Проблемы современной физики - Физика и энергетика реферат

Проблемы современной физики - Физика и энергетика реферат




































Главная

Физика и энергетика
Проблемы современной физики

Проблема атомного ядра как самая серьезная в современной физике, роль в ней проблемы урана. Природа и условия возникновения света, испускаемого атомами. Этапы, возможность воздействия двух атомных ядер друг на друга. Техническое значение полупроводников.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Начнем с проблемы, которая привлекает сейчас наибольшее внимание физиков, над которой, пожалуй, работает наибольшее количество исследователей и исследовательских лабораторий во всем мире, - это проблема атомного ядра и, в частности, как наиболее актуальная и важная ее часть - так называемая проблема урана.
Удалось установить, что атомы тол состоят 113 сравнительно тяжелого положительно заряженного ядра, окруженного некоторым числом электронов. Положительный заряд ядра и отрицательные заряды окружающих его электронов компенсируют друг друга. В целом атом кажется нейтральным.
С 1913 почти до 1930 г. физики изучали самым тщательным образом свойства и внешние проявления той атмосферы электронов, которые окружают атомное ядро. Эти исследования привели к единой цельной теории, обнаружившей новые законы движения электронов в атоме, ранее нам неизвестные. Эта теория получила название квантовой, или волновой, теории материи. К ней мы еще вернемся.
Примерно с 1930 г. основное внимание было направлено на атомное ядро. Ядро нас особенно интересует, потому что в нем сосредоточена почти вся масса атома. А масса есть мера того запаса энергии, которой обладает данная система.
Каждый грамм любого вещества заключает в себе точно известную энергию и притом весьма значительную. Так, например, в стакане чаю, который весит примерно 200 г., заключено количество энергии, для получения которой нужно было бы сжечь около миллиона тонн угля.
Эта энергия находится именно в атомном ядре, потому что 0.999 всей энергии, всей массы тела заключает в себе ядра и только меньше 0.001 всей массы может быть отнесено к энергии электронов. Колоссальные запасы энергии, находящиеся в ядрах, несравнимы ни с какой формой энергии, какую мы знали до сих пор.
Естественно, заманчива надежда обладать этой энергией. Но для этого сначала нужно изучить ее, а затем найти пути для ее использования.
Но, кроме того, ядро интересует нас и по другим причинам. Ядро атома целиком определяет всю природу его, определяет его химические свойства и его индивидуальность.
Если железо отличается от меди, от углерода, от свинца, то различие это лежит именно в атомных ядрах, а не в электронах. Электроны у всех тел одни и те же, и любой атом может потерять часть своих электронов вплоть до того, что могут быть сорваны все электроны с атома. Пока цело и неизменно атомное ядро со своим положительным зарядом, оно всегда притянет к себе столько электронов, сколько необходимо для компенсации его заряда. Если в ядре серебра 47 зарядов, то оно всегда присоединит к себе 47 электронов. Поэтому, пока целю ядро, мы имеем дело с тем же самым элементом, с тем же самым веществом. Стоит изменить ядро, как из одного химического элемента получается другой. Только тогда осуществилась бы давняя и давно уже за безнадежностью оставленная мечта алхимии - превращения одних элементов в другие. На современном этапе истории эта мечта осуществилась, не совсем в тех формах и не теми результатами, которые ожидались алхимиками.
Что мы знаем об атомном ядре? Ядро в свою очередь состоит из еще более мелких составных частей. Эти составные части представляют собой простейшие известные нам в природе ядра.
Самое легкое и потому самое простое ядро - это ядро атома водорода. Водород - первый элемент периодической системы с атомным весом около 1. Ядро водорода входит в состав всех других ядер. Но, с другой стороны, легко видеть, что все ядра не могут состоять только из водородных ядер, как давно, уже более 100 лет назад, предполагал Проут.
Ядра атомов обладают определенной массой, которая дается атомным весом, и определенным зарядом. Заряд ядра задает тот номер, который данный элемент занимает в периодической системе Менделеева.
Водород в этой системе - первый элемент: у пего один положительный заряд и один электрон. Второй по порядку элемент имеет ядро с двойным зарядом, третий - с тройным и т.д. вплоть до самого последнего и самого тяжелого из всех элементов - урана, ядро которого имеет 92 положительных заряда.
Менделеев, систематизируя громадный опытный материал в области химии, создал периодическую систему. Он, конечно, не подозревал в то время о существовании ядер, но не думал, что порядок элементов в созданной им системе определяется просто зарядом ядра и ничем больше. Оказывается, что эти две характеристики атомных ядер - атомный вес и заряд - не соответствуют тому, что мы могли бы ожидать, исходя из гипотезы Проута.
Так, второй элемент - гелий имеет атомный вес 4. Если он состоит из 4 ядер водорода, то и заряд его должен был бы быть 4, а между тем заряд его 2, потому что это второй элемент. Таким образом, нужно думать, что в гелии всего 2 ядра водорода. Ядра водорода мы называем протонами. Но у кроме того, в ядре гелия есть еще 2 единицы массы, которые заряда не имеют. Вторую составную часть ядра приходится считать незаряженным ядром водорода. Приходится различать ядра водорода, обладающие зарядом, или протоны, и ядра, не обладающие совсем электрическим зарядом, нейтральные, их мы называем нейтронами.
Все ядра состоят из протонов и нейтронов. В гелии 2 протона и 2 нейтрона. В азоте 7 протонов и 7 нейтронов. В кислороде 8 протонов и 8 нейтронов, в углероде С протонов и 6 нейтронов.
Но дальше эта простота несколько нарушается, число нейтронов становится все больше и больше но сравнению с числом протонов, и в самом последнем элементе - уране имеется 92 заряда, 92 протона, а атомный вес его 238. Следовательно, к 92 протонам прибавлено еще 146 нейтронов.
Конечно, нельзя думать, что то, что мы знаем в 1940 г., есть уже исчерпывающее отображение реального мира и многообразие заканчивается на этих частицах, которые являются элементарными в буквальном смысле слова. Понятие элементарности означает только определенный этап в нашем проникновении в глубь природы. На данном этапе мы знаем, однако, состав атома лишь вплоть до этих элементов.
Эта простая картина па самом деле была выяснена не так легко. Пришлось преодолеть целый ряд затруднений, целый ряд противоречий, которые и момент своего выявления казались безвыходными, но которые, как всегда в истории науки, оказались только различными сторонами более общей картины, представлявшей собою синтез того, что казалось противоречием, и мы переходили к следующему, более глубокому пониманию проблемы.
Важнейшим из этих затруднений оказалось следующее: в самом начале нашего столетия было уже известно, что из недр радиоактивных атомов (о ядре тогда еще не подозревали) вылетают б-частицы (они оказались ядрами гелия) и в-частицы (электроны). Казалось, то, что вылетает из атома, это и есть то, из чего он состоит. Следовательно, казалось, ядра атомов состоят из ядер гелия и электронов.
Ошибочность первой части этого утверждения ясна: очевидно, что невозможно составить ядро водорода из вчетверо более тяжелых ядер гелия: часть не может быть больше целого.
Оказалась неверной и вторая часть этого утверждения. Электроны действительно вылетают при ядерных процессах, и тем не менее электронов в ядрах нет. Казалось бы, здесь - логическое противоречие. Так ли это?
Мы знаем, что атомы испускают свет, световые кванты (фотоны).
Что же эти фотоны запасены в атоме в виде света и ждут момента для вылета? Очевидно, нет. Мы понимаем испускание света таким образом, что электрические заряды в атоме, переходя из одного состояния в другое, освобождают некоторое количество энергии, которая переходит в форму лучистой энергии, распространяющейся в пространстве.
Аналогичные соображения можно высказать и относительно электрона. Электрон по целому ряду соображений не может находиться в атомном ядре. Но он не может и создаваться в ядре, как фотон, потому что обладает отрицательным электрическим зарядом. Твердо установлено, что электрический заряд так же, как и энергия и материя в целом, остается неизменным; общее количество электричества нигде не создается и нигде не исчезает. Следовательно, если уносится отрицательный заряд, то ядро получает равный ему положительный заряд. Процесс испускания электронов сопровождается изменением заряда ядра. Но ядро состоит из протопоп и нейтронов, значит, один из незаряженные нейтронов превратился в положительно заряженный протон.
Отдельный отрицательный электрон не может ни возникнуть, ни исчезнуть. Но два противоположных заряда могут при достаточном сближении взаимно скомпенсировать друг друга или даже совсем исчезнуть, выделив свой запас энергии в виде лучистой энергии (фотонов).
Какие же это положительные заряды? Удалось установить, что, кроме отрицательных электронов, в природе наблюдаются и могут быть созданы средствами лабораторий и техники положительные заряды, которые по всем своим свойствам: по массе, по величине заряда вполне соответствуют электронам, но только имеют положительный заряд. Такой заряд мы называем позитроном.
Таким образом, мы различаем электроны (отрицательные) и позитроны (положительные), отличающиеся только противоположным знаком заряда. Вблизи ядер могут происходить как процессы соединения позитронов с электронами, так и расщепления на электрон и позитрон, причем электрон уходит из атома, а позитрон входит в ядро, превращая нейтрон в протон. Одновременно с электроном уходит и незаряженная частица - нейтрино.
Наблюдаются и такие процессы в ядре, при которых электрон передает свой заряд ядру, превращая протон в нейтрон, а позитрон вылетает из атома. Когда из атома вылетает электрон, заряд ядра увеличивается на единицу; когда вылетает позитрон или протон, заряд и номер в периодической системе уменьшается на одну единицу.
Все ядра построены из заряженных протонов и незаряженных нейтронов. Спрашивается, какими силами они сдерживаются в атомном ядре, что их связывает между собой, что определяет построение различных атомных ядер из этих элементов?
Аналогичный вопрос о связи ядра с электронами в атоме получил простой ответ. Положительный заряд ядра притягивает к себе отрицательные электроны по основным законам электричества так же, как Солнце силами тяготения притягивает к себе Землю и другие планеты. Но в атомном ядре ведь одна из составных частей нейтральна. Чем же она связывается с положительно заряженным протоном и другими нейтронами? Опыты показали, что силы, связывающие между собой два нейтрона, примерно такие же по величине, как и силы, связывающие между собой нейтрон с протоном и даже 2 протона между собой. Это не силы тяготения, не электрические или магнитные взаимодействия, а силы особого характера, которые вытекают из квантовой, или волновой, механики.
Один из советских ученых, И.Е. 'Гамм высказал гипотезу, что связь между нейтроном и протоном обеспечивается электрическими зарядами - электронами и позитронами. Испускание и поглощение их действительно должно дать некоторые силы связи между протоном и нейтроном. Но, как показали вычислении, эти силы во много раз слабее, чем те, которые па самом деле существуют в ядре и обеспечивают его прочность.
Тогда японский физик Юкава попробовал поставить задачу таким образом: раз взаимодействие при посредстве электронов и позитронов недостаточно, чтобы объяснить ядерные силы, то каковы же частицы, которые обеспечили бы достаточные силы? И он вычислил, что если бы в ядре встречались отрицательные и положительные частицы с массой в 200 раз большей, чем позитрон р электрон, то эти частицы обеспечили бы правильную ре-личину сил взаимодействия.
Спустя немного времени эти частицы были обнаружены в космических лучах, которые, приходя из мировою пространства, пронизывают атмосферу и наблюдаются и на земной поверхности, и па высотах Эльбруса, и даже под землей на достаточно большой глубине. Оказывается, что космические лучи, входя в атмосферу, создают заряженные отрицательно и положительно частицы, с массой примерно в 200 раз большей, чем масса электрона. Эти частицы в то же время в 10 раз легче, чем протон и нейтрон (которые примерно в 2000 раз тяжелее, чем электрон). Таким образом, это - какие-то частицы «среднего» веса. Они поэтому были названы мезотронами, или, для краткости, мезонами. Их существование в составе космических лучей в земной атмосфере сейчас не вызывает сомнения.
Тот же И.Е. Тамм в последнее время изучал законы движения мезонов. Оказывается, они обладают своеобразными свойствами, во многих отношениях не похожими на свойства электронов и позитронов. На основании теории мезонов он вместе с Л.Д. Ландау создал чрезвычайно интересную теорию образования нейтронов и протонов.
Тамм и Ландау представляют себе, что нейтрон есть протон, соединенный с отрицательным мезоном. Положительно заряженный протон с отрицательным электроном образуют атом водорода, хорошо нам известный. Но если вместо отрицательного электрона имеется отрицательный мезон, частица в 200 раз более тяжелая, с особыми свойствами, то такая комбинация занимает гораздо меньше места и по всем своим свойствам близко совпадает с тем, что мы знаем о нейтроне.
Согласно этой гипотезе, считается, что нейтрон - это протон, соединенный с отрицательным мезоном, и, наоборот, протон - это нейтрон, соединенный с положительным мезоном.
Таким образом, «элементарные» частицы - протоны и нейтроны - на наших глазах начинают снова расслаиваться и обнаруживать свою сложную структуру.
Но, пожалуй, еще более интересно, что такая теория вновь возвращает нас к электрической теории материн, нарушенной появлением нейтронов. Теперь снова можно утверждать, что все элементы атома и его ядра, которые нам до сих пор известны, имеют, в сущности, электрическое происхождение.
Однако не надо думать, что в ядре мы имеем дело просто с повторением свойств того же атома.
Переходя от опыта, накопленного в астрономии и механике, к масштабам атома, к 100-миллионным долям сантиметра, мы попадаем в новый мир, где проявляются неизвестные ранее новые физические свойства атомной физики. Эти свойства объясняются квантовой механикой.
Совершенно естественно ожидать, и, по-видимому, опыт уже нам это показывает, что когда мы переходим к следующему этапу, к атомному ядру, а атомное ядро еще в 100 тысяч раз меньше, чем атом, то здесь мы обнаруживаем еще новые, специфические законы ядерных процессов, не проявляющиеся заметным образом ни в атоме, ни в больших телах.
Та квантовая механика, которая прекрасно описывает нам все свойства атомных систем, оказывается недостаточной и должна быть дополнена и исправлена в соответствии с явлениями, которые обнаруживаются в атомном ядре.
Каждый такой количественный этап сопровождается Проявлением качественно новых свойств. Силы, связывающие протон и нейтрон с мезоном, - это не силы электростатического притяжения но законам Кулона, которые связывают ядро водорода с его электроном, это силы более сложного характера, описываемые теорией Тамма.
Так представляется нам сейчас строение атомного ядра. Супруги Пьер и Мария Кюри в 1899 й·. открыли радий и изучили его свойства. Но путь наблюдения, неизбежный па первой стадии, поскольку мы не имели другого, - путь чрезвычайно малоэффективный для развития науки.
Быстрое развитие обеспечивается возможностью активного воздействия на изучаемый объект. Мы стали узнавать атомное ядро тогда, когда мы научились активно егo видоизменять. Это удалое й. примерно 20 лет назад знаменитому английскому физику Резерфорду.
Давно было известно, что при встрече двух атомных ядер можно было ожидать воздействия ядер друг на друга. Но как осуществить такую встречу? Ведь ядра заряжены положительно. При приближении друг к другу они отталкиваются, размеры их настолько малы, что силы отталкивания достигают громадной величины. Нужна атомная энергия, чтобы, преодолев эти силы, заставить одно ядро встретиться с другим. Чтобы накопить такую энергию, нужно было заставить ядра пройти разность потенциалов порядка 1 млн. В. И вот, когда в 1930 г. получили пустотные трубки, в которых удалось создавать разности потенциалов больше 0.5 млн. В, они сейчас же были применены для воздействия на атомные ядра.
Надо сказать, что такие трубки были получены вовсе не физикой атомного ядра, а электротехникой в связи с задачей передачи энергии на большие расстояния.
Давней мечтой электротехники высоких напряжений является переход с переменного тока на постоянный. Для этого нужно уметь превращать высоковольтные переменные токи в постоянные и наоборот.
Вот для этой-то цели, еще и сейчас недостигнутой, и были созданы трубки, в которых ядра водорода проходили свыше 0.5 млн. В и получали большую кинетическую энергию. Это техническое достижение сейчас же было использовано, и в Кембридже была поставлена попытка направить эти быстрые частицы в ядра различных атомов.
Естественно, опасаясь, что взаимное отталкивание не позволит ядрам встретиться, взяли ядра с наименьшим зарядом. Самый малый заряд у протона. Поэтому в пустотной трубке поток ядер водорода пробегал разность потенциалов до 700 тыс. В. В дальнейшем разрешите энергию, которую получает заряд электрона или протона, пройдя 1 В, называть электронвольтом. Протоны, получившие энергию порядка 0.7 млн. эВ, были направлены на препарат, содержащий литий.
Литий занимает третье место в периодической системе. Атомный вес его 7; он имеет 3 протона и 4 нейтрона. Когда еще один протон, попадая в ядро лития, присоединится к нему, мы получим систему из 4 протонов и 4 нейтронов, т.е. четвертый элемент - бериллии с атомным весом 8. Такое ядро бериллия распадается па две половины, каждая ил которых имеет атомный пег 4, а заряд 2, т.е. представляет собою ядро гелия.
Действительно, это и было наблюдено. При бомбардировке лития протонами вылетали ядра гелия; причем можно обнаружить, что одновременно вылетают в противоположные стороны 2 б-частицы с энергией по 8.5 млн. эВ.
Мы можем сделать из этого опыта сразу два вывода. Во-первых, из водорода и лития мы получили гелий. Во-вторых, затратив один протон с энергией в 0.5 млн. эВ (а потом оказалось достаточным и 70 000 эВ), мы получили 2 частицы, каждая из которых имеет по 8.5 млн. эВ, т.е. 17 млн. эВ.
В этом процессе мы осуществили, следовательно, реакцию, сопровождающуюся выделением энергии из атомного ядра. Затратив только 0.5 млн. эВ, мы получили 17 миллионов - в 35 раз больше.
Но откуда берется эта энергия? Конечно, закон сохранения энергии не нарушается. Как всегда, мы имеем дело с превращением одного вида энергии в другой. Опыт показывает, что таинственных, еще неведомых источников искать не приходится.
Мы уже видели, что масса измеряет запас энергии в теле. Если мы выделили энергию в 17 млн. эВ, то нужно ожидать, что уменьшился запас энергии в атомах, а значит, уменьшился их вес (масса).
До столкновения мы имели ядро лития, точный атомный вес которого 7.01819, и водород, атомный вес которого 1.00813; следовательно, до встречи имелась сумма атомных весов 8.02632, а после столкновения вылетело 2 частицы гелия, атомный вес которого 4.00389. Значит, два ядра гелия имеют атомный вес 8.0078. Если сравнить эти числа, то окажется, что вместо суммы атомных весов 8.026 осталось 8.008; масса уменьшилась па 0.018 единицы.
Из этой массы должна получиться энергия в 17.25 млн. эВ, а на самом деле измерено 17.13 млн. Лучшего совпадения мы и ожидать не вправе.
Можно ли сказать, что мы решили задачу алхимии - превращаем один элемент в другой - и задачу получения энергии из внутриатомных запасов?
Это р верно, и неверно. Неверно в практическом смысле слова. Ведь, когда мы говорим о возможности превращать элементы, то мы ожидаем, что получены такие количества вещества, с которыми можно что-то сделать. То же самое относится и к энергии.
Из отдельного ядра мы действительно получили в 35 раз больше энергии, чем затратили. Но можем ли мы сделать это явление основой технического использования внутриядерных запасов энергии?
К сожалению, нет. Из всего потока протоном приблизительно один из миллиона встретится па споем пути с ядром лития; 999 999 же других протопоп в ядро попадает, а энергию свою растратят. Дело в том, что наша «артиллерия стреляет» потоками протонов в ядро атомов без «прицела». Поэтому-то из миллиона попадет в ядро только один; общий баланс получается невыгодным. Для «бомбардировки» ядра применяется громадная машина, потребляющая большое количество электроэнергии, а в результате получается несколько вылетевших атомов, энергией которых нельзя воспользоваться даже для маленькой игрушки.
Так обстояло дело 9 лет назад. Как развивалась дальше ядерная физика? С открытием нейтронов мы получили снаряд, который может достигнуть любого ядра, так как между ними не возникнет сил отталкивания. Благодаря этому сейчас при помощи нейтронов можно осуществлять реакции по всей периодической системе. Нет ни одного элемента, который мы не могли бы превратить в другой. Мы можем, например, ртуть превратить в золото, но в ничтожных количествах. При этом обнаружилось, что различных комбинаций протонов и нейтронов очень много.
Менделеев представлял себе, что различных атомов 92, что каждой клетке соответствует один тип атомов Возьмем 17-ю клетку, занятую хлором; следовательно, хлор - .но элемент, ядро которого имеет 17 зарядов; число же в нем может равняться и 18 и 20; все это будут различно построенные ядра с различными атомными весами, но поскольку заряды их одинаковы, это - ядра одного и того же химического элемента. Мы их называем изотопами хлора. Химически изотопы неразличимы; поэтому Менделеев и по подозревал об их существовании. Число различных ядер поэтому гораздо больше, чем 92. Мы знаем сейчас примерно 350 различных устойчивых ядер, которые размещаются в 92 клетках менделеевской таблицы, и, сверх того, около 250 радиоактивных ядер, которые, распадаясь, испускают лучи - протоны, нейтроны, позитроны, электроны, г-лучи (фотоны) и т.д.
Кроме тех радиоактивных веществ, которые существуют в природе (это самые тяжелые элементы периодической системы), мы получили теперь возможность производить искусственно любые радиоактивные вещества, состоящие как из легких атомов, так и из средних и тяжелых. В частности, мы можем получить радиоактивный натрий- Если съесть поваренную соль, в которую входит радиоактивный натрий, то за перемещением атомов радиоактивного натрия мы можем проследить по всему организму. Радиоактивные атомы имеют отметку они испускают лучи, которые мы можем обнаружить и с их помощью проследить пути данного вещества в любом живом организме.
Точно так же, введя радиоактивные атомы в химические соединения, мы можем проследить всю динамику процесса, кинетику химической реакции. Прежние методы определяли окончательный результат реакции, а сейчас мы можем наблюдать весь ее ход.
Это дает мощное орудие для дальнейших исследований и в области химии, и в области биологии, и в области геологии; в сельском хозяйстве можно будет следить за движением влаги в почве, за движением питательных веществ, за переходом их к корням растений и т.д. Становится доступным то, чего до сих нор мы непосредственно видеть не могли.
Вернемся к вопросу о том, можно ли получать энергию за счет внутриядерных запасов?
Два года назад это казалось задачей безнадежной. Правда, ясно было, что за пределами известного два года назад существовала громадная область неизвестного, но
Конкретных путей использования ядерной энергии мы не видели.
В конце декабря 1938 г. было открыто явление, которое совершенно изменило положение вопроса. Это - явление распада урана.
Распад урана резко отличается от других известных нам раньше процессов радиоактивного распада, при котором из ядра вылетает какая-нибудь частица - протон, позитрон, электрон. Когда нейтрон ударяет в ядро урана, то ядро, можно сказать, разваливается на 2 части. При этом процессе, как оказалось, из ядра вылетает еще несколько нейтронов. А это приводит к следующему выводу.
Представьте себе, что нейтрон влетел в массу урана, встретил какое-нибудь его ядро, расщепил его, выделив громаднейшее количество энергии, примерно до 160 млн. эВ, и, кроме того, еще вылетают 3 нейтрона, которые встретятся с соседними ядрами урана, расщепят их, каждый снова выделит по 160 млн. эВ и снова даст по 3 нейтрона.
Легко представить себе, как этот процесс будет развиваться. Из одного расщепившегося ядра появятся 3 нейтрона. Они вызовут расщепление трех новых, каждый из которых даст еще по 3, появится 9, потом 27, потом 81 и т.д. нейтронов. И через ничтожную долю секунды этот процесс распространится на всю массу ядер урана.
Чтобы сравнить энергию, которая выделяется при процессе развала урана, с теми энергиями, которые мы знаем, позвольте привести такое сопоставление. Каждый атом горючего или взрывчатого вещества выделяет примерно 10 эВ энергии, а здесь одно ядро выделяет 160 млн. эВ. Следовательно, энергии здесь в 16 миллионов раз больше, чем выделяет взрывчатое вещество. Это значит, что произойдет взрыв, сила которого в 16 миллионов раз больше, чем взрыв самого сильного взрывчатого вещества.
Часто, особенно в паше время, как неизбежный результат империалистической стадии развития капитализма, научные достижения используются в войне для истребления людей. Но нам естественно думать об использовании их на благо человека.
Такие концентрированные запасы энергии могут быть использованы как движущая сила для всей нашей техники. Как это сделать - это, конечно, задача еще совершенно неясная. Новые источники энергии не имеют для себя готовой техники. Придется ее вновь создавать. Но прежде всего, нужно научиться добывать энергию. На пути к этому имеются еще непреодоленные трудности.
Уран занимает 92-е место в периодической таблице, имеет 92 заряда, но имеется несколько его изотопов. Один имеет атомный вес 238, другой - 234, третий - 235. Из всех этих различных уранов лавина энергии может развиться лишь в уране 235, но его только 0.7% · Почти 99% составляет уран-238, который обладает свойством по дороге перехватывать нейтроны. Нейтрон, вылетевший из ядра урана-235 раньше, чем дойдет до другого ядра урана-235, будет перехвачен ядром урана-238. Лавина не разрастется. Но от решения такой задачи так легко не отказываются. Один из выходов - изготовить такой уран, который содержал бы почти только уран-235.
До сих пор удается, однако, разделять изотопы только в количествах долей миллиграмма, а для того чтобы осуществить лавину, нужно иметь несколько тонн урана-235. От долей миллиграмма до нескольких тонн - путь настолько далекий, что он выглядит как фантастика, а не реальная задача. Но если мы сейчас и не знаем дешевых и массовых средств разделения изотопов, то это не значит, что все пути к этому закрыты. Поэтому методами разделения изотопов сейчас усердно занимаются и советские и иностранные ученые.
Но возможен и другой способ смешения урана с веществом, мало поглощающим, но сильно рассеивающим и замедляющим нейтроны. Дело в том, что медленные нейтроны, расщепляя уран-235, не задерживаются ураном-238. Положение в данный момент таково, что простой подход не приводит к цели, но есть еще разные возможности, очень сложные, трудные, но не безнадежные. Если бы один из этих путей привел к цели, то, надо полагать, он произвел бы революцию во всей технике, которая по своему значению превысила бы появление паровой машины и электричества.
Нет оснований поэтому считать, что задача решена, что нам остается только научиться пользоваться энергией и всю старую технику можно выбросить в сорную корзину. Ничего подобного. Во-первых, мы еще не умеем извлекать энергию из урана, а, во-вторых, если бы р могли извлечь, то использование ее потребует немало времени и труда. Поскольку эти колоссальные запасы энергии в ядрах имеются, можно думать, что найдутся раньше или позже пути для их использования.
На пути к изучению проблемы урана у пас в Союзе было сделано чрезвычайно интересное исследование. Это - работа двух молодых советских ученых - комсомольца Флерова и молодого советского физика Петржака. Изучая явление расщепления урана, они заметили, что уран распадается сам по себе без всякого внешнего воздействия. Па 10 миллионов альфа-лучей, которые испускает уран, только 6 соответствуют осколкам от его распада. Заметить эти 0 частиц среди 10 миллионов других можно было только при большой наблюдательности и необычайном экспериментальном искусстве.
Два молодых физика создали аппаратуру, которая в 40 раз чувствительней, чем все до сих пор известные, и в то же время настолько точна, что они могли уверенно приписать этим 6 точкам из 10 миллионов реальное значение. Затем последовательно и систематически они проверили свои выводы и твердо установили повое явление самопроизвольный распад урана.
Эта работа замечательна не только по своим результатам, по р но настойчивости, но тонкости эксперимента, но изобретательности авторов. Если принять во внимание, что одному из них 27 лет, а другому 32, то от них можно многого ожидать. Эта работа представлена па соискание премии имени Сталина.
Явление, открытое Флеровым и Петржаком, показывает, что 92-й элемент неустойчив. Правда, для того чтобы разрушилась половина всех наличных ядер урана, потребуется 10 10 лет. Но становится понятным, почему периодическая система на этом элементе заканчивается.
Более тяжелые элементы будут еще более неустойчивы. Они быстрее разрушаются и поэтому не дожили до нас. Что это так, опять-таки было подтверждено прямым опытом. Мы можем изготовить 93 - й и 94-й элементы, но они живут очень недолго, менее 1000 лет.*
Поэтому, как видите, данная работа имеет принципиальное значение. Не только обнаружен новый факт, но р выяснена одна из загадок периодической системы.
Изучение атомного ядра открыло перспективы использования внутриатомных запасов, но пока что не дало технике ничего реального. Так кажется. Но на самом деле вся та энергия, которой мы пользуемся в технике, все это - ядерная энергия. В самом деле, откуда у нас энергия угля, нефти, откуда гидростанции берут свою энергию?
Вы хорошо знаете, что энергия солнечных лучей, поглощенная зелеными листьями растений, запасена в виде угля, солнечные лучи, испаряя воду, подымают ее и изливают в виде дождей на высотах, в виде горных рек доставляют энергию гидростанциям.
Вce виды энергии, которыми мы пользуемся, получены от Солнца. Солнце излучает огромное количество энергии не только в сторону Земли, но по всем направлениям, а у нас есть основания думать, что Солнце существует сотни миллиардов лет. Если подсчит
Проблемы современной физики реферат. Физика и энергетика.
Что Важно Между Прошлым И Будущим Сочинение
Реферат: Переоценка ценностей в современном Российском обществе
Свод Законов Юстиниана Реферат
Дипломная работа: Уголовно-правовая характеристика преступлений против общественной нравственности
Отчет по практике по теме Управление персоналом: деятельность по оценке и аттестации работников
Реферат по теме Subjunctive (or conditional) mood
Реферат: Влияние климата на здоровье человека
Реферат по теме Учет уставного капитала
Контрольная Работа Номер 2 2 Часа
Эссе На Тему Познание Начинается С Удивления
Сочинение На Тему Мой Лучший Друг Илья
Реферат по теме Использование оптического эффекта Поккельса для измерения физических величин
Сочинение: Тема Родины и народа в поэме Н. Гоголя Мертвые души
Курсовая Работа Лизинг Введение
Как Я Провел Каникулы В Деревне Сочинение
План Эссе По Русскому
Контрольная Работа На Тему Комп’Ютерні Мережі Та Їх Призначення
Реферат: Внешняя политика Советского Союза в годы второй мировой войны
Отчет по практике по теме Экономическая безопасность предприятия
Контрольная работа: Печенье. Скачать бесплатно и без регистрации
Анализ финансово-экономического состояния предприятия - Менеджмент и трудовые отношения курсовая работа
Шляхи підвищення видавничої культури сучасної української книги на прикладі книги оповідань Олександра Копиленка та Юрія Старостенка - Журналистика, издательское дело и СМИ курсовая работа
Беселеві функції - Математика курсовая работа


Report Page