Проектирование автоматизированных систем - Производство и технологии курс лекций

Проектирование автоматизированных систем - Производство и технологии курс лекций




































Главная

Производство и технологии
Проектирование автоматизированных систем

Сущность систем автоматики и их классификация по признаку сложности. Этапы жизни системы и степень влияния условий их эксплуатации на процесс проектирования системы. Структура и сферы применения основных автоматизированных и функциональных систем.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Федеральное агентство по образованию
Сибирская государственная автомобильно-дорожная академия
ПРОЕКТИРОВАНИЕ АВТОМАТИЗИРОВАННЫХ СИСТЕМ
для студентов специальности 220301 «Автоматизация технологических процессов и производств (строительство)»
1. Системный подход к проектированию
1.1 Системы автоматики и их классификация с точки зрения сложности
Под системой обычно понимается регулярное или упорядоченное устройство, состоящее из взаимосвязанных частей, действующих как одно целое, и предназначенное для достижения какой-либо определенной цели.
Это определение не является исчерпывающим и строгим. Известно большое число определений термина «система», обладающих той или иной степенью конкретизации. Существенно, однако, то, что термин «система» обычно связывается с такими понятиями, как элемент, структура, связь.
В общем случае системой может быть назван любой физический объект, состоящий из ряда взаимосвязанных элементов. Если состояние системы изменяется или может измениться во времени, то такая система называется динамической .
Остановимся на системе, состоящей из n элементов. В простейшем случае между элементами действуют только двусторонние связи (рис. 1, а). Очевидно, что для анализа всех связей необходимо исследовать n (n-1) связей, действующих в системе.
Для систем, состоящих из сотен и тысяч элементов, число внутренних связей растет примерно пропорционально квадрату числа элементов. Отмеченное обстоятельство определяет огромные трудности анализа сложных систем.
Системы можно классифицировать разными признаками, среди которых можно выделить два основных: сложность систем и характер их функционирования.
Одна из возможных классификаций систем по указанным основным признакам представлена на рисунке 1, б.
Если в детерминированных системах все элементы системы взаимодействуют точно предвиденным образом, то в вероятностных (стохастических) системах точно предсказать поведение системы невозможно и ее поведение можно определить, лишь с известной степенью вероятности. Критерий сложности систем является весьма условным.
Простыми обычно считают системы, не имеющие разветвленной структуры, с небольшим количеством взаимосвязанных и взаимодействующих элементов. Такие системы могут содержать от 10 до 10 3 элементов. В простых системах отсутствуют иерархические уровни.
К сложным системам относят системы с развитой иерархической структурой и большим числом элементов и внутренних связей. Такие системы могут содержать от 10 1 до 10 7 элементов. Однако подобное определение сложных систем является весьма условным. Часто к сложным относят либо системы, которые нельзя корректно описать математически или можно описать не менее чем на двух различных математических языках (например, на языке дифференциальных уравнений и на языке алгебры логики), либо системы, для изучения которых необходимо решать задачи с непомерно большим объемом вычислений. Систему считают сложной, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов.
Очень сложные системы часто называют большими системами.
Известен ряд определений термина «большая система», каждое из которых характеризуется той или иной степенью неопределенности.
Так, по Роберту Маколу большая система определяется семью признаками:
1. Система создается человеком из различного оборудования и сырья;
2. Система обладает цельностью. Все ее части служат достижению единой цели - выработке определенной продукции с помощью набора оптимизированных выходов при заданных входных воздействиях;
3. Система является большой как с точки зрения разнообразия составляющих ее элементов, так и с точки зрения количества одинаковых частей, возможно, количества функций и, конечно, стоимости;
4. Система является сложной. Это означает, что изменение какой-либо переменной влечет за собой изменения других переменных, причем подобная зависимость редко оказывается линейной;
5. Система является полуавтоматической. Это означает, что часть функций системы выполняются автоматами, а часть - человеком;
6. Входные воздействия системы имеют стохастическую природу. Отсюда появляется невозможность предсказания поведения системы для любого момента времени;
7. Большинство систем и в первую очередь наиболее сложные содержат элементы конкурентной ситуации.
Согласно определению, данному Петровым Б.Н. и Поспеловым Г.С. большим системам управления, состоящим из объекта управления и управляющих систем, связанных каналами передачи информации, присущи следующие пять признаков:
1. Система управления имеет иерархическую структуру и представляет собой комплекс подсистем управления различных рангов (рис. 2, а). При этом выпадение или отказ какой-либо подсистемы или части подсистем не всегда приводит к отказу или распаду всей системы, а иногда только к снижению эффективности ее функционирования;
Рисунок 2 - Структура и основные этапы развития систем
2. Органы управления (управляющие системы) подсистем и всей системы организованы по иерархическому принципу, т.е. представляют собой коллективы, функционирующие во главе с руководителями разных рангов;
3. Главнейшие функции управления, планирования, оценки ситуаций или складывающейся обстановки и принятие решений осуществляются непосредственно коллективами управляющих систем;
4. Организованные коллективы органов управления предопределяют у всей системы в целом, как и у любого социального организма, существование в той или иной степени свойств адаптации и самоорганизации;
5. В органах управления различных рангов применены вычислительные машины для оптимизации принимаемых решений и для преобразования и переработки потоков информации. Вычислительные машины органов управления старших и младших рангов связаны специальными каналами связи.
Приведенные признаки в основном адресованы к специально организованным для целей управления и принятия решений коллективам людей, однако они сохраняют силу и для чисто автоматических технических систем переработки информации.
Большие системы обладают следующими основными свойствами:
1. Незначительные изменения во внешней среде могут вызвать в этих системах процессы, несоизмеримые по своим масштабам с породившими их изменениями;
2. Процессы разработки, конструирования и изготовления этих систем занимают большое количество времени (обычно несколько лет) и требуют привлечения больших коллективов специалистов в различных областях техники;
3. Большинство этих систем должно обладать свойствами адаптации и самоорганизации. Другими словами - структура этих систем изменяется, причем изменения далеко не всегда могут быть предсказаны;
4. Функционирование систем преследует определенную, независящую от них цель, и эта цель может изменяться в процессе эволюции внешней среды.
Любая техническая система возникает не сразу и проходит этапы развития, основные из которых показаны на рисунке 2, б. Следует иметь в виду, что замысел или первоначальная концепция новой сложной системы никогда не возникает в законченном и отработанном виде. В этом смысле замысел новой системы отличается от ее конечного воплощения, так же как человеческий эмбрион от сформировавшегося человека.
В процессе проектирования новая система должна быть отражена (спроектирована) на бумаге. Иными словами должна быть разработана и выпущена техническая документация, по которой проектируемая система может быть изготовлена в промышленных условиях.
Затем должны быть изготовлены опытные образцы, которые необходимо проверить (испытать).
С этой целью этап проектирования включает не только выпуск технической документации, но и тщательную теоретическую и экспериментальную отработку образцов. Для этого этап проектирования включает в себя изготовление единичных и опытных образцов, обеспечивающее с одной стороны, проведение необходимых экспериментальных работ, а с другой стороны, служащее для отработки технической документации и технологии изготовления системы.
Испытания на этапе проектирования охватывают как моделирование и лабораторные исследования, так и испытания в условиях, приближающихся к условиям эксплуатации (натурные испытания).
В идеальном случае производство (серийное производство) сложных систем для нормальной эксплуатации осуществляется по тщательно отработанной на этапе проектирования технической документации.
Однако в силу того, что технология серийного производства, как правило, отличается от технологии опытного производства, осуществляемого на этапе проектирования, а также вследствие того, что на этапе отработки, как правило, в неполной мере учитываются статистические характеристики комплектующих систему элементов, в процессе серийного производства неизбежна доработка технической документации, осуществляемая с привлечением проектировщиков.
Одной из основных задач проектировщиков на этапе производства является разработка методов оптимизации производства и повышения его эффективности.
Поскольку эксплуатация с точки зрения потребителей системы является основным этапом ее жизни, то усилия проектировщиков направлены на то, чтобы обеспечить безусловное выполнение системой заданных технических характеристик.
С этой целью на этапе проектирования разрабатываются методы и технические средства обслуживания системы.
Они, как правило, включают системы контроля и восстановления технического состояния эксплуатируемой сложной системы. В силу изложенного снятие с эксплуатации системы связано с ее моральным старением и неэффективностью ее дальнейшей эксплуатации.
Проектирование систем представляет собой высокоинтеллектуальное занятие, творчество, требующее применения разнообразных знаний. Задачей инженерного проектирования является разработка, при некоторых ограничениях, обусловленных способом решения, систем (элементов, процессов), обеспечивающая оптимальное выполнение поставленной задачи при некоторых ограничениях, накладываемых на решение.
Как следует из рисунка 3, основными ограничениями, помимо физических, являются: наличие знаний (навыков), в том числе технологических, наличие необходимых материалов и комплектующих элементов и устройств, возможности имеющегося лабораторного и производственного оборудования, имеющаяся вычислительная техника и сроки проектирования.
На последнем ограничении следует остановиться особо. При современных, все ускоряющихся темпах научного и технического прогресса предельное сокращение сроков проектирования становится одним из главных требований к процессу проектирования.
Действительно, при увеличении сроков проектирования, новизна и оригинальность решений, используемых в проекте, теряются. Еще не будучи осуществленным, проект может морально устареть и потерять смысл. Поэтому быстротечность процесса проектирования, иными словами динамика этого процесса, становится одной из главных его характеристик.
Важнейшей задачей проектирования является разработка и отработка полного комплекта технической документации на систему. Эта документация, с одной стороны, должна обеспечивать возможность промышленного изготовления системы, отвечающей заданным требованиям, и, с другой стороны, - обеспечивать надежную эксплуатацию системы в заданных условиях.
Рисунок 3 - Ограничения при проектировании систем
В результате проектирования выпускается большой объем технической документации, состав которой в нашей стране определяется системой ГОСТов.
Эти ГОСТы можно условно разделить на три группы:
1) стандарты на правила разработки и классификации конструкторских документов;
2) стандарты на правила выполнения и оформления конструкторских документов;
3) стандарты на правила обращения и использования конструкторских документов.
Техническую документацию, выпускаемую в процессе проектирования, подразделяют на следующие категории:
Если схемная, конструкторская, монтажная и текстовая документации являются отражением идей и принципов, заложенных в систему при ее проектировании, и отвечают на вопрос, что должно быть изготовлено, то технологическая документация дает представление о методах и средствах изготовления системы.
Эксплуатационная документация, как правило, включает в себя основные документы схемной, конструкторской и текстовой документации и должна обеспечивать грамотную эксплуатацию системы.
1.4 Условия эксплуатации систем и их влияние на процесс проектирования
Системы автоматики эксплуатируются в условиях воздействия на них различных факторов, из которых можно выделить две группы: объективные, определяемые средой, и субъективные, определяемые обслуживанием системы ( рис. 4).
Рисунок 4 - Эксплуатационные факторы, воздействующие на системы
В зависимости от особенностей применения системы автоматики подразделяют на: стационарные, наземные, автомобильные, судовые (корабельные), авиационные, космические и т.п.
Естественно, что условия эксплуатации, а следовательно, и требования к системам будут различными для каждого из перечисленных видов. Так, например, системы стационарного типа не будут испытывать механических перегрузок, столь характерных для систем нестационарного типа (автомобильной, авиационной и т.п.). Могут при этом существенно отличаться и климатические условия эксплуатации.
В зависимости от временного режима различают системы разового действия, дежурные системы и системы непрерывного действия. Если системы разового действия используются по своему целевому назначению только 1 раз, то дежурные системы характеризуются многоразовым действием.
Режим работы дежурных систем включает в себя как период ожидания (дежурства), так и период использования по прямому назначению (рабочий режим). Примером подобных систем может быть система слепой посадки самолетов.
Системы непрерывного действия используются по своему целевому назначению непрерывно в течение всего заданного срока эксплуатации. Примером последних могут быть системы управления непрерывными процессами, такими как металлургические, нефтехимические и т.п.
Системы автоматики в зависимости от условий эксплуатации подразделяют также на обслуживаемые, когда в процессе эксплуатации возможно проведение профилактических и ремонтных работ, и необслуживаемые.
Среди внешних факторов воздействия, прежде всего, следует выделить климатические, оказывающие наибольшее влияние на системы.
Остановимся кратко на характеристике климатических условий эксплуатации систем.
Температура окружающего воздуха +20 °С принимается нормальной. Однако даже на территории только Российской федерации температура воздуха на поверхности земли может изменяться от -52 °С до +40 °С. Еще более высокая температура - до +58 °С отмечается в Африке, а более низкая - до -87 °С в Антарктиде. Также существенно изменяется температура воздуха с увеличением высоты над уровнем моря.
Влажность воздуха изменяется также в широких пределах. Абсолютная влажность на уровне земли колеблется от 0,1 г/м 3 в полярных районах до 30 г./м 3 в тропиках. Обычно влажность воздуха выражают в относительных единицах, при этом нормальной относительной влажностью воздуха считают 65%.
Во влажных тропиках (например, в Восточной Индии и Бирме) относительная влажность достигает 98% при температуре до +40 °С.
Нормальное атмосферное давление равно 760 мм рт. ст. (1,01•10 5 Па). Вблизи поверхности Земли атмосферное давление непрерывно изменяется. Зафиксированное минимальное давление на уровне моря составило 684 мм рт. ст. (0,91•10 5 Па), а максимальное - 807,7 мм рт. ст. (1,08•10 5 Па). Изменение атмосферного давления также существенно зависит от высоты объекта над уровнем моря.
Ветровые нагрузки создаются движением воздушной среды и изменяются в широких пределах. Так, у поверхности Земли, скорость движения воздушной среды (ветра) изменяется от 0 до 200 км/ч. С ростом высоты увеличивается скорость ветра, достигая максимума в районе тропопаузы и уменьшаясь в стратосфере.
На больших высотах наблюдаются узкие пояса, в которых господствуют ветры со скоростью до 400 км/ч и более (так называемые струйные течения).
Вода, выпадающая в виде атмосферных осадков , содержит неорганические и органические частицы. В приморских зонах особенно характерны примеси хлористого натрия, а в тропических - повышенное содержание азотной кислоты. Снег содержит больше азотистых соединений, чем дождь.
Солнечная радиация может вызвать сильный нагрев незащищенных элементов конструкции систем. Плотность потока солнечной энергии, достигающая земной поверхности, изменяется от 0,91 до 1,4 кВт/м 2 в зависимости от поглощающей способности атмосферы и сосредоточена в основном в области длин волн 0,2 … 0,5 мкм.
Опасны для работоспособности систем пыль и песок . Проникая в подвижные части, они вызывают повреждения. Кроме, того, пыль способствует увеличению электростатических зарядов, что приводит к росту помех, а в отдельных случаях к взрывам.
К наиболее характерным факторам воздействия биологической среды на конструкции систем относятся грибковые образования (плесень), особенно интенсивно развивающиеся при повышенной влажности неподвижного воздуха (более 85%) и температуре от 20 до 30 °С.
Некоторые виды насекомых, например термиты, обитающие в основном в жарких и сухих зонах, пожирают органические материалы, особенно изоляционные. В этом же отношении опасны и грызуны, любящие поедать изоляцию коммуникационных линий.
В высоких слоях атмосферы может иметь место ионизация воздуха, в результате чего возрастает его электропроводность, что может привести к нарушению работоспособности системы.
Значительное влияние на работу систем оказывает радиоактивное излучение. Это влияние особенно сильно проявляется на материалы кристаллической структуры, воздух, изоляцию, стекло и электролиты.
Смещение атомов в кристаллической решетке при облучении быстрыми нейтронами нарушает нормальную работу германиевых и кремниевых диодов, транзисторов, фотосопротивлений и термисторов.
Ядерное излучение изменяет, прежде всего, величину начального коллекторного тока транзисторов и значение коэффициента усиления. Маломощные высокочастотные транзисторы подвержены влиянию различных видов радиации значительно меньше, чем низкочастотные и мощные.
Радиация ионизирует воздух, уменьшает проводимость между точками монтажа и может нарушить нормальную работу систем.
Параметры р-n-р транзисторов изменяются при облучении в большей степени, чем параметры аналогичных n-р-n транзисторов.
Германиевые транзисторы более стабильны при воздействии радиации, чем кремниевые.
Механические воздействия - ускорения, вибрации и удары, могут действовать как отдельно, так и в совокупности.
При транспортировке по железной дороге из-за биения колес о стыки рельсов возникает вибрация с частотой до 100 Гц при ускорении до 20 м/с 2 . Частота этой вибрации может накладываться на основную частоту колебаний (2 … 3Гц).
Вибрации на кораблях вызываются как винтами, так и гидродинамическими силами, действующими на корпус и надстройки. Основная вибрация вызывается винтами с частотой, определяемой частотой вращения гребного вала (частотой вала), а также частотой колебаний лопастей винта (т.е. частотой вала, умноженной на число лопастей винта). Амплитуда вибраций на частоте вала обычно высокая, а частота низкая и ограничивается, как правило, диапазоном 0…5 Гц. На большинстве военных кораблей амплитуда продольных вибраций корпуса максимальна на корме и носу и резко снижается к центру корпуса. Амплитуда поперечных вибраций значительно меньше, чем продольных, за исключением верхушек мачт, дымовых труб, антенн и мостиков.
Влияние вибраций на самолетах также зависит от положения аппаратуры систем автоматики. Обычно на самолете можно выделить три основных участка, различающихся вибрационными нагрузками:
1) корпуса и обтекатели двигателей;
2) зона, примерно от середины крыла до его кончика;
На участках 1 и 3 частота вибраций лежит в пределах от 3 до 150 Гц с амплитудой от 0,075 до 2 мм на участке и до 2,5 мм на участке 3. Основным источником вибраций на участке 2 являются двигатели. Частота ее составляет обычно от 10 до 500 Гц с амплитудой от 0,025 до 0,037 мм.
Вибрации на ракетах имеют сложный характер и являются результатом совместного воздействия ракетного двигателя и аэродинамических нагрузок. Если для мощных жидкостных ракетных двигателей предельные частоты достигают сотен герц, то для твердотопливных двигателей - до 2000 Гц при ускорении до 200 м/с. Постоянные ускорения при работе ракетного двигателя достигают 50…150 м/с 2 для больших ракет-носителей и 250…500 м/с 2 для малых твердотопливных ракет.
2. Стадии и этапы проектирования систем автоматизации управления
Весь процесс проектирования систем управления можно разделить на 10 этапов:
1) Формулирование цели, оценка реализуемости, согласование технического задания.
3) Определение структуры системы, выбор технических средств.
4) Инженерный анализ и оптимизация.
Этапы с 1 по 4 иногда называют предварительным проектированием, которое проводится с целью определения принципов построения системы, изыскания новых принципов, структур и технических средств, удовлетворяющих заданному техническому заданию. Предварительное проектирование, как правило, относят к стадии научно-исследовательской работы (НИР). На этих этапах привлекаются наиболее квалифицированные специалисты в соответствующих областях.
5) Разработка технической документации.
6) Разработка методов изготовления и технологической документации.
7) Изготовление экспериментальных образцов.
Этапы с 5 по 7 называют также эскизным проектированием, его относят к стадии опытно-конструкторской разработки (ОКР). Результатом эскизного проекта является детальная проработка возможности построения системы, удовлетворяющей поставленным требованиям.
8) Испытания, отработка технической документации.
Этап 8 называют техническим (рабочим) проектированием, при этом производится детальная отработка схемных, конструкторских и технологических решений.
В процессе серийного производства осуществляются окончательная доводка принятых технических решений и отработка технологии изготовления с учетом особенностей серийного производства.
В процессе эксплуатации проектировщик системы получает информацию, позволяющую внести необходимые изменения с целью доведения параметров системы до заданных значений.
Проектирование систем представляет собой сложный многоплановый (многошаговый) процесс, требующий непосредственного участия специалистов различной квалификации. Один из возможных вариантов организационной структуры аппарата руководителя разработки (Руководителя проекта, Главного конструктора) системы изображен на рисунке 5.
Рисунок 5 - Вариант аппарата руководителя проекта системы
Руководитель проекта осуществляет руководство разработкой, определяя как техническое направление в целом, так и отдельные технические решения.
Проектированию системы предшествует этап поиска предварительных технических решений и согласования технического задания (ТЗ) на проектирование с заказчиком. Этот этап требует усилий наиболее квалифицированных специалистов. Здесь следует указать на довольно объемные работы, проводимые по анализу современного состояния и научно-технических достижений в области проектируемых систем. Эти работы проводятся Головным подразделением (ГП) в тесном контакте с подразделениями структур (ПС), технических средств (ПТС), конструкторским бюро (КБ) и отделом научно-технической информации (ОНТИ).
ГП осуществляет разработку структуры системы, ее приборного состава, общей схемы и технических условий. Также ГП разрабатывает частные ТЗ на проектирование системы и ее составляющих и выдает их, после согласования и утверждения с Руководителем проекта, подразделениям ПС и ПТС.
ПС осуществляет анализ и синтез структуры системы и ее подсистем, их моделирование и оптимизацию с привлечением вычислительного центра (ВЦ).
ПТС производит анализ и выбор технических средств, разработку схем, их моделирование и оптимизацию. Здесь, как и при синтезе структур, широко используется ВЦ.
Существенные усилия при проектировании затрачиваются на обеспечение надежной работы системы. Это достигается как выбором оптимальных структур, так и наилучших (по надежности) технических средств, что достигается работой отдела надежности (ОН).
Большое внимание уделяется обеспечению заданных требований по точности и стабильности работы системы, что в большинстве случаев связано с необходимостью проведения специальных исследований рабочего процесса системы или ее подпроцессов. Точность измерений, при проведении таких исследований, обеспечивает метрологическая служба (МС).
При выборе технических решений значительное внимание уделяется технологичности и экономичности системы, при этом учитываются как стоимость ее разработки и изготовления, так и затраты на эксплуатацию. Данный процесс сопровождается специалистами технологического подразделения (ТП).
ГП подготавливает ТЗ на конструирование и после согласования его с Заказчиком и утверждения Руководителем проекта передает в КБ.
ТЗ на конструирование составляющих систему приборов (блоков, узлов) в таком же порядке выдаются ПТС в КБ.
ТЗ на конструирование обязательно включают в себя различные схемы и спецификации.
КБ разрабатывает основную конструкторскую (текстовую и чертежную) документацию; ведомость покупных изделий составляется на основании спецификаций и согласовывается с техническим отделом (ТО). Предметом согласования, при этом, является допустимость применения тех или иных комплектующих изделий с позиций наличия необходимой технической документации, обеспеченности материалами и их поставками, соответствия технических требований на комплектующие изделия техническим условиям на систему.
Габаритные чертежи и чертежи общих видов КБ согласовывает с ПС и ПТС па соответствие их техническим заданиям на конструирование.
Рабочие чертежи согласовываются КБ с ТП. Поскольку КБ с начала проектирования выдает ТП задание на проектирование технологической документации, а также технологического процесса изготовления системы и составляющих ее приборов, блоков, узлов и соответствующей технологической оснастки, то при согласовании особое внимание уделяется увязке разработанных конструкций с проектируемой технологической документацией.
Наряду с выдачей технических заданий на конструирование как ПС, так и ПТС выпускается большой объем текстовой документации: частные технические условия, технические формуляры или паспорта, инструкции по регулировке, эксплуатации, а также составляются технические описания.
Обычно одновременно с выдачей технических заданий на конструирование как ПС, так и ПТС выпускаются карты режимов комплектующих изделий. Эти карты анализируются отделом надежности ОН с целью определения и гарантии необходимых запасов по надежности. Помимо этого ОН разрабатываются типовые программы испытания макетных образцов системы и ее составляющих, по которым ПС и ПТС выпускаются программы испытаний как системы в целом, так и составляющих ее приборов, блоков, узлов.
По технической документации, выпущенной КБ (в том числе эскизной), в макетном производстве МП изготовляют макетные образцы системы, которые подвергаются тщательным исследованиям:
1) на соответствие заданным внешним характеристикам (в ГП);
2) на соответствие точностным характеристикам (в МС с участием ГП и ПТС);
3) на сохранность заданных статических и динамических характеристик в различных эксплуатационных условиях (в отделе испытании (ОИ) с участием ГП и ПТС);
4) надежности (в ГП, ПС и ПТС с участием ОН)
Результаты этих исследований тщательно анализируются в ГП с привлечением ПС, ПТС, ОН и ОИ и докладываются Руководителю проекта. По материалам анализа Руководителем проекта принимаются решения о необходимости доработки системы и коррекции технической документации.
Техническая документация, разрабатываемая ГП ПС и ПТС передается в КБ, где производятся комплектование документации, введение ее в сводную спецификацию и передача подлинников в бюро технической документации (БТД). Подлинники технической документации хранятся в архиве БТД, и изменения ее производятся только по распоряжениям, выпускаемых ГП, ПС, ПТС и КБ и утверждаемых Руководителем проекта.
В БТД производится снятие копий или тиражирование (распечатка с электронных носителей информации) с подлинников технических документов и обеспечение копиями как МП, так и КБ, ГП, ПС ОН, ОИ, ОП и т.д. Так как проектирование систем во многих случаях связано с исследованием и разработкой новых материалов: конструкционных, электротехнических и др., то решение задачи выбора этих материалов, либо разработки новых, а также выдачи рецептур и технологических приемов их обработки ложится на отдел материаловедения (ОМ).
Технологические задания на решения перечисленных задач выдаются обычно ГП и ПТС и совместно с КБ и ТП.
Обеспечение заданных характеристик, особенно точностных невозможно без четко налаженной метрологической службы (МС), осуществляющей как метрологическую экспертизу проекта системы, так и проверку измерительных приборов и средств, используемых как при лабораторных, комплексных, так и при приемно-сдаточных испытаниях системы.
Для проведения комплексных испытаний в ОИ создаются стенды, имитирующие по возможности реальные условия эксплуатации системы.
Однако в силу сложности создания подобных условий обычно ограничиваются определенным уровнем приближения и те характеристики, которые невозможно оценить в стендовых условиях исследуются в ОИ, либо при проведении натурных испытаний.
Поскольку осуществление сложного процесса проектирования немыслимо без четкого планирования работ, то плановым отделом (ПО) составляются как общие графики работ по разработке системы, так и частные графики на отдельные этапы разработки составляющих систем.
При планировании работ приобретают важное значение, как своевременный контроль выполнения работ, так и оперативное внесение корректив в графики работ.
Игнорирование этого простого правила приводит к существенным срывам сроков проектирования и, в конечном итоге, порождает желание значительно ускорить разработку системы, за счет упразднения некоторых элементов проектной системы (например: ОН, ОИ, ОМ и т.п.), что пагубно отражается на качестве конечного продукта - разрабатываемой системы.
Если на этапе эскизного проектирования во многих случаях ограничиваются макетным производством, то
Проектирование автоматизированных систем курс лекций. Производство и технологии.
Контрольная Работа На Тему Технические Мероприятия, Обеспечивающие Безопасность Работ На Предприятии
Контрольная работа по теме Администратор гостиницы
Как Связать 2 Аргумента В Сочинении Егэ
Основное Свойство Дроби 6 Класс Контрольная Работа
Рособрнадзор Сочинение 2022
Корпоративная Культура В Кремниевой Долине Реферат
Контрольная работа: по Арбитражному процессу
Курсовая работа по теме История развития и основы функционирования Банка России
Реферат: Жесткое внедрение DLL в Windows-программы
Преобразование Тригонометрических Выражений Контрольная Работа 10
Реферат: Выставочная деятельность турфирмы
Курсовая Работа На Тему Теоретическое Обоснование Основ Создания И Деятельности Потребительских Обществ И Их Союзов
Контрольная работа: Модуляция и детектирование электромагнитных колебаний. Скачать бесплатно и без регистрации
Реферат: Христианство в России
Реферат: Жизнь и творчество К.Ф. Рылеева. Скачать бесплатно и без регистрации
Сочинение: Тема бессмертия и воскресения души в романе М. Булгакова «Мастер и Маргарита»
Сочинение 3 Тома Дубровский
Курсовая работа по теме Политическая культура провинциального студенчества
Дипломная работа по теме Особенности ролевой игры в обучении диалогической речи на уроках английского языка
Курсовая работа по теме Сущность и содержание психопрофилактической работы ЗКРВР, ее основные принципы
Роль США в освобождении Кореи от японского колониального господства и последующего раздела Кореи - История и исторические личности курсовая работа
Аналіз діяльності компанії "Юси" - Маркетинг, реклама и торговля курсовая работа
Развитие музыкально-ритмических способностей учащихся на уроке "Оркестр шумовых и ударных инструментов" - Педагогика реферат


Report Page