Применение ускоренных методов расчета расходов воды - Геология, гидрология и геодезия курсовая работа

Применение ускоренных методов расчета расходов воды - Геология, гидрология и геодезия курсовая работа




































Главная

Геология, гидрология и геодезия
Применение ускоренных методов расчета расходов воды

Физико-географическая характеристика бассейна реки Тургай. Сокращенные способы измерения: интеграционные, с движущегося судна; измерение расходов воды с использованием физических эффектов; аэрогидрометрический метод; интерполяционно-гидравлическая модель.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Ускоренные методы измерений расходов воды
Студент 2 курса____________________________ Уваров Д.В.
Научный руководитель______________________ Л.П. Мазур
Нормоконтролер___________________________ А.Г. Чигринец
зав. кафедрой______________________________ Р.Г. Абдрахимов
Работа содержит 29 страниц, 3 таблицы, 2 использованных источника.
Ключевые слова: сокращенные методы, интерполяционно-гидравлическая модель, скоростная вертикаль, промерная вертикаль, средняя глубина, скорость, площадь, расход.
В данной курсовой работе, были рассмотрены сокращенные методы обработки расходов воды, в том числе и метод интерполяционно-гидравлической модели. Была обработана книжка КГ-3 (Приложение А), посчитан расход и обработан детальным методом и методом, основанном на интерполяционно-гидравлической модели.
1. Краткая физико-географическая характеристика бассейна р. Тургай
2. Описание сокращенных способов измерения
2.1 Интеграционные измерения с движущегося судна
2.2 Измерение расходов воды с использованием физических эффектов
3. Обработка расхода с применением интерполяционно-гидравлической модели
Приложение А. Книжка обработки расходов воды КГ-3
В данной работе рассмотрим сокращенные способы измерения расходов. В частности интерполяционно-гидравлический метод. Необходимо рассмотреть сущность данного метода. Как он применяется, на чем основывается, как действует. Показать его применение относительно определенного расхода. Определить отклонения, выявить достоинства и минусы данного метода.
1. Краткая физико-географическая характеристика бассейна реки Тургай
Река Тургай располагается в центральной части Кустанайской области (верхняя её часть находится на территории Акмолинской и Карагандинской области).
Долина реки до с. Тургай слабо разработана, с пологими склонами, ниже отчетливо выражен правобережный склон. Пойма шириной от 10 до 30 км, до с. Тургай пересечена рядом продольных протоков и староречий, а также поперечными ложбинами. На участке от с. Амангельды до с. Тургай преобладают перекаты, далее - плёсы. В плёсах ширина русла 20-150 м, глубина 2-4 м (местами более 10 м); на перекатах ширина потока уменьшается до 2-10 м, а глубина снижается до 0,3-0,1 м. Берега реки высотой 3-5 м на большем протяжении заросли кустарниками.
Речная сеть бассейна р. Тургай состоит из четырех водных систем: р. Кара - Торгай, p.p. Жалдама и Ащи-Тасты, оз. Сары-Копа и р. Улькаяк.
Рассматриваемый район относится к бассейну бессточной впадины Шалкар (Шалкар - Тенгиз). Сухость климата этого района в сочетании с общим преобладанием равнинного рельефа создали своеобразный гидрографический облик территории: развитие речной сети преимущественно на повышенных её участках и сосредоточение большего количества мелких, в основном бессточных, озер на низких плоских пространствах. На территории района насчитывается около 9669 водотоков с суммарной длиной около 52833 км. Водотоков длиной более 10 км насчитывается около 696. Больше всего водотоков длиной менее 10 км - 8707. Рек длиной 26-50 км -190; 51-100 км - 44; 101-200 км - 23; 201-300 км - 4; 301-500 км - 3; 501-1000 км - 2, а более 1000 км - рек в этом районе нет.
Наш рассматриваемый район расположен в глубине материка и удален от больших водных пространств (океанов, морей). Вследствие отсутствия на севере и на юге районов высоких естественных барьеров её территории доступна для свободного перемещения теплого сухого субтропического воздуха пустынь Казахстана и Средней Азии и холодного, бедного влагой арктического воздуха, перемещающихся в меридиональном направлении. От непосредственного влияния влажных воздушных масс атлантического происхождения территория района защищена мощным естественным барьером - хребтами Уральских гор.
Свободный доступ в пределы района влажных воздушных тихоокеанских масс преграждается Среднесибирским плоскогорьем и горными комплексами Алтая.
Климат резко континентальный: жаркое и сухое лето сменяется холодной и малоснежной зимой. Годовая амплитуда температуры воздуха в среднем составляет 75°С, в отдельные же годы достигает 88°С. В июле температура до 40°С, зимой падает до минус 40, - 46°С. Осадков в течение года выпадает мало - от 300 до 350 мм на севере до 175 мм на юге района, причем 70-80 % их годового количества приходится на теплый период.
Относительная влажность воздуха летом в дневные часы в центральной части района понижается до 30-40 %, на юге до 20-30 %. Для этого района обычны суховеи, снежные метели и бураны.
Средние годовые значения температуры воздуха в пределах района колеблются от 1,2°С в северной её части до 4,4°С - в южной. Зима характеризуется довольно устойчивой морозной погодой. Средние температуры наиболее холодных месяцев - января и февраля - составляют мину 16°С, минус 18 °С. В сильные морозы температура воздуха на севере области понижается до минус 40°С и даже до минус 46°С (февраль 1951 г.) на юге самая низкая температура зафиксирована равной минус 40°С.
В зимнее время иногда отмечаются повышения температуры, обусловленные вторжением на территорию района теплых потоков воздуха с юга. Летом преобладает жаркая погода. В июле средняя температура воздуха в северной части района составляет 19-20°С, а на юге - до 24,4 °С. Наибольшая июльская температура достигает 42°С. Весна и осень продолжаются всего 20-30 дней.
Большая часть рассматриваемой территории относится к Туранской впадине.
По устройству поверхности рассматриваемой территории можно выделить два характерных района:
2) западная окраина Казахской складчатой страны.
Тургайская столовая страна или Тургайское плато, занимает центральную и южную часть территории и представляет собой переходный район от пустынь Туранской низменности на юге и Западно-Сибирской равнине на севере. На западе этот район ограничен цепью Мугоджарских гор и Южным Уралом, на востоке - увалами Казахской складчатой страны. Северная часть Тургайского плато имеет уклон в сторону Западно-Сибирской низменности, а южная - в сторону Туринской низменности.
Своеобразной особенностью Тургайского плато является меридиональное расчленение его древней широкой Тургай - Убаганской ложбиной. По дну северной её части протекает р. Убаган, южной - р. Тургай. В наиболее низких своих частях ложбина имеет отметки 80-100 м над уровнем моря. В средней части ложбины её ширина достигает 30-40 км, глубина - 50-100 м. На плоском низком (абсолютные высоты не более 125 м) водоразделе p.p. Убаган и Тургай расположено несколько бессточных озер, наибольшими из которых являются Аксуат и Сарымоин. Рельеф Тургайского плато довольно разнообразен. Разрозненные невысокие плоские возвышенности и низкие столовые горы с пологими склонами чередуются с понижениями. Часто встречаются здесь и столово - останцевые возвышенности: Караганытау 305 м, Жыландытау 262 м, поднимающиеся над своими подошвами на 50-80 м. Поверхность плато изрезана долинами рек Кабырга, Теректы, Сары-Озень, Сары Тургай, Тургай, Иргиз и другие, а также котловинами многих больших и малых соленых и пресных водоемов и блюдцеобразными западинами. Более крупные озера расположены преимущественно на дне Тургай - Убаганской ложбины.
Юго-Восточная часть рассматриваемой территории занята сильно расчлененной окраиной Казахской складчатой страны, частично представленной отрогами гор Улытау. Отдельные возвышенности достигают здесь 400-500 м, а самая высокая вершина - гора Улытау (1135 м). На склонах гор Улытау и северных отрогах берут начало р. Тургай (Кара-Тургай), Улы-Жиланшик и ее многочисленные притоки.
Высоты на западе и северо-западе равнины (у подножья склонов Мугоджарских гор) составляют 320-280 м, а в юго-восточной её части (в низовьях рек Тургай, Иргиз и в районе впадины Шалкар - Тенгиз) всего 70-50 м. На поверхности плато, особенно в низовьях рек Тургай, Иргиза, Улькаяка, имеются много бессточных озерных котловин, солончаковых впадин и такыров.
Ветер в зимнее время вдоль параллели 50°с.ш. обычно образуется полоса повышенного атмосферного давления - отрог сибирского антициклона, к северу от неё преобладают ветры южного и юго-западного, а к югу северного и северо-восточного направления. Нередки снежные метели и бураны. В летний период господствующими являются ветры северных и северо-западных румбов.
Скорость ветра на рассматриваемой территории, в общем, изменяется в небольших пределах, увеличиваясь несколько с севера на юг. Сила ветра возрастает весной, особенно в ее начале (в марте). Более слабые ветры летом. Наибольшая средняя скорость ветра в марте составляет, 11 м/сек, а в августе -5,4 м/сек.
Наиболее распространенными на территории исследуемого района, являются отложения палеогена и неогена.
Зауральское плато в основном представляет собой цоколь неглубоко залегающих кристаллических пород, прикрытых палеогеновыми отложениями (песчаниками, опоками, конгломератами, глинами), а местами обнажающихся на склонах речных долин.
Почвообразующими породами здесь служат четвертичные песчано-глинистые, кое-где щебенистые отложения, залегающие небольшим слоем на морском засоленном палеогене, или на размытом цоколе кристаллических пород Равнина на севере района покрыта мощной толщей отложений третичного и четвертичного возраста (в наиболее возвышенных местах они развиты слабее). Третичные отложения представлены переслаивающимися глинами и песками, а более поздние четвертичные отложения состоят из озерных аллювиальных глин, суглинков, галечников и песков. Тургайская столовая страна образованна глинистыми и песчаными уплотненными пластами морских засоленных отложений палеогена, залегающими горизонтально или со слабым уклоном к северу. Нижние слои этой толщи глинистые с прослойками мергелей, а верхние - песчаные с галькой и конгломератами. Местами толща палеогена покрыта более поздними четвертичными отложениями суглинков и супесей.
Почвообразующими породами здесь являются как засолоненные палеогеновые отложения, так и покрывающие их более позднее опресненное образование.
Тургай-Убаганская ложбина, проходящая меридионально по Тургайскому плату, в основном сложена гипсоносными песками и глинами, а также кварцевыми песками и лессовидными суглинками общей мощностью около 60 м. К югу мощность третичных отложений увеличивается, достигая в районе р. Улы-Жиланшик и озера Шубар-Тенгиз 100 м. Залегание пластов горизонтальное.
Западная окраина Казахской складчатой страны имеет более сложное геологическое строение по сравнению с рассмотренными выше орографическими районами. Она сложена породами палеозойского возраста, представленными солонцами и песчаниками, прорезанными мощными интрузиями гранитов. Пониженные части этой территории, покрытые третичными и четвертичными отложениями, последние представлены супесями и суглинками, а также элювиальными и песчано-глинистыми делювиальными, и щебенистыми образованиями.
Под толщей песчано-глинистых отложений Тургайской впадины сосредоточенны, как показали исследования последних лет громадные залежи ценнейших полезных ископаемых.
Норма годовых осадков для крайней северной части района составляет 300-350 мм, а для южной её окраины 175 мм.
На западе и юго-востоке, в пределах возвышенных районов, широтная зональность распределение осадков заметно нарушается. Так, например, в предгорьях Южного Урала средняя годовая сумма осадков составляет 280-350 мм, а на этой же широте в различной части уменьшается до 200-225 мм. Изменчивость годовых сумм осадков относительно невелика (0,2-0,3). Большая часть осадков - 70-80 % годовой суммы - выпадает в теплый период - с апреля по октябрь.
Бездонные периоды в южной части, в зоне сухих и полупустынных степей, достигает 70 дней, а в северных, более увлажненных районах - 30-35 дней.
Распределение снежного покрова по территории носит в основном зональный характер. Это проявляется в первую очередь в довольно плавном уменьшении снегозапасов с убыванием широты местности. Постепенное изменение всех характеристик снежного покрова в направлении с севера на юг нарушается лишь у более возвышенных западной и восточной границ района, проходящих, с одной стороны, вдоль восточного склона Урала и с другой - вдоль западной стороны Казахского мелкосопочника, где широтное направление изолинии, характеризующих распределение снежного покрова, меняется на меридиональное.
Первый снег выпадает в северо-восточной части в среднем в последней декаде октября, а на остальной её территории - в первой декаде ноября. Максимальные запасы воды в снежном покрове накапливаются в среднем к середине марта в северной части и к 5-10 марта - в южной.
Максимальная высота снежного покрова перед началом весеннего снеготаяния обычно бывает незначительной, в среднем от 30-35 см в северной части до 18-20 см в южной. Плотность снежного покрова к началу весеннего снеготаяния чаще всего составляет около 0,30.
Максимальные запасы воды в снежном покрове перед началом весеннего снеготаяния изменяется в среднем от 70-80 мм на севере до 55-60 мм - на юге. Приведенные характеристики высоты снежного покрова и запасов воды в нем относятся ровной открытой степи.
Запасы воды в снежном покрове в речных руслах в зависимости от морфологических особенностей, ориентировки по отношению к преобладающему направлению зимних ветров и силы метелей превышают снегозапасы на прилегающих участках равной степи от 1,7 до 5,3 раза. Таяние снежного покрова весной начинается под влиянием солнечной радиации обычно ещё при отрицательных дневных температурах воздуха. Снежный покров на степных участках исчезает в среднем около 7-9/IV в северной половине и около 2-5/IV - в южной.
В Тургайской впадине, по геологическому строению относящейся к так называемым "закрытым районом Южного Зауралья" главная рудоносная полоса имеет ширину несколько десятков км и простирается в меридиональном направлении на 450-500 км. На территории района имеются также богатые залежи угля (Жиланшикский бассейн). Амангельдинский район богат месторождениями бокситов.
2. Описание сокращенных способов измерения
Многоточечные измерения расходов воды вертушками требуют значительных затрат времени. Конечно, в условиях изменчивости расходов воды при этом достигается наименьшая погрешность измерений, чем и окупается их большая продолжительность. Иначе обстоит дело, когда наблюдается явно выраженное неустановившееся движение воды, которое свойственно как естественным паводкам, так и попускам из водохранилищ. В таком случае большая продолжительность измерений порождает дополнительные погрешности, связанные с изменчивостью расходов воды. В этих условиях ускорение измерений обеспечивает не только экономию времени, но и повышение точности получаемых данных. Способы ускоренных измерений весьма многообразны: наряду с точечными наблюдениями они включают такие сложные, как f - интеграционные, акустические и аэрогидрометрические. Рассмотрим основные виды ускоренных измерений, как широко распространенные в настоящее время, так и предназначенные для внедрения в ближайшей перспективе.
При сокращенных способах измерения уменьшается количество скоростных вертикалей до одной - трех при условии, что среднее квадратическое отклонение получаемых при этом расходов от результатов измерения основным способом не превышает 5 %. Существует два варианта сокращенных измерений:
1) применение интерполяционно-гидравлической модели
2) использование его репрезентативных элементов
Интерполяционно-гидравлическая модель расхода воды основывается на представлении измеренной средней скорости на вертикали в виде суммы двух составляющих
где v i - это компонент, измеренной скорости, гидравлически обусловлена глубиной на вертикали. Если считать уклон свободной поверхности и коэффициент шероховатости неизменным по ширине потока, то
Вторая в общем случае знакопеременная компонента w зависит от особенностей кинематической структуры потока и поэтому названа структурной составляющей средней скорости на вертикали (она включает также средние случайные погрешности измерения).
Значения w i не следует за изменением глубин. Поэтому для среднего по ширине отсека допустима их линейная интерполяция. На основе чего можем представить себе вид следующей формулы
На основе приведенных предпосылок И.Ф. Карасевым и В.А. Реминюком синтезирована следующая модель расхода воды, названная интерполяционно-гидравлической:
где h s - средняя глубина в отсеке между скоростными вертикалями; P s - весовой коэффициент: P s = 0,5 для прибрежных отсеков (s = 1; s = N) ; P s - 0,5 для всех остальных отсеков (10.25, где Q макс - средний многолетний максимальный расход воды. Этим критериальным соотношением можно руководствоваться при организации измерений.
В каналах, где сохраняется призматичность и устойчивость формы русла, для определения v cp достаточно использовать одну репрезентативную вертикаль. По исследованиям А.А. Осиповича и В.П. Рагуновича (ЦНИИКИВР), эта вертикаль расположена на расстоянии 0,2b от уреза воды в канале (b - полуширина канала по дну - см.рис. 1). Отклонение местных скоростей течения на этой вертикали от средней для всего потока находится в пределах 2-3%.
Для ускорения измерений средних скоростей на вертикалях служат установки - интегратор ГР-101 и полуавтоматическая штанга с батареей микровертушек, разработанная М.И. Бирицким (ЦНИИКИВР).
2.1 Интеграционные измерения с движущегося судна
Интеграция скоростей течения с движущегося судна может производится:
а) вертушкой (или другим преобразователем скорости), закрепленной на определенном (постоянном) горизонте (горизонтальная интеграция);
б) Вертушкой, перемещаемой зигзагообразно от поверхности до дна потока и обратно в течение всего времени движения судна по створу.
Зигзагообразная интеграция в связи с техническими трудностями не получила распространения, поэтому ниже рассматривается только горизонтальная.
Рис.1. Принципиальная схема интеграционного измерения расхода воды с движущегося судна.
а - геометрические элементы схемы, б - сложение векторов скоростей
Горизонтальная интеграция скоростей обычно производится в поверхностном слое, так как коэффициенты перехода от поверхностей к средней скорости течения потока наиболее изучены. Принципиальная схема интеграционного измерения показана на рис.1, а один из вариантов приборного комплекса, разработанного в ГГИ. Непосредственно измеряются:
а) глубина h по створу (их регистрирует эхолот),
б) результирующая скорость u p - векторная сумма поверхностоной скорости течения u п и скорости движения судна u c ,
в) угол б между осью вертушки и линией гидроствора. Если все эти элементы отнести к элементарному отсеку потока s шириной, равной расстоянию, которое судно проходит по створу за достаточно короткий интервал времени ? t :
то можно получить фиктивный частичный расход в этом отсеке
Затем значения q ф s умножаются на коэффициент К, обеспечивающий переход от фиктивного расхода к действительному. Этот коэффициент должен быть заранее известен для данного створа по результатам специальных наблюдений. Действительные значения q s в специальном вычислительном блоке последовательно суммируются (интегрируются) по мере движения судна вдоль гидроствора от одного берега к другому за время Т, что позволяет получить полный расход воды
При косоструйном течении растет u п и u s становится более сложным и требует учета угла косоструйности б к , который заранее не известен. Однако если угол косоструйности не слишком велик (менее 20 0 ), можно использовать ту же формулу (8). Для компенсации возникающих при этом погрешностей интеграцию скоростей рекомендуется производить дважды (от одного берега к другому и обратно), а в качестве результата измерений принимать полусумму полученных значений.
Одно из главных метрологических преимуществ горизонтальной интеграции скоростей течения состоит в том, что она устраняет погрешность интерполяции средних скоростей на вертикалях, а при вертикальной дискретизации модели расхода воды эта погрешность является основной.
Выражение (8) относится к случаю, когда интеграция скоростей течения производится в поверхностном слое при незаглубленном измерителе скорости (z=0). Если же на реке наблюдается заметное волнение, появляется плывущий мусор или ледяные образования, приходится опускать измеритель ниже поверхности воды на глубину z. Измеряемый при этом расход Q z окажется не равным фиктивному расходу Q п . Соответствующий поправочный коэффициент определяется по зависимости, полученной И. Ф. Карасевым:
где в = (b л +b п )/B - непрозондированная часть ширины русла (см. рис.1); ц = h макс /h cp - коэффициент полноты сечения; m = 24,0 м 0,5 /с - эмпирический коэффициент Базена.
Переход к действительному расходу совершается по соотношению
Точность интеграционного измерения скорости течения существенно зависит от скорости перемещения судна по створу u c : при ее увеличении возникают погрешности измерения не только из-за малости времени интеграции Т, но и из-за уменьшения u п /u c . Чтобы не допустить чрезмерного возрастания рассматриваемой погрешности, скорость перемещения судна u c должна быть ограничена некоторым достаточно малым значением, при котором еще сохраняется устойчивость судна на курсе. Опыт показывает, что эта скорость близка к поверхностной скорости потока u п .
2.2 Измерение расходов воды с использованием физических эффектов
Для измерения скоростей течения (а значит, и расходов воды) могут быть использованы различные физические эффекты: Доплера, ультразвуковые и электромагнитная индукция.
Доплеровский метод измерения скоростей течения реализуется в двух вариантах: с использованием оптических квантовых генераторов и радиолокатора.
При лазерных измерениях источником информации о скорости потока служат спектральные характеристики света. Если поток, движущийся со скоростью v , просвечивается когерентным монохроматическим излучением с частотой щ 0 и волновым вектором А о , а рассеянное излучение при частоте щ i наблюдается в направлении волнового вектора A s , то значение v устанавливается непосредственно по разности частот и векторов
Рассеяние света создается частицами взвесей, которые содержатся в потоке или вводятся в него. Лазерные установки пока нашли применение в трубопроводах и лабораторных лотках (рис. 2 а).
Радиолокационный вариант эффекта Доплера положен в основу измерителя поверхностных скоростей течения ГР-117, разработанного в ГГИ Г. А. Юфитом. Прибор состоит из блока радиоаппаратуры, рупорной антенны, блоков анализа характеристик радиоволн, прямых и отраженных от неоднородностей на поверхности потока -- турбулентных возмущений и ветровых волн (рис. 2 б).
Для определения скорости течения в установке использована зависимость
где л-- длина радиоволны, составляющая 3,2 см.
Измерения производятся с гидрометрического мостика, люльки или с берега. Минимальное значение измеряемой скорости составляет 0,4 м/с, максимальное 15 м/с, индикация результата измерения - цифровая. Радиолокационный измеритель испытан в полевых условиях. В ближайшей перспективе первые партии прибора будут выпущены для производственного использования.
Ультразвуковой (акустический) метод заключается в посылке импульсов ультразвука по косому галсу в направлении течения и против него с регистрацией двух временных интервалов -- соответственно Т 1 и Т 2 . Ультразвуковое зондирование может производиться в различных направлениях в плане и поперечном сечении потока, но для определенности принимается горизонтальное положение ультразвукового луча, а угол, который он должен составлять с динамической осью, равным 30--60°.
Рис.2. Варианты измерения скоростей потока с использованием эффекта Доплера.
а - лазерная установка: 1 - фотоприемник, 2 - трубопровод, 3 - разделительная пластина, 4 - источник света, 5 - зеркало, б - радиолокационный измеритель скоростей течения: 1 - радиоблок, 2 - рупорная антенна, 3 - установочная тренога, 4 - настил моста.
Для выполнения измерений необходимо выбирать прямолинейный участок с устойчивым и свободным от растительности руслом. В потоке не должно содержаться пузырьков воздуха, рассеивающих ультразвук.
Преобразователи-приемники акустических (ультразвуковых) сигналов устанавливаются на свайных опорах или непосредственно на береговых откосах (рис. 3 а). Опорные конструкции должны допускать возможность перемещения преобразователей при колебаниях уровня без нарушения их взаимной ориентировки.
Для определения скорости потока принимаются расчетные формулы, не содержащие в явном виде скорость звука в воде, что исключает необходимость в аппаратуре для ее измерения (как известно, скорость звука не остается постоянной и зависит от температуры и минерализации воды).
Ультразвуковые системы для измерения скорости течения делятся на кабельные или бескабельные соответственно тому, имеется или отсутствует кабель, связывающий приемно-передающие устройства на противоположных берегах.
Кабельный вариант (рис. 3 б) функционирует следующим образом. В начальный момент времени производится одновременное излучение ультразвуковых импульсов в точках I и II. Ультразвуковые импульсы распространяются в потоке по траектории, составляющей угол а с направлением течения. Одновременно с запуском передающих устройств 2 запускается измеритель временных интервалов 3, который останавливается после приема импульсов на противоположных берегах.
Специальный электронный блок автоматически вычисляет осредненную по измерительному галсу скорость потока
В бескабельном варианте используется акустический канал связи с блоком переизлучения ультразвуковых импульсов. Принцип измерения остается тем же, хотя общая его схема становится более сложной.
Методика и принципиальные схемы ультразвуковых измерений расходов воды на реках разработаны А.И. Затыльниковым (ГГИ). На этой основе в ЦКБ ГМП создан комплекс АИР, выпускаемый малыми сериями.
Существуют две разновидности моделей расхода воды, измеренного ультразвуковым методом.
1. Послойная интеграция скоростей, при которой осуществляется горизонтальная дискретизация модели расхода воды
где в -- коэффициент, учитывающий полноту зондирования и особенности скоростной структуры во фрагменте, к которому относится осредненная скорость v s ; f s -- площадь фрагмента по направлению ультразвукового луча.
Рис.3. Принципиальная схема измерения расходов воды гидроакустической установкой.
а - установка измерительных преобразователей на свайных опорах, б - блок-схема кабельного варианта.
2. Из-за технических трудностей послойное измерение скоростей течения ультразвуком не получило распространения. В большинстве действующих установок зондирование потока производится на одном уровне. В этом случае для определенности должен зондироваться поверхностный слой и математическая модель приобретает вид
где F 3 -- площадь водного сечения в плоскости ультразвукового зондирования; k B -- коэффициент перехода от осредненной по ширине потока поверхностной скорости течения к средней.
Величина k B , не идентичная коэффициенту перехода от осредненной по сечению поверхностной скорости к средней, изучена мало и должна определяться в каждом створе по данным специальных методических исследований. Вместе с тем физически ясно, что k B зависит от тех же факторов, что и К, который достаточно исследован и может быть оценен. Связь коэффициентов К и k B получена И.Ф. Карасёвым
Косоструйность потока создает систематические погрешности ультразвуковой интеграции скоростей, но, в отличие от вертушечных измерений, эти погрешности получают разные знаки, и скорость течения оказывается завышенной, если фактическое направление струй отклоняется на угол ц внутрь острого у
Применение ускоренных методов расчета расходов воды курсовая работа. Геология, гидрология и геодезия.
Курсовая работа по теме Молитва как восхождение человека в Божественное Бытие по архимандриту Софронию (Сахарову)
Геммологическая Экспертиза Реферат
Реферат: Македония в 5-3 вв. до н.э.
Курсовая Работа Профилактика Жкт
Курсовая Работа На Тему Торгово-Промышленное Предпринимательство В Казанской Губернии В Xix-Начале Xx Вв.
Практические Работы По Основы Философии
Реферат Витамины По Биологии
Реферат На Тему Критерії Релігійності Людини. Погляд Соціологів
Реферат: Влияние общества на окружающую среду. Скачать бесплатно и без регистрации
Учебное пособие: Методические указания по дисциплине физическое воспитание для студентов заочной формы обучения
Волосяной покров и дерматографические признаки
Дипломная работа: Совершенствование деловых коммуникаций
Реферат по теме Творчество импрессионистов как проявление противоречивости исторической эпохи
Топик: WMD - Weapons of Mass Destruction
Курсовая работа по теме Заходи боротьби з шкідливими організмами в посівах картоплі
Доклад: Система управления измерения процесса толщины кордного полотна
Эссе Размышление На Тему Миссия Человека
Реферат: Современное социальное законодательство Швеции
Государственный Кадастр Недвижимости Курсовая Работа
Дипломная работа по теме Методика проведения аудита расчетов с бюджетом по налогу на добавленную стоимость
Комплексный гидроузел с грунтовой плотиной - Геология, гидрология и геодезия курсовая работа
Аудит расчетов с бюджетом по налогам и сборам в ООО "Агрофирма Пригородная" Юхновского района, Калужской области - Бухгалтерский учет и аудит курсовая работа
Природно-ресурсный потенциал камчатского края - География и экономическая география курсовая работа


Report Page