Проект разработки газового месторождения Амангельды - Геология, гидрология и геодезия дипломная работа

Проект разработки газового месторождения Амангельды - Геология, гидрология и геодезия дипломная работа




































Главная

Геология, гидрология и геодезия
Проект разработки газового месторождения Амангельды

Сведения о месторождении Амангельды: структура и геологический разрез, газоносность. Система разработки месторождения. Подсчет запасов газа и конденсата. Оценка и эксплуатация скважин. Технико-экономические показатели разработки газоносного месторождения.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Топливная база в районе месторождения отсутствует. Местное население и промышленные предприятия в качестве используют, в основном, привозной каменный уголь, саксаул. Климат района резко-континентальный с сухим жарким летом (до + 40 °С) и холодной (до - 30 °С ) малоснежной зимой, продолжительность отопительного сезона 178 суток (с 15 октября по 15 апреля
В пределах структуры Амангельды вскрыты отложения верхнего девона, карбона, перми, которые с угловым несогласием перекрыты мезо-кайнозойскими породами, толщиной до 400 м.
Отложения девона вскрыты только в скважине 1, где ниже-средний девон, толщиной 160 м, представлен конгломератами и сильно уплотненными аргиллитами. Верхний девон сложен песчаниками и гравелитами с тонкими прослоями аргиллитов и конгломератов толщиной до 220 метров.
Разрез верхней части нижнесреднего девона, условно относимый к фундаменту, вскрыт скважинами 1 и 102 и представлен грубообломочными и пестроцветными, крупнозернистыми, очень крепкими кварц-полевошпатовыми песчаниками (скважина 102) и сильно уплотненными, частично рассланцованными, трещиноватыми аргиллитами. Максимальная вскрытая толщина составляет 557 м в скважине 102.
Отложения нижнего карбона в турнейском ярусе представлены переслаиванием песчаников и аргиллитов. Визейский ярус литологический подразделяются на нижнее- и средне-верхний подъярусы. Нижневизейский подъярус, к которому приурочена газоконденсатная залежь, сложен в нижней части аргиллитами, глинистыми песчаниками с прослоями углей (аргиллиты являются газоупором снизу для газоконденсатной залежи), а в верхней - переслаиванием песчаников и аргиллитов с пропластками известняка. Толщина до 80 м. Средне-верхний подъярус представлен в основном известняками, доломитами и мергелями аргиллитов и алевролитов. Толщина изменяется то 240 до 320 м. Серпуховский ярус сложен известняками, доломитами, в верхней части ангидритизированными аргиллитами с пропластками известняка. Толщина нижнего карбона до 800 м. Отложения среднего и верхнего карбона представлены в основании пестроцветными аргиллитами, алевролитами с прослоями песчаников, на них залегает толща красноцветных песчаников алевролитов и аргиллитов. Толщина более 700 м.
Пермские отложения расчленяются на подсоленосую, соленосную, и надсоленосую толщи. Подсоленосная толща представлена в основании аргиллитами, выше - переслаиванием песчаников, аргиллитов, часто с сульфатизированными включениями ангидрита. Толщина изменяется от 270 до 410 м. Соленосная толща представлена переслаиванием красноцветных сульфатизированных терригенных пород с прослоями галита толщиной до 500 м. Надсоленосная толща верхней Перми представлена в основании песчаниками, в остальной части - глинистыми алевролитами с прослоями песчаника. Толщина отложения изменяется от 170 до 450 м.
Мезозой - кайнозойская система Mz - Kz
Мезо-кайнозойские отложения представлены переслаиванием песков, глин и алевролитов. Толщина в пределах структуры изменяется то 178 в своде до 346 м на крыльях.
Месторождение Амангельды приурочено к одноименной структуре расположенной в восточной части Миштинского прогиба Мойнынкумской впадины Шу-Сарысуйской депрессии.
Поисково-разведочными скважинами выявлена газоносность турнейских, нижневизейских, серпуховских и пермских отложений.
Турнейские отложения испытаны в шести поисково-разведочных скважинах. Приток газа дебитом до 3 тыс.м3/сут, получен только в скважине 6. Во всех остальных скважинах притоков не получили или получили слабый приток пластовой воды. Так как промышленных притоков газа не получено и площадь залежи незначительна, запасы газа по турнейским отложениям не подсчитывались.
В серпуховских отложениях коллекторы распространены только в сводовой части структуры, на крыльях они замещаются глинистыми известняками и сульфатами. Горизонт испытан в 5 поисково-разведочных скважинах. Промышленный приток газа получен только в скважине 1, после соляно-кислотной обработки дебит газа составил 17.3 тыс.м3/сут. В 2-х скважинах получили незначительные притоки газа (до 3 тыс.м3/сут) даже после кислотной обработки, в одной притока не получили, в одной получили приток фильтрата бурового раствора. В эксплуатационных скважинах серпуховские отложения испытаны в двух скважинах в процессе бурения, притоков не получили. Учитывая небольшие размеры залежи, запасы газа по ней не подсчитывались.
В пермских отложениях коллекторы развиты только в северо-восточной части площади, на остальной части они замещаются глинистыми породами. К пермским отложениям приурочена газовая залежь - азотно-гелиевая.
В нижневизейских отложениях по данным опробования практически всех скважин установлена газоконденсатная залежь, которая является объектом промышленной разработки. Самая низкая отметка получения газа фиксируется в скважине 117, где при опробовании в открытом стволе получен газ до абсолютной отметки минус 1979.8 м (скважина наклонно-направленная). Учитывая, что скважина 117 наклонно-направленная и есть вероятность неправильной привязки к приведенной глубине, то нижнюю отметку получения газа в этой скважине при обосновании ГВК мы не учитываем. В скважине 5 приток газа получен до абсолютной отметки минус 1967.6 м. В скважине 9 при опробовании получена пластовая вода с абсолютной отметки минус 1979.0 м, по ГИС кровля водонасыщенного пласта фиксируется с отметки минус 1976.8 м. В скважине 13 водонасыщенный пласт по ГИС фиксируется с отметки минус 1968.6 м.
Газоводяной контакт принят единым на абсолютной отметке минус 1968 м.
Залежь газа по типу пластового резервуара пластовая сводовая, тектонически экранированная. Размеры залежи 14.8 х 7.5 км, высота - 268.8 м.
На месторождении Амангельды выявлено газоносность нижневизейский, серпуховских и нижнепермских отложений и в соответствие с настоящим проектом нами рассматривается строение нижневизейского продуктивного горизонта и приурочений к нему газоконденсатной залежи.
В пределах нижневизейского горизонта расположено три пачки (А, Б, В,), в верхней и нижней из которых выделено по четыре пласта-коллектора и в средней - два.
Согласно принятой схеме расчленения разреза по каждому выделенному пласту подсчитаны коэффициенты распространения и слияния соседних пластов (табл.1).
Таблица 1 - Коэффициенты распространения слияния пластов
Пласты пачки А не выдержаны по площади, часто замещаются глинистыми породами. Более развитым является пласт 4, его коэффициент распространения равен 0.75, а по остальным колеблется в пределах 0.75 - 0.42 (табл. 1). В скважине 18 пачка А полностью заглинизирована. Связи между пластами как видно из таблицы не наблюдается, за исключением пластов 3 и 4, где коэффициент слияния равен 0.2. Эффективная газонасыщенная толщина изменяется от 0.8 (скв. 1) до 7.8 м (скв. 5), в среднем равна 3.4 м, что общей составляет 53% (табл. 2).
В пачке Б выделяется два пласта-коллектора, которые сливаясь между собой образуют единый резервуар (К сл = 0.33). Пласт 1 имеет коэффициент распространения в пределах залежи 0.58, так как в скважинах 5,11,16,17,18 он замещен глинистыми породами. Пласт 2 менее распространен, в скважинах 4, 5, 7, 8, 15, 18 он заглинизирован. Эффективная газонасыщенная толщина варьирует от 0.8 (скв. 8) до 4.0 м (скв. 1) и в среднем составляет 2.9 м, что в процентом отношении от общей более 90%. Наиболее выдержанной является пачка В, в её пределах прослеживается 4 пласта, каждый из которых имеет коэффициент распространения более 0.75. При высоком коэффициенте слияния пластов между собой (К сл = 0.33 и выше), пачку В можно рассматривать как единый резервуар. Общая толщина пачки колеблется от1.8 (скв. 7) до 21.2 м (скв. 3), при этом эффективная газонасыщенная толщина варьирует в пределах от 1.8 (скв. 7) до 19.0 м (скв. 5) и в среднем составляет 11.1 м (табл. 3). Основным показателями, характеризующими степень неоднородности горизонта в целом являются коэффициенты расчлененности, которые соответственно равны 5.5 и 0.518.
Таблица 2 - Характеристика толщин горизонта
Верхняя часть продуктивного горизонта переслаиванием пластов плотных мелкозернисты песчаников, алевролитов глинистых, аргиллитов плотных и слабоцементированных песчаников. Слабоцементированные песчаники средне-мелкозернистые и мелкозернистые, по минералогическому составу, в основном, кварц-полевошпатовые. Обломочный материал хорошо отсортирован. Цемент (5-20%) карбонато-глин6исты, глинисты, редко регенерационный кварцевый контактно-порового типов. В средней части содержатся пласт аргиллитов с линзовидными прослоями плотных непроницаемых алевролитов и песчаников, мощность которых изменяется от 4-5 м в южной части до 1.4.-1.8 м - в северной. Нижняя часть горизонта сложена плотными песчаниками с подчиненными прослоями алевролитов. В этой части разреза в скважинах 1, 11, 16 также присутствуют слабоцементированные песчаники. Песчаники среднезернистые, кварцполевошпатовые. Цемент глинисто-гидрослюдистый, карбонатно-гидрослюдитый порово-контактного, контактного-порового , реже, порового типов. Количество цемента 10-16 %, при поровом типе цементации-до 20%. Плотносцементированные песчаники мелко-среднезернистые, кварц-полевошпатовые. Цемент (15-20%) глинистый, карбонатно-глинисты, реже карбонатный и кварцевый, преимущественно порового, базально-порового типов. Разрез нижневизейского подъяруса, включая описаны продуктивный горизонт, характеризуется интенсивной трещиноватостью, которая отмечается во всех литологических разностях - песчаниках, алевролитах, аргиллитах, известняках и углях. Наряду с тектонической трещиноватостью, имеет место лито-генетическая микро-трещиноватость, обусловленная эпигенетическими процессами.
При имеющимся объеме информации по керну и использованном способе определения типа коллектора и его критических параметров можно говорить о породах-коллекторах порового типа с критическими значениями проницаемости и пористости 0.35 * 10 -3 мкм 2 и 10.5% соответственно при карбонатности до 9% и глинистости до 12.5% и о выделении в них линз пород с более высокой фильтрационно-емкостной характеристикой. Средне значения емкостно-фильтрационных свойств пород-коллекторов по керну представлены в таблице.
Средне значение пористости при расчете по скважинам составляет 0.148, средне значение проницаемости -2.7 * 10 -3 мкм 2 . Осреднение выполнено по скважинам, так как наблюдается значительный диапазон изменений средних пористости в скважинах от 12.2% (скважина 7) до 19.3% (скважина 6). Это вызвано как условиями отбора керна, так и тем, что качество коллектора изменяется по площади.
Величина остаточной водонасыщенности оценена по керну из скважины 6, пробуренной на известково-битумном растворе. Для образцов свойства которых соответствуют принятым граничным значениям, величина остаточной водонасыщенности равна 0.19. В осреднении использовано 54 образца без трещин, диапазон изменения остаточной водонасыщенности 0.06-0.42 . Средняя величина газонасыщенности, рассчитана как 1-К во , равна 0.81. Для остальных скважин остальных скважин остаточная водонасыщенность может быть определена по зависимости, полученной по образцам без трещин из скважин 6 (прямые определения) и описываемой уравнением К во = 1482.1 * К п -1.4739 (R 2 = 0.78).
Таблица 3 - Статистические ряды распределения проницаемости по данным лабораторного изучения кернов
Интервалы изменения проницаемости, мкм 2
Нижневизейская газоконденсатная залежь занимает почти всю площадь структуры в пределах контура развития коллектора. Газоупором над залежью являются глинистые известняки среднего визейского подъяруса.
В работе газоводяной контакт по залежи принят на абсолютной отметке минус 1972.0 м и продуктивность её установлено опробованием скважин 5 и 9, где в первой получен газ в открытом стволе до абсолютной отметки минус 1967.6 м, а во второй - пластовая вода с абсолютной отметкой минус 1976.8 м. В скважине 13 по результатам интерпретации материалов ГИС пласты оцениваются как водонасыщенные с абсолютной отметкой минус 1968.6 м (табл. 4).
2.1 Система разработки месторождения
Система разработки месторождения Амангельды характеризуется очень сложным строением пород-коллекторов с невыдержанными по площади и разрезу коллекторскими свойствами пластов, с различными физико-химическими свойствами и составом газа и гидродинамическими характеристиками (пластовыми давлениями), что обуславливает необходимость определенного подхода к выделению объектов эксплуатации, основанном на анализе геолого-геофизической характеристики продуктивных пластов и горизонтов и учета технических и технологических возможностей их разработки.
Выбор и обоснование расчетных вариантов разработки проводили, исходя из положений «Единых правил…» и анализа геолого-гидродинамических характеристик пластовой системы месторождения Амангельды с использованием опыта разработки и проектирования месторождений такого типа. В качестве расчетных вариантов рассмотрены 4 варианта разработки.
Таблица 2.1 - Исходные геолого-физические характеристики эксплуатационного объекта
Пластовая сводовая, тектонически и литологически экранированная
Проницаемость по керну, 10 -3 мкм 2
Давление максимальной конденсации, МПа
Вязкость газа в пластовых условиях, мПа·с
Содержание стабильного конденсата, г/м 3
Коэффициенты фильтрационного сопротивления,
Начальные геологические запасы свободного газа, млрд. м 3 :
Начальные геологические запасы конденсата, тыс. т:
Общие положения для всех вариантов разработки
1 Разработка I объекта (нижневизейского горизонта) будет происходить на истощение - без поддержания пластовой энергии.
2 Размещение скважин - по квадратной сетке плотностью 64 га/скв (800х800 м).
3 Предусмотрено бурение скважин с проектной глубиной 2350 м. Начало бурения - 2009 год.
1 вариант - базовый. Количество добывающих скважин - 26, в т.ч. бурение 1 добывающей скважины. Устьевое давление - 5 МПа (П-2.1).
2 вариант. Количество добывающих скважин - 26, в т.ч. бурение 1 добывающей скважины. Устьевое давление в 2008-2009 гг. - 5 МПа, с 2010 г. - 3 МПа(П-2.2).
3 вариант. Количество добывающих скважин - 33, в т.ч. бурение 8 добывающих скважин. Устьевое давление в 2008-2009 гг. - 5 МПа, с 2010 г. - 3 МПа(П-2.3).
4 вариант. Количество добывающих скважин - 38, в т.ч. бурение 13 добывающих скважин. Устьевое давление в 2008-2009 гг. - 5 МПа, с 2010 г. - 3 МПа(П-2.4).
Основные исходные технологические характеристики расчетных вариантов разработки приведены в таблице 2.2.
Таблица 2.2 - I объект (нижневизейский горизонт). Основные исходные технологические характеристики расчетных вариантов разработки
Коэффициент использования скважин, д. ед.
Коэффициент эксплуатации скважин, д. ед.
Варианты разработки, предлагаемые на рассмотрение, отличаются темпами разработки и технологическим режимом скважин, выражающемся в различном количестве пробуренных скважин и различным уровнем устьевого давления скважин, что приводит к различным темпам отбора извлекаемых запасов и, следовательно, в конечном итоге, варианты отличаются уровнями извлечения газа и конденсата (КИГ и КИК).
Расчетный срок по четырем вариантам разработки составляет 84 года с 2008 по 2091 гг.
Предлагается пробурить следующее количество новых скважин:
Добытый газ предполагается подготавливать на УКПГ. Продуктами подготовки газа являются:
Сухой газ, за вычетом расходов на собственные нужды, подается по трубопроводу для нужд населения.
Конденсат продается на местный рынок.
Разница между соответствующими вариантами обусловлена разницей в стоимости капитальных вложений (либо бурение новой скважины) и затрат обусловленных объемом капитальных вложений (амортизационных отчислений, затрат на капитальный ремонт, текущий ремонт и обслуживание скважин и т.д.).
В расчете отражены доходная часть и прямые затраты на операционные и текущие расходы; налоги и отчисления в специальные и другие фонды, а также капитальные вложения необходимые для реализации данного проекта. Определена сумма как расходов, связанных с обычной деятельностью предприятия (эксплуатационные затраты) и валового дохода, так и налогооблагаемой прибыли.
В результате экономических расчетов определен прибыльный период - тот период, когда предприятие, при принятых условиях и допущениях, будет работать безубыточно, т.е. когда необходимые расходы будут покрываться получаемыми доходами.
Продолжительность прибыльного периода по вариантам составляет:
Полученные значения расчетных коэффициентов извлечения газа (КИГ) и конденсата (КИК) из недр по I объекту разработки месторождения Амангельды в целом для основных вариантов разработки и их сопоставление с утверждёнными в ГКЗ РК по состоянию на 01.01.2006 г., приведены в таблице 2.3.
Как видно из таблицы по I объекту разработки месторождения Амангельды величина газоотдачи по 1 варианту за прибыльный период составляет 0,646 д.ед., по 2 варианту - 0,712 д.ед., по 3 варианту - 0,710 д.ед., по 4 варианту - 0,698 д.ед.
Таблица 2.3. - I объект разработки (нижневизейский горизонт). Сопоставление утвержденных и расчетных коэффициентов извлечения газа и конденсата (по категории запасов С 1 )
I объект разработки (нижневизейский горизонт)
КИГ в базовом 1 варианте при бурении дополнительного количества добывающих скважин - 1 и при общем количестве добывающих скважин - 26 единиц, составляет 0,646 д.ед. Бурение дополнительного количества добывающих скважин - 1, при общем их количестве - 26 единиц во 2 варианте дает коэффициент газоотдачи - 0,712 д.ед. КИГ в 3 варианте при бурении дополнительного количества добывающих скважин - 8 и при общем количестве добывающих скважин - 33 единиц, составляет 0,710 д.ед., в 4 варианте при бурении дополнительного количества добывающих скважин - 13 и при общем количестве добывающих скважин - 38 единиц - 0,698 д.ед.
Следует сказать, что прогнозный КИГ достигается в 1 варианте в течение 52 лет, во 2 варианте - в течение 55 лет, в 3 варианте - в течение 44 лет, в 4 варианте - в течение 38 лет.
Величина конденсатоотдачи (КИК) за прибыльный период по I объекту разработки месторождения Амангельды по 1 базовому варианту составляет 0,398 д.ед. (см. таблицу 2.3), по 2 варианту - 0,408 д.ед., по 3 варианту - 0,432 д.ед., по 4 варианту - 0,442 д.ед.
Наибольший КИГ и КИК за более быстрый срок достигается в 3 варианте при бурении дополнительного количества добывающих скважин - 8 и при общем количестве добывающих скважин - 33 единицы и устьевым давлением в 2008-2009 гг. - 5 МПа, с 2010 г. - 3 МПа; наименьший - в 1 варианте при количестве добывающих скважин - 26, в т.ч. бурении 1 добывающей скважины и устьевым давлением - 5 МПа.
При анализе технико-экономических, интегральных показателей, видно что, с экономической точки зрения все варианты рентабельны и интегральные показатели близки по своим значениям.
По первому и второму вариантам, которые должны эксплуатироваться с наименьшим количеством скважин, необходимы минимальные объемы инвестиций. Значения всех интегральных показателей по второму и третьему вариантам отличаются незначительно, но второй вариант является, с экономической точки зрения, является наилучшим.
Дополнительно был проведен анализ экономической эффективности по второму и третьему вариантам, при повышении стоимости газа от 10 до 60 %, так как при обосновании второго варианта в Технико-экономическом обосновании коэффициента извлечения газа в ГКЗ РК, был принят третий вариант, с учетом увеличения стоимости газа. Результаты анализа показали, что при увеличении базовой цены газа на 10 % с 48 $/тыс.м 3 до 52.8, значение чистой приведенной стоимости превышает на 1 758 тыс.$.
Результаты проведенного анализа представлены в приложении 2.5.
В связи с вышеизложенным, к внедрению рекомендуется третий вариант
2.1.1 Анализ текущего состояния разработки
На дату анализа (по состоянию на 01.01.2010 г.) продолжается промышленная разработка газоконденсатной залежи нижневизейского продуктивного горизонта месторождения Амангельды, начавшаяся в декабре 2007 года. Основные технологические показатели промышленной разработки нижневизейского горизонта за анализируемый период (2010 г.) и по состоянию на 01.01.2010 г. представлены в таблице 2.5. Текущее состояние промышленной разработки нижневизейской залежи отражено на картах текущих и накопленных отборов газа и конденсата (графические приложения 2.6 и 2.7). По состоянию на 01.01.2010 г. действующий фонд добывающих скважин нижневизейского горизонта месторождения Амангельды составил 24 единицы (см. таблицу 2.5). Коэффициент использования фонда скважин за 2010 г. менялся в пределах 0,96-1 д.ед., составив за анализируемый период в среднем 0,96 д.ед. Коэффициент эксплуатации скважин изменялся от 0,93 до 1 д.ед. За текущий год его среднее значение составило 0,97 д.ед.
Таблица 2.5. - Показатели промышленной разработки по состоянию 01.01.2010 г.
Эксплуатационный фонд добывающих скважин
Среднесуточный дебит скважин по газу
Для составления отчета (01.01.2010 г.) одна проектная добывающая скважина 123 находилась в бурении.
По фактическим данным эксплуатации (суточные рапорта) за 2010 год добыча газа по нижневизейскому горизонту месторождения составила 354,2 млн.м 3 , конденсата - 26,0 тыс.т (см. таблицу 2.5). Среднесуточный дебит газа 1 добывающей скважины за анализируемый период составил - 41,38 тыс.м 3 /сут, конденсата - 3,04 т/сут (см. таблицу 2.5). На 01.01.2010 г. накопленная добыча газа и конденсата в целом по газоконденсатной залежи нижневизейского горизонта месторождения Амангельды составила 1800,1 млн.м 3 и 154,2 тыс.т, соответственно (см. таблицу 2.5).
2.1.2 Анализ структуры фонда скважин и их текущих дебитов, технологических показателей
По состоянию на 01.01.2010 г. на нижневизейский горизонт месторождения Амангельды всего пробурено 39 скважин, из которых 17 пробурены в период разведки, в т.ч. 11 поисковых (1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 14) и 6 разведочных скважин (6, 11, 15, 16, 17, 18) и 22 - в период ОПЭ, в т.ч. 6 разведочных (102, 103, 106, 109, 113, 115) и 16 эксплуатационных (101, 104, 105, 107, 108, 110, 111, 112, 114, 116, 117, 118, 119, 120, 121, 122).
Таким образом, по состоянию на 01.01.2010 г. общий фонд нижневизейского горизонта месторождения Амангельды составил 39 скважин, из которых 25 скважин - добывающих, в т.ч. 24 скважины - действующие и 1 - в простое; 1 - наблюдательная; 13 - ликвидированных (таблица 3.1).
Таблица 3.1 - Характеристика фонда скважин по состоянию на 01.01.2010 г.
2-Г, 6-Г, 16-Г, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
2-Г, 6-Г, 16-Г, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
1, 3, 4, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18
Примечание:* - скважины-дублеры пробурены согласно Проекту ОПЭ
В анализируемом периоде начато бурение проектной добывающей скважины 123, которая на дату составления отчета (01.01.2010 г.) пробурена до глубины 620 м.
По фактическим данным разработки (суточные рапорта за 2009 г.) по состоянию на 01.01.2010 г. добывающие скважины нижневизейского горизонта месторождения Амангельды эксплуатировались со средними текущими дебитами: газа от 8,8 тыс.м 3 /сут (скважина 117) до 138,1 тыс.м 3 /сут (скважина 108) и конденсата от 0,4 т/сут (скважина 119) до 9,6 т/сут (скважина 108) (таблица 3.2). В целом по месторождению текущие среднесуточные дебиты по газу по состоянию на 01.01.2010 г. составили 47,2 тыс.м 3 /сут и 3,3 т/сут по конденсату (см. таблицу 3.2).
Накопленная добыча газа и конденсата по состоянию на 01.01.2010 г. по скважинам нижневизейского горизонта составила 1800,1 млн.м 3 и 154,2 тыс.т, соответственно (таблица 3.3).
По состоянию на 01.01.2010 г. добывающая скважина 109 характеризуется наибольшей накопленной добычей газа (252,1 млн.м 3 ) и конденсата (26,9 тыс.т), наименьшей - скважина 119 с накопленной добычей газа - 5,4 млн.м 3 и конденсата - 0,4 тыс.т (см. таблицу 3.3).
Таблица 3. 2 - Характеристика текущих дебитов скважин по состоянию на 01.01.2010 г.
Проектом промышленной разработки режим работы газодобывающих скважин нижневизейского горизонта месторождения в 2010 г. принят по постоянному устьевому давлению на уровне не менее 5 МПа, которое на дату анализа составляет в среднем по месторождению 7,1-7,3 МПа.
Таблица 3.3 - Накопленная добыча газа и конденсата по состоянию на 01.01.2010 г.
Накопленная добыча конденсата, тыс.т
2.1.3 Анализ выработки запасов газа
Последний «Подсчет запасов газа и конденсата месторождения Амангельды по состоянию на 01.01.2006 г.» утвержден ГКЗ РК 15.11.2007 г. (протокол № 632-07-У).
Запасы газа и конденсата оценены по категориям С1 и С2. Начальные геологические запасы газа и конденсата нижневизейского горизонта месторождения Амангельды составили: по категории С1 газа - 18952 тыс.м3, конденсата - 1630 тыс.т; по категории С2: газа - 6067 тыс.м3, конденсата - 522 тыс.т. По категории С2 оценены запасы в северо-восточной и юго-западной частях залежи, в пределах которых в скважинах получены непромышленные притоки газа.
Сведения об утвержденных начальных геологических и извлекаемых запасах газа и конденсата нижневизейского горизонта месторождения Амангельды приведены в таблице 1.6.
Таблица 1.6 Подсчет запасов газа и конденсата
Средневзвешенная газонасыщенная толщина, м
Коэффициент газонасыщенности, доли ед.
Поправка на сжимаемость газов при начальном давлении
Коэффициент перевода техн. ед. в физич.
Геологические запасы газа, млн. м 3
Потенциальное содержание конденсата, г/м 3
Геологические запасы конденсата, тыс. т
Коэффициент извлечения газа, доли ед.
Коэффициент извлечения конденсата, доли ед.
Извлекаемые запасы конденсата, тыс.т
Размещено на http://www.allbest.ru/
2.1.4 Характеристика энергетического состояния залежи, режимы разработки
За период разработки на нижневизейском горизонте месторождения Амангельды проводились мероприятия по повышению газоотдачи, такие как:
- эксплуатация открытым стволом и с щелевым фильтром;
В Авторском надзоре за 2004 год для повышения продуктивности скважин месторождения Амангельды основным из методов предлагалось бурение боковых стволов и испытание новой технологии - радиального бурения. Указанные рекомендации предлагалось осуществить, в первую очередь, в низкодебитных скважинах 105, 106, 111. По результатам проведенных работ планировалось принимать решения в отношении остальных скважин.
В 2005 году в скважине 106 пробурен боковой ствол, позволивший увеличить средний дебит газа скважины с 8.7 тыс.м 3 /сут (май 2005 г.) до 25,7 тыс.м 3 /сут (октябрь 2005 г.). Средний дебит газа скважины 106 на 01.07.2007 г. составил 17,5 тыс.м 3 /сут, что свидетельствует о положительных результатах выполненных работ по бурению бокового ствола в данной скважине и необходимости реализации этого мероприятия в других скважинах.
На основании рекомендаций Авторских надзоров за реализацией Проекта ОПЭ и, исходя из опыта бурения бокового ствола в скважине 106, с целью изучения возможности увеличения дебита скважин, в 2007 году рекомендуется выполнить бурение бокового ствола в скважине 115 с азимутом 360 градусов и отклонением до 500 м. Рекомендуемое направление и отклонение бокового ствола позволит вскрыть продуктивный горизонт в зоне аномалии с улучшенными коллекторскими свойствами, выделенной по сейсмике 2Д.
В период 2006-2007 гг. согласно рекомендациям в трех скважинах 105, 110 и 111 пробурены по 4 радиальных ствола. В результате выполненных работ по радиальному бурению в скважинах 105 и 111 отмечается незначительное увеличение дебита газа в среднем на 2,0 тыс.м 3 /сут. В скважине 110 дебит газа снизился на 0,88 тыс.м 3 /сут.
Продолжается проведение испытаний продуктивных пластов в скважинах с открытым стволом и со спуском щелевого фильтра. Эксплуатация скважин таким способом показала свою эффективность. В настоящее время 4 скважины (102, 104, 117, 121) эксплуатируются открытым стволом и 7 скважин (106, 108, 114, 118, 119, 120, 122) - со спуском щелевого фильтра.
В новых скважинах рекомендуется предусмотреть эксплуатацию с открытым стволом и со спуском щелевого фильтра.
В целях интенсификации добычи газа в сентябре 2007 г. на скважине 110 был проведён гидроразрыв пласта (ГРП) в интервале 2238-2290 м. До проведения ГРП скважина работала с дебитом газа 9,7 тыс.м 3 /сут и конденсата 0,5 т/сут, после ГРП средний дебит газа по состоянию на 23.10.2007 г. составил 53,2 тыс.м 3 /сут, конденсата 4,9 т/сут. Работы по проведению ГРП рекомендуется продолжить.
Работа газоконденсатных скважин регламентируется технологическими режимами эксплуатации, которые осуществляются путём поддержания и регулирования на забоях (устьях) скважин или наземных сооружениях заданных условий изменения дебита и давления, обеспечивающих соблюдение правил охраны окружающей среды и безаварийной эксплуатации скважин. Различают следующие технологические режимы эксплуатации скважин: максимально допустимая депрессия на пласт, допустимый градиент давления; постоянный дебит газа; изменяющийся во времени дебит газа, распределённый между скважинами с условием минимальных потерь давления или максимизации суммарного или допрорывного коэффициента конденсатоотдачи пласта; градиент давления, обеспечивающий безводную эксплуатацию скважин при проявлении водонапорного режима пласта или наличии подошвенной воды. На выбор технологического режима эксплуатации скважин при прочих равных условиях влияют тип залежи, начальные термобарические условия, прочность горных пород, состав пластового газа, технологические особенности эксплуатации скважин (дросселирования газа в призабойной зоне, гидратообразование в стволе скважины, удаление жидкости из ствола скважины).
Различают пассивные и активные способы разработки газовых месторождений. Пассивные способы, приводящие к истощению пластовой энергии и основанные на регулировании технологических режимов работы только эксплуатационных скважин, позволяют увеличить конечную конденсатоотдачу пласта не более чем на 5%. Активные способы, основанные на регулировании энергии пласта, предотвращающ
Проект разработки газового месторождения Амангельды дипломная работа. Геология, гидрология и геодезия.
Курсовая работа по теме Расчет параметров потока и потерь в дозвуковых диффузорах
Безработица Рк Реферат
Шпаргалка: Шпоры по экономике предприятия 2
Лабораторная Работа По Биологии 7 Класс Пасечник
Дипломная работа по теме Разработка универсального транспортного-технологического модуля для ТОО 'Викторовское'
Организация Управленческого Учета Курсовая Работа
Курсовая Работа На Тему Налоговая Система Рф И Проблемы Ее Совершенствования
Реферат: Креативное время, "археписьмо" и опыт Ничто. Скачать бесплатно и без регистрации
Курсовая работа по теме База данных 'Оптовый склад'
Курсовая работа: Изучение мнения старшеклассников о роли религии и религиозных организаций в жизни современного общества. Скачать бесплатно и без регистрации
Реферат Информационная Безопасность Экономики
Реферат: Artificial Intelligence Essay Research Paper Artificial Intelligence
Мой Любимый Школьный Предмет Сочинение 5 Класс
Курсовая работа по теме Влияние спортивного питания на физическое совершенствование организма юного спортсмена
Контрольная работа: Потребительские свойства пылесосов, черепицы, трикотажных изделий и шапок. Скачать бесплатно и без регистрации
Дипломная работа по теме Разработка и обоснование практических рекомендаций по формированию эффективной стратегии управления на предприятии
Философское Учение О Материи Реферат
Курсовой Проект По Технологической Оснастке
Написать Сочинение В Жанре Волшебной Сказки
Курсовая работа по теме Обычаи и традиции свадебного обряда в России и Древней Руси
Карстовые процессы - Биология и естествознание курсовая работа
Генетика и эволюция - Биология и естествознание реферат
Аудит расчетов с учредителями - Бухгалтерский учет и аудит дипломная работа


Report Page