значению согласно линейному декодированию. На выход декодера поступит
Расчет абсолютной ошибки декодирования:
Вывод : ошибки в старших разрядах, в которых закодирован номер сегмента, приводят к тому, что амплитуда отсчёта на приёме значительно отличается от переданной, что может привести к щелчкам и нарушению благозвучия речи. При возникновении ошибок в младших разрядах амплитуда восстановленного на приёме отсчёта ненамного отличается от переданной (в пределах одного сегмента), т.е. Чем старше разряд ошибочного символа, тем больше величина ошибки при декодировании
Задание № 4. Расчёт основных параметров системы цикловой синхронизации
4.1 Рассчитайте среднее время удержания и среднее время восстановления циклового синхронизма, если в системе применён неадаптивный приёмник со скользящим поиском циклового синхросигнала.
4.2 Определите выигрыш во времени восстановления синхронизма для случая независимой параллельной работы блока поиска синхросигнала и блока накопления по выходу из синхронизма.
При выполнении задания считать, что система используется в первичной ЦТС с циклами передачи РСМ31.
Количество символов в синхрогруппе b =7,
Ёмкость накопителя по выходу из синхронизма r 1 = 3
Ёмкость накопителя по входу в синхронизм r 2 =1
Вероятность ошибки в линейном тракте p е = 0 ,1 9 10 -4
Структурная схема неадаптивного приёмника циклового синхросигнала со скользящим поиском выглядит так:
Среднее время Т ср между пакетами из n событий, если вероятность события равна р, а период повторения опыта Т, определяется по формуле:
Рис. 6 Структурная схема неадаптивного приёмника циклового синхросигнала со скользящим поиском
При определении Т уд : Т- период посылки циклового синхросигнала ( для первичной ЦТС с циклами передачи РСМ31 Т=250мкс), n=r 1 , а вероятность р приёма искажённой синхрогруппы равна:
Среднее время удержания циклового синхронизма равно:
Среднее время восстановления циклового синхронизма складывается из средних значений времени заполнения накопителя по выходу из синхронизма, заполнения накопителя по входу в синхронизм и поиска циклового синхронизма.
-среднее время между двумя событиями
- время заполнения накопителя по выходу из синхронизма
- время накопителя по входу в синхронизм
Среднее время заполнения накопителя по выходу из синхронизма вычисляется по вышеприведённой формуле, где вероятность р приёма искажённой синхрогруппы - вероятность появления единицы на выходе накопителя:
Среднее время заполнения накопителя по входу в синхронизм определяется по формуле:
Для определения среднего времени поиска циклового синхронизма найдём количество символов между соседними синхросигналами:
Среднее время поиска для циклового синхронизма с одной критической точкой равно:
При этом время восстановления равно:
Среднее время поиска для циклового синхронизма с семью критическими точками равно:
Время восстановления циклового синхронизма:
Выигрыш во времени восстановления синхронизма:
1. При заданных условиях цикловой синхронизм с одной критической точкой даёт выигрыш по сравнению с ЦСС с семью критическими точками во времени восстановления синхронизма.
2. Выигрыш во времени восстановления синхронизма для случая независимой параллельной работы блока поиска синхросигнала и блока накопления по выходу из синхронизма составляет 0.77 мс. Такой приёмник называется адаптивным, он эффективен при высоком коэффициенте ошибок.
Задание №5 . Временное группообразование (мультиплексирование)
5.1 Постройте первые 20 или более позиций последней строки цикла (последнего субцикла) ЦТС ИКМ-120 с двусторонним согласованием скоростей, если заданы два последовательно переданных поля команд согласования. Считать, что принятые команды истинные. Отметить отсутствие или наличие ошибок в заданных командах.
5.2 Для ЦТС ИКМ-480 с односторонним согласованием определите длительность цикла передачи, номинальную и максимальную скорости передачи компонентных потоков. Как в задаче 5.1., постройте первые 16 или более позиций последней строки цикла (последнего субцикла) ЦТС ИКМ-480 с односторонним согласованием скоростей, если задано поле команд согласования.
5.3 Постройте цикл передачи системы высшей ступени ПЦИ.
5.1 Исходя из заданных полей, команды согласования по компонентным потокам следующие:
1 поток - отрицательное согласование (одиночная ошибка в первом и втором циклах)
2 поток - нейтральная команда (одиночная ошибка в первом и втором циклах)
3 поток - отрицательное согласование (одиночная ошибка во втором цикле)
4 поток - нейтральная команда (одиночная ошибка в первом и втором циклах)
В соответствии с этими командами последняя строка цикла ЦТС ИКМ-120 имеет вид:
Здесь буквами А, В, С, D обозначены имена компонентных потоков, а числа при них - порядковые номера битов в последней строке цикла. Символы ХХХХ обозначают биты последующей КСС.
Скорость передачи компонентных потоков В1ном=8448 кбит/с,
Скорость передачи агрегатного потока В2ном=34368 кбит/с,
Число символов в цикле dц=1536 символов,
Число символов на агрегатный поток dк=378 символов.
Максимальная скорость согласования на один компонентный поток:
Количество символов на компонентный поток при его номинальной скорости:
Номинальная скорость согласования на один компонентный поток
Номинальный коэффициент цифрового согласования
Допустимые макс. и мин. скорости передачи компонентных потоков соответствуют случаям макс. и мин. количества символов компонентного потока в цикле передачи:
В данном случае используется только положительное согласование скоростей компонентных потоков. Команда согласования имеет вид "111", отсутствие команды - "000". Команда считается опознанной, даже если один из ее символов искажен.
Команды согласования по компонентным потокам следующие:
1,2,3,4 потоки - нет согласования (одиночная ошибка)
Вывод: в системах с двусторонним согласованием скоростей нужно передавать информацию о трех возможных состояниях: согласование скоростей не производилось, произошло отрицательное или положительное согласование скоростей. В таких системах защиту от искажений 1 символа команды согласования скоростей обеспечивают 5-разрядные кодовые группы, соответственно, от искажений 2-х - 7-разрядные кодовые группы. В системах с односторонним согласованием нужно передавать информацию лишь о двух состояниях: согласование производилось или нет. Поэтому при одностороннем согласовании скоростей количество символов, требуемое для передачи указанной информации, гораздо меньше, чем в системах с двусторонним согласованием. Защита от n ошибок осуществляется передачей подряд 0 или 1 в количестве 2n+1 символов. Таким образом, надежность системы синхронизации обеспечивается методом накопления, а команды согласования скоростей передаются однократно, поэтому здесь используется избыточность команд.
Задание №6 . Скремблирование цифрового сигнала и контроль достоверности с помощью кодов BIP -2 и CRC -4
6.1 Изобразите функциональную схему скремблера с предварительной установкой на основе семиразрядного регистра сдвига. Определите первые двадцать символов псевдослучайной последовательности (ПСП), а также структуру двоичных последовательностей на выходе скремблера и дескремблера, если информационная последовательность имеет вид 11111111110000000000.
6.2 Определите структуру кодовых слов BIP-2 и СRС-4, соответствующих блоку из двадцати символов ПСП.
Скремблированием называют сложение по модулю два информационной последовательности символов с псевдослучайной последовательностью (ПСП). На приёмной стороне дескремблер повторяет эту операцию, восстанавливая исходную информационную последовательность.
Основным элементом как скремблера, так и дескремблера является генератор ПСП. На рисунке показана функциональная схема генератора, построенная на основе семиразрядного регистра сдвига с логической обратной связью, реализующей операцию сложения по модулю два. Период повторения такой ПСП составляет 127 бит.
Рис.7 Структурная схема скремблера/дескремблера:
Начальная последовательность в соответствии с начальным состоянием регистра: 119 (10) =1110111 (2)
Таблица 5 Формирование последовательности на выходе генератора ПСП:
Последовательность на выходе скремблера получается в результате сложения по модулю два полученной ПСП и информационной последовательности.
Последовательность на выходе дескремблера получается в результате сложения по модулю два скремблированной последовательности и ПСП.
Последовательность на выходе скремблера
Для обнаружения ошибок используется код BIP-2, который получается путём разбивания выходного потока на группы по 2 бита. Первые биты этих групп суммируются по модулю два, а результат помещается в первый разряд кодового слова BIP-2. Аналогично формируется второй разряд кодового слова путём суммирования по модулю два вторых битов групп.
Получено кодовое слово 00, которое размещается на позиции заголовка.
Для контроля за появлением ошибок в плезиохронном потоке Е1 (2048кбит/с) применяется код CRC-4. Проверочное слово является остатком от деления кодового слова на образующий полином А 0 (х)=х 4 +х+1.
Запишем скремблированную последовательность в виде полинома:
А(х)=х 2 +х 3 + х 4 + х 5 + х 9 + х 10 + х 12 +х 15 + х 18 +х 19
Разделим его на образующий полином.
Остаток соответствует проверочной комбинации 0011, которая передаётся на приёмный конец, где происходит аналогичное деление, и остатки сравниваются. Если остатки не совпадают, это означает, что произошла ошибка.
Вывод: операция скремблирования заключается в сложении по модулю 2 информационной последовательности и ПСП, что используется для решения проблемы выделения синхросигнала при больших пакетах нулей в кодовой последовательности. Для определения параметров качества цифровых каналов и трактов используют методы контроля ошибок с помощью кодов BIP и CRC
Задание №7 . Изучение линейных и стыковых кодов
7.1 Изобразите заданную последовательность нулей и единиц в кодах AMI, NRZ, HDB-3, 2B1Q, CMI в виде прямоугольных импульсов соответствующей полярности и длительности. Определите текущую цифровую сумму в конце каждого октета, а также предельное значение текущей суммы. Сделайте краткое заключение по результатам определения текущей суммы для каждого кода.
7.2 Введите в последовательность кода HDB-3 ошибки на указанных позициях. Произведите декодирование полученной последовательности и сравните её с исходной. По результатам сравнения сделайте выводы.
Задана последовательность 10101110 0 001111011110 1 0000000010
Рассмотрим формирование различных кодов:
AMI: "0"-отсутствие импульса, "1"-импульсы длительностью половины тактового интервала чередующейся полярности
NRZ: "0"-отрицательный импульс, "1"-положительный импульс
HDB-3: соответствует формированию кода AMI, но пакеты из четырех нулей заменяются комбинацией вида 000V и B00V,в которых импульс B не нарушает полярностей, а импульс V-нарушает, то есть его полярность совпадает с полярностью предыдущего импульса.
2B1Q: двоичные комбинации вида 00, 01, 10, 11 заменяются импульсами с амплитудами
-2, -1, +1,+2 соответственно. Длительность импульсов равна удвоенному тактовому интервалу исходной последовательности
CMI: "1" передаются импульсами чередующейся полярности длительностью в тактовый интервал, "0" передаются биимпульсами
Таблица 7 Определение текущей суммы:
Рис. 8 Вид заданной последовательности нулей и единиц в кодах AMI, NRZ, HDB-3, 2B1Q, CMI в виде прямоугольных импульсов соответствующей полярности и длительности
Коэффициент размножения ошибок рассчитывается по формуле:
Кразмн.ош = кол-во ставших ошибок/ кол-во бывших
При декодировании последовательности кода HDB-3 с 2 ошибками в указанных позициях получили на приемном конце размножение ошибок, характерное для кодов этого вида.
- Двух уровневые коды (NRZ, CMI): получили широкое распространение в волоконно - оптических линиях связи из-за наибольшей помехозащищенности и минимальным числом разрешенных уровней. Кроме того, в коде CMI нч составляющие спектра подавлены, присутствует составляющая тактовой частоты, сигнал имеет относительно узкий спектр. Данный код рекомендован МСЭ-Т для интерфейсов цифровых сетевых трактов со скоростями передачи от 140 до 155 Мбит/c
- Трехуровневые коды (AMI, HDB) - получили применение на первых этапах развития и внедрения ЦТС. Имеют невысокую помехозащищенность, невозможность выделения хронирующего сигнала и неширокий энергетический спектр, что важно для передачи по металлическим парам, велика вероятность размножения ошибок. Код HDB3 рекомендован МСЭ-Т для интерфейсов цифровых сетевых трактов со скоростями передачи от 2,8, 5 и 34 Мбит/c.
- Алфавитные (блочные) коды. Код 2B1Q - широко используется в сетях абонентского доступа, т.к. позволяет существенно снизить тактовую частоту передаваемой последовательности.и улучшают использование кодового пространства.
Задание №8. Проектирование участка регенерации ЦТС симметричного кабеля
Рассчитайте максимальную протяженность участка регенерации ЦТС симметричного кабеля при использовании однокабельной и двухкабельной схем. Сопоставьте результаты, сделайте выводы.
Высота прямоугольного импульса на входе тракта
Для заданного кабеля КСПП - 1 х 4 х 0.9 имеем:
Коэффициент затухания на частоте 1 МГц:
Среднее значение переходного затухания на ближнем конце на частоте 1 МГц:
Структурная схема участка регенерации имеет вид:
Рассмотрим действие собственных помех. Защищенность от собственных помех вычисляется по формуле:
- абсолютный уровень пиковой мощности прямоугольного импульса на входе тракта
- тактовая частота сигнала в линии, МГц; так как код 2B1Q меняет тактовую частоту в два раза то теперь она равна ;
- затухание линии на полутактовой частоте, дБ.
Найдем коэффициент затухания на полутактовой частоте:
Требуемая величина защищенности, при которой обеспечивается заданная вероятность ошибки, вычисляется по формуле:
где L - число уровней кода в линии, для кода 2B1Q L = 4;
= 5…10 дБ - запас защищенности, характеризующий качество изготовления регенератора. Возьмем = 10 дБ.
Чтобы определить максимальную протяженность участка регенерации, ограниченную собственной помехой, необходимо приравнять ожидаемую и требуемую защищенности , решив полученное уравнение относительно, получим:
Максимальная протяженность участка равна:
Рассмотрим однокабельную схему. В ней учитывают собственные помехи и переходные влияния на ближний конец.
Если уровень первой гармоники колебания на входе влияющей цепи , то уровень переходной помехи в ТРР равен
Уровень сигнала в этой же точке равен
Ожидаемая минимальная защищенность от ПП из-за ПВБК в ТРР составит:
Максимально допустимое затухание участка регенерации, ограниченное ПВБК, найдем, приравняв ожидаемую и требуемую защищенности , причем для четырехуровневого кода. Найдем среднее значение переходного затухания на ближнем конце на полутактовой частоте:
Максимальная протяженность участка регенерации равна:
Вывод: при использовании однокабельной схемы симметричной кабельной цепи переходное влияние на ближний конец ограничивает протяженность участка регенерации величиной 0.655 км, что в 4,24 раза меньше длины участка, полученной при рассмотрении влияния только собственной помехи. Таким образом, при расчете такой схемы необходимо в большей степени учитывать переходные помехи на ближний конец.
Рассмотрим двухкабельную схему. В ней учитывают собственные помехи и переходные влияния на дальний конец.
Уровень переходной помехи в ТРР равен ;
Уровень сигнала в этой же точке равен ;
Защищенность сигнала от помехи в ТРР равна: ,
то есть ожидаемая минимальная защищенность от ПП из-за ПВДК в ТРР равна защищенности цепи на дальнем конце на полутактовой частоте.
Среднее значение защищенности на участке кабеля длиной км на полутактовой частоте равно 37.4 Дб при f0 = fт / 2 = 8.592 МГц
Максимальную протяженность участка регенерации, ограниченную ПВДК, найдем, приравняв среднее значение защищенности к требуемому , причем 22 Дб, для четырехуровневого кода. Получим:
Определим максимальную протяженность участка регенерации из соотношения:
Полученная большая величина говорит о том, что переходное влияние на дальний конец пренебрежимо мало, и учитывать нужно только собственную помеху, расчет для которой был проведен выше.
Вывод: при использовании двухкабельной системы влияют только собственные помехи, т.е переходные влияния не столь критичны.
1. Тверецкий М.С., Четкин С.В. Проектирование цифровых каналов и трактов/Инсвязьиздат/ Москва 2005
2. Гордиенко В.Н., Тверецкий М.С. Цифровые телекоммуникационные системы: Учебник для вузов/ М.: Горячая линия - Телеком - 2005. - 428 с: ил.
3. Чёткин СВ. Расчет электрических характеристик линейных трактов кабельных ЦСП. Методическая разработка по дипломному проектированию цифровых систем передачи/ВЗЭИС - М., 1988. - 49 с: ил.
5. Чёткий СВ. Методические указания по курсовому и дипломному проектированию оптических систем передачи/ МТУСИ,- М., 2002. - 43 с: ил.
6. Алексеев Е.Б. Основы технической эксплуатации современных волоконно-оптических систем передачи: Учеб. пособие/ ИПК при МТУСИ, 1998.- 194 с.:ил.
Выбор частоты дискретизации широкополосного аналогового цифрового сигнала, расчёт период дискретизации. Определение зависимости защищенности сигнала от уровня гармоничного колебания амплитуды. Операции неравномерного квантования и кодирования сигнала. курсовая работа [2,0 M], добавлен 18.07.2014
Эскизное проектирование цифровых систем передачи, выбор аппаратуры и трассы магистрали. Оценка параметров дискретизации, квантования и кодирования. Оценка параметров дискретизации, квантования и кодирования. Формирование структуры цикла передачи сигнала. курсовая работа [3,3 M], добавлен 05.11.2015
Выбор частоты дискретизации первичного сигнала и типа линейного кода сигнала ЦСП. Расчет количества разрядов в кодовом слове. Расчет защищенности от шумов квантования для широкополосного и узкополосного сигнала. Структурная схема линейного регенератора. курсовая работа [2,0 M], добавлен 05.01.2013
Изучение разработки цифровых систем передач двух поколений: ПЦИ и СЦИ. Анализ выбора частоты дискретизации, построения сигнала на выходе регенератора. Расчет количества разрядов в кодовом слове и защищенности от искажений квантования на выходе каналов. курсовая работа [1,6 M], добавлен 19.03.2012
Расчет спектра и энергетических характеристик сигнала. Определение интервалов дискретизации и квантования сигнала. Расчет разрядности кода. Исследование характеристик кодового и модулированного сигнала. Расчет вероятности ошибки в канале с помехами. курсовая работа [751,9 K], добавлен 07.02.2013
Схема цифрового канала связи. Расчет характеристик колоколообразного сигнала: полной энергии и ограничения практической ширины спектра. Аналитическая запись экспоненциального сигнала. Временная функция осциллирующего сигнала. Параметры цифрового сигнала. курсовая работа [1,1 M], добавлен 07.02.2013
Структурная схема цифровых систем передачи и оборудования ввода-вывода сигнала. Методы кодирования речи. Характеристика методов аналого-цифрового и цифро-аналогового преобразования. Способы передачи низкоскоростных цифровых сигналов по цифровым каналам. презентация [692,5 K], добавлен 18.11.2013
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Проектирование цифровых каналов и трактов курсовая работа. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Курсовая работа по теме Економіка сучасної Греції
Особенности Общения Курсовая
Реферат На Тему Сердечно Сосудистые Заболевания
Дипломная работа по теме Федеральный закон "О полиции"
Реферат: How To Buy A Home Essay Research
Ответ на вопрос по теме Средства размещения в сфере туризма
Реферат: Приложения 52 Введение Сегодня вопросы, касающиеся проведения налоговых проверок
Реферат: Technology In Education Essay Research Paper Technology
Информационная Среда Реферат
Курсовая работа по теме Исследование и оценка физического развития при занятиях физическими упражнениями
Практическое задание по теме Основные понятия (сайт, IP-адрес, порт, сокет, сервер, клиент)
Дипломная работа по теме Физическая подготовка детей 14-15 лет по велоспорту
Контрольная Работа Деление На Двузначное Число
Оформление Реферата История Развития Компьютерной Техники
Курс Лекций На Тему Предмет И Метод Статистики
Курсовая работа по теме Лизинговая деятельность в России
Контрольная работа: Права работника в отпуске без сохранения зарплаты и командировке. Ответственность за аморальный поступок
Реферат На Тему Основные Гипотезы О Возникновении Жизни На Земле
Бальзак Собрание Сочинений
Контрольная работа по теме Динамика подземных вод
Государственный земельный кадастр - Государство и право контрольная работа
Предупреждение преступлений террористической направленности - Государство и право дипломная работа
Микробиология и личная гигиена - Биология и естествознание контрольная работа


Report Page