Применение технологии солянокислотной обработки установок ЭЦН на Мишкинском месторождении - Геология, гидрология и геодезия курсовая работа

Применение технологии солянокислотной обработки установок ЭЦН на Мишкинском месторождении - Геология, гидрология и геодезия курсовая работа




































Главная

Геология, гидрология и геодезия
Применение технологии солянокислотной обработки установок ЭЦН на Мишкинском месторождении

Геолого-физическая и гидродинамическая характеристика месторождения, продуктивных коллекторов, вмещающих пород и покрышек. Запаси, состав и свойства нефти, газа, конденсата и воды. Обработка скважин соляной кислотой и осложнения при их эксплуатации.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Федеральное агентство по образованию
ГОУ ВПО "Удмуртский Государственный Университет"
Мишкинское месторождение нефти открыто в 1966 году. В административном отношении месторождение расположено в восточной части Удмуртской Республики, на территории Воткинского и Шарканского районов, в 4-15 км севернее г.Воткинска. Мишкинская структура осложнена тремя куполами: северным - Чужеговским (2002 г.), западным -- Воткинским (1970 г) и восточным -- Черепановским (1970 г.) (рис.1).
Рисунок 1.Схема расположения месторождения.
В восточной, юго-западной и северной частях месторождения расположены охранные зоны: Пихтовские пруды, Воткинский пруд и леса I категории, р. Вотка. Кроме того, граница водоохранных зон составляет: Воткинский пруд - 500 м, Пихтовские пруды - 300 м, р. Вотка - 200 м. Бурение под охранные зоны в настоящее время затруднено из-за невозможности получить от государства разрешение на подготовку кустов, расположенных в этих зонах. В непосредственной близости от Мишкинского месторождения расположены: западнее - Лиственское месторождение, севернее - Шарканское месторождение, на некотором удалении северо-западнее - Быгинское, Черновское, Южно-Лиственское месторождения. Южнее месторождения к г. Воткинску подходит железнодорожная ветка Ижевск-Воткинск, по центральной части месторождения в меридиональном направлении проходит асфальтированное шоссе Воткинск-Шаркан, в восточной части в северо-восточном направлении - асфальтированное шоссе Воткинск-Кельчино-Пермь. Площадь месторождения покрыта сетью асфальтированных и проселочных дорог летнего и зимнего пользования.
В орогидрографическом отношении рассматриваемая территория представляет собой холмистую залесенную равнину с максимальными отметками рельефа на водоразделах от 150 до 220 м. Речная сеть представлена реками Сива и Шарканка, небольшими речками Сидоровка, Осиновка, Березовка, речные долины, которых часто заболочены, и многочисленными мелкими ручьями. Леса в основном хвойные (ель, сосна, пихта), реже смешанные, свободные от леса участки заняты сельскохозяй-ственными угодьями. Климат района умеренно-континентальный с продолжительной зимой и коротким прохладным летом. Среднегодовое количество осадков около 500 мм, две трети которых приходятся на месяцы с мая по сентябрь. Среднегодовая температура +2 0 С, морозы в январе - феврале иногда достигает -40 0 С. Средняя глубина промерзания грунта 1,2 м, толщина снежного покрова 60-80 см. Добычу нефти из Мишкинского месторождения ведёт НГДУ "Воткинск". (ОАО "Удмуртнефть"). Всего фонд скважин Мишкинского месторождения на 01.07.2007 г. составляет 1300 скважин, из которых 25 ликвидированы.
1.2 Геолого-физическая характеристика месторождения
Мишкинская зона поднятий расположена в южной части Верхне-камской впадины, в пределах которой наблюдается довольно сложное строение отдельных пачек осадочных пород. С угловым и стратиграфическим несогласием на отложениях рифейского и вендского комплексов залегают отложения девонской системы, прослеживается зона с резко увеличенными терригенными отложениями нижнего карбона. По тектонической схеме принятой в Удмуртии, во впадине прослеживаются валы северо-западного простирания (Июльский, Киенгопский, Зурийский, Дебёсский и др.). Мишкинское месторождение нефти расположено в юго-восточной части Киенгопского вала, представляющего собой крупную структуру, осложнённую рядом браклантиклинальных складов низшего порядка. К северо-западу от Мишкинского расположены Киенгопское и Чутырское месторождения, а восточнее Ножовская нефтяная зона. Все они находятся в одинаковых структурно-тектонических условиях, располагаясь в прибортовой части Камско-Кинельской системы прогибов. Кристаллический фундамент скважинами не вскрыт. По геофизическим материалам строение фундамента блоковое, обусловленное развитием сбросо-сдвиговых разрывных нарушений северо-восточного и северо-западного простираний. Месторождение расположено в наиболее погруженной части Верхне-камской впадины, где глубина поверхности кристаллического фундамента достигает 5500-6000 метров. Рифейские и вендские отложения изучены слабо и по этой причине тектоническое строение их осталось невыясненным. Воткинское поднятие характеризуется относительно пологим северным крылом с углом падения пород 30 0 и более крутым южным 6 0 . Наиболее высокая часть поднятия по нижнему карбону фиксируется в районе скважины № 211. Амплитуда поднятия в пределах замкнутой изогипсы - 1320 м кровли тульского горизонта составляет для Западно-Воткинского купола - 56 м., Восточно-Воткинского купола - 36 м и Черепетского поднятия - 25 м. На месторождении нефтеносными являются карбонатные пласты B-II, B-IIIa, B-IIIб верейского горизонта, А4-0 - А4-6 башкирского яруса среднего карбона, терригенные пласты С_II - C_VII визейского яруса, карбонатные пласты Сt_III, Сt_IV турнейского яруса нижнего карбона, D3_zv заволжского надгоризонта фаменского яруса верхнего девона. Нефтеносность отложений установлена по керну, геохимическим, промыслово-геофизическим данным, результатам опробования поисково- разведочных скважин в процессе бурения и в колонне; промышленная нефтеносность подтверждена эксплуатацией турнейского, визейского, башкирского и верейского объектов разработки.
Рисунок 2. Сводный литолого-стратиграфический разрез
Таблица №1. Геолого-физическая характеристика продуктивных коллекторов
Средняя глубина залегания кровли, м
Средняя эффективная нефтенасыщенная толщина, м
Коэффициент нефте насыщенности ЧНЗ, доли ед.
Коэффициент песчанистости, доли ед.
Вязкость нефти в пластовых условиях, мПа с
Плотность нефти в пластовых условиях, т/м 3
Плотность нефти в поверхностных условиях, т/м 3
Объемный коэффициент нефти, доли ед.
Давление насыщения нефти газом, МПа
1.3 Физико-гидродинамическая характеристика продуктивных коллекторов, вмещающих пород и покрышек
По всем продуктивным пластам с целью определения пористости, проницаемости и водонасыщенности было проанализировано 4557 образцов керна. Кроме того, определение пористости осуществлялось и по данным ГИС. Начальная нефтенасыщенность продуктивных пластов определялась по данным ГИС и методом центрифугирования.
При расчете средних значений коллекторских свойств за нижний предел проницаемости для всех типов коллекторов принято значение 1 мД. За нижний предел пористости для карбонатных пород верейского горизонта, башкирского и турнейского ярусов принято значение 8%, а для терригенных коллекторов визейского яруса _10 %.
Продуктивные пласты верейского горизонта представлены раковинно-известняковыми песчаниками, известняками органогенными, органогенно-детритовыми и известняками тонко-мелкокозернистыми
Башкирский ярус представлен известняками серыми и темно-серыми, пористыми и плотными, прослоями глинистыми, с включениями кремня, с примазками глин по многочисленным трещинам, иногда с прослойками зеленовато- серого аргиллита. Встречаются стилолитовые швы, выполненные глинистым материалом. Продуктивные отложения представлены следующими разностями: известняками органогенными, раковинно-известняковыми песчаниками, известняками органогенно-детритовыми.
Продуктивные пласты терригенных отложений визейского яруса представлены переслаиванием алевролитов, аргиллитов и песчаников с подчиненными прослоями доломитов
Коллекторы тульских продуктивных пластов представлены алевролитами, алевропесчаниками, реже песчаниками. Продуктивные пласты бобриковского горизонта сложены кварцевыми мелкозернистыми и разнозернистыми песчаниками, алевролитами.
Продуктивная толща турнейского яруса включает отложения черепетского и малевско-упинского горизонтов. Черепетский горизонт представлен переслаиванием серых, в большей степени глинистых известняков и черных, темно-серых аргиллитов. Малевско-упинский горизонт сложен известняками светло-серыми, скрыто и мелко кристаллическими, мелкокавернозно-пористыми иногда трещиноватыми.
Продуктивные пласты заволжского надгоризонта представлены переслаиванием плотных мелкокристаллических известняков, раковинно-известняковых песчаников, пелитоморфных органогенных известняков, доломитов; алевролитов известковистых.
Характеристика коллекторских свойств пород, слагающих продуктивные пласты, приведена в таблице 2.
Таблица №2. Характеристика коллекторских свойств продуктивных коллекторов
1.4 Свойства и состав нефти, газа, конденсата и воды
Свойства нефти в пластовых условиях
Средние значения основных параметров, определенных по результ атам анализа глубинных проб нефти, приведены в таблице 3.
Таблица № 3. Свойства нефти в пластовых условиях.
Плотность в условиях пласта, кг/м 3
Коэффициент объемной упругости, 1/МПа·10 -4
Плотность нефтяного газа, кг/м 3 , при 20°C:
Плотность дегазированной нефти, кг/м 3 , при 20°С
Нефти верейских отложений характеризуются по принятой классификации как средние по плотности и с повышенной вязкостью. Сравнение физико-химических свойств нефти показывает, что плотность нефти в пластовых условиях по пласту B-II выше (0,8828 г/см3), чем по пласту B_IIIa (0,8783 г/см3), что связано с ее более низким газосодержанием (17,49 м3/т). Нефть пласта B_IIIa характеризуется более низкой динамической вязкостью (16,02 мПа·с). Нефть, отобранная в пробах из совместных пластов B-II, B-IIIa и B-IIIб верейского горизонта (скв. 194R, 1985 и 2016) , по своим свойствам близка к нефти из пласта B-IIIa, поэтому параметры нефти для пласта B-IIIб рекомендуется брать по аналогии с пластом B-IIIa. Диапазон изменения физических свойств нефти по пластам месторождения не велик, что позволяет отметить их однотипность.
В башкирском ярусе большая часть представительных проб (восемь из десяти) отобрана из совместных пластов, поэтому пласты охарактеризованы по средним значениям параметров нефти по всем пробам. Большинство параметров нефти, отобранной в скв. 131, 252 и 253 (на Черепановском поднятии) меняется значительно: диапазон изменения динамической вязкости: 10,19-22,04 мПа•с, плотности нефти в пластовых условиях: 0,8541-0,8950 г/см3, объемного коэффициента: 1,016-1,065, газонасыщенности: 11,60-24,76 м3/т; различия между давлениями насыщения значительно ниже, 4,60-6,10 МПа. Такое же изменение в значениях динамической вязкости, объемного коэффициента и газонасыщенности прослеживается и на Воткинском поднятии, соответственно: 13,6-28,73 мПа•с, 1,025-1,040 и 10,8-18,0 м3/т. По месторождению в отложениях среднего карбона не наблюдается хорошо выраженной зависимости изменения параметров пластовой нефти с глубиной залегания и по площади.
Нефти башкирских отложений характеризуются как нефти с повышенной вязкостью (более 10,0 мПа•с).
В визейском ярусе выделены семь продуктивных пластов с C-II по C-VII. Из-за недостатка проб отдельно по пластам, средние значения параметров нефти рассчитаны в целом для визейского объекта по всем имеющимся пробам. Нефти визейских отложений также характеризуются как нефти с повышенной вязкостью.
В турнейском ярусе выделены продуктивные пласты Ct-III, Ct-IV. Нефть малевско-упинского возраста (пласт Ct-IV) изучена по девяти представительным пробам, отобранным в скв. 131R, 180R, 306R, 1319, 1445 и 1811. Она характеризуется как тяжелая (0,9166 г/см 3 ), высоковязкая (более 30 мПа•с).По пластам Ct-III черепетского горизонта турнейского яруса и D3-zv заволжского надгоризонта фаменского яруса пробы не отбирались.
Таблица № 4. Физико-химические свойства нефти в поверхностных условиях
Газ, растворенный в нефти продуктивных отложений среднего и нижнего карбона, изучен при сепарации глубинных проб. Средние значения основных параметров газа приведены в таблице 4.8. Газ верейских и башкирских залежей по своему составу является углеводородно-азотным (с одержание азота < 50%), визейских - азотно-углеводородным (содержание азота > 50%) , турнейских - азотным (содержание азота > 80%).
Таблица №5. Компонентный состав нефтяного газа.
Результаты анализа проб пластовой воды приведены в таблице 6. Воды исследованных гидростратиграфических подразделений являются высокоминерализованными расс олами хлор-кальциевого типа с промышленным содержанием йода и брома, плотностью 1.17 г/см3, с очень низким содержанием гидрокарбонатов и сульфатов. Замеры концентрации водородных ионов pH единичные, значения близки к нейтральным, сдвинуты в сторону кислой среды.
Таблица 6.Характеристика пластовой воды
Эквивалентная конц NaCl (для опред Rв)
Подсчет запасов нефти выполнен трестом "Удмуртнефтеразведка" по состоянию на 15.10.69 г. Результаты подсчета утверждены ГКЗ СССР (протокол № 5942 от 10.04.70 г.).
В процессе эксплуатационного разбуривания и выполнения геологоразведочных работ с получением новой информации неоднократно производилась оперативная оценка запасов и перевод запасов в более высокие категории с утверждением их в ЦКЗ, часть запасов категории С2 была списана. По результатам бурения 1989-91 гг. институтом "УдмуртНИПИнефть" в рамках составления Баланса запасов нефти, газа и сопутствующих компонентов за 1997 год по месторождениям ОАО "Удмуртнефть" выполнен прирост запасов Черепановского поднятия по отложениям верейского горизонта, башкирского и турнейского ярусов (протокол ЦКЗ РФ №183-98 от 09.04.98г.).
В 2000 г. также в рамках составления Баланса запасов нефти, газа и сопутствующих компонентов проведена оперативная оценка запасов на Черепановском поднятии (протокол. ЦКЗ РФ № 295-2001(М) от 26.03.2001 г.). Получен прирост запасов нефти по отложениям верейского горизонта, башкирского, визейского и турнейского ярусов. Отдельные участки залежей Черепановского поднятия территориально расположены в Пермской области, соответственно запасы этих участков учитываются Госбалансом отдельно.
В 2001 г. по результатам бурения разведочных скважин 10R, 14R, 308R выполнен оперативный подсчет запасов нефти Чужеговского поднятия по продуктивным отложениям верейского горизонта (протокол ЦКЗ РФ №199(М) от 01.04.2002 г.). Подсчитанные запасы находятся за пределами разрешенной лицензионной деятельности и относятся к нераспределенному фонду.
Состояние запасов, числящихся на Госбалансе , на 01.01.2007 г. приведено в таблице 7.
В 2005 г. ЗАО "ИННЦ" выполнен отчет по пересчету запасов нефти месторождения. В настоящее время отчет представлен на экспертизу в ГКЗ МПР РФ.
Пересчет запасов выполнен по следующим подсчетным объектам:
· B-II, B-IIIa, B-IIIб верейского горизонта среднего карбона;
· А4-0, А4-1, А4-2, А4-3, А4-4, А4-5, А4-6 башкирского яруса среднего карбона;
· С-II, С-III, С-IV, С-V, С-VI, С-VII визейского яруса нижнего карбона;
· Сt-III, Сt-IV турнейского яруса нижнего карбона;
· D 3 -zv заволжского надгоризонта верхнего девона.
Таблица 7. Состояние запасов нефти по Мишкинскому месторождению на 01.01.2007 г.
Чужеговский участок верейский (В_II+B-III)
По месторождению выделяется 4 объекта эксплуатации, но основные промышленные скопления нефти приурочены к пласту В_II башкирского яруса (около 43% от НИЗ).
В 2006 году добыто 354,8 тыс. т нефти при проектном уровне 390,3 тыс. т. Темп отбора от НИЗ - 1,5 %, проектный уровень - 1,6 %. Добыча жидкости составила - 1725,5 тыс. т (проектный уровень - 1768,0 тыс. т), обводненность составила - 79,5 % (проектное значение - 77,9 %). Текущая компенсация отборов закачкой составила - 103,6 % при проектной - 115,0 %.
Отставание фактической годовой добычи за 2006 год составило 9% от проектной и обусловлено тем, что средний дебитом по нефти на 0,4 т/сут ниже проектного при превышении действующего добывающего фонда на 11 скважин (3%).
По состоянию на 01.01.2007 г. по башкирскому объекту разработки отобрано 4766,3 тыс. нефти, что соответствует проектному значению. Текущий коэффициент нефтеизвлечения составил 0,119 при проектном 0,118, отбор от НИЗ 34,9% при обводнённости продукции 89,7% (проектная 87,4%). Жидкости отобрано 14868 тыс. т , что почти соответствует проектному. Накопленная компенсация отборов жидкости закачкой соответствует проектной. Фонд добывающих скважин - 131, что на 9% меньше проектного, действующий фонд нагнетательных скважин - 45, что на 2 скв. меньше проектного, при этом накопленная компенсация отборов закачкой практически соответствует проектной, а текущая превышает проектную на 17,9%.
На начало 2007 года накопленная добыча нефти составила 5786,7 тыс. т., накопленная добыча жидкости - 20113,3 тыс. т, отобрано 60,7 % от НИЗ (проектное значение 60,6%), при обводненности 90,3 % (выше проектной на 3 %).
За 2006 г. добыча нефти составила 424 тыс. т, что составляет 90% от проектного уровня. По состоянию на 01.01.2007 г. по турнейскому объекту отобрано 8194 тыс. т нефти (98 % от проектного значения), текущий коэффициент нефтеизвлечения составил 0,188 (при проектном 0,190). Отбор от начальных извлекаемых запасов составил 48,2 %, при обводнённости продукции 87,6% (проектное значение - 48,7 % и 85,2% соответственно). Жидкости отобрано 27113,6 тыс. т (101 % от проектного значения). Накопленная закачка составила 4844,4 тыс. м 3 (99 % от проектного уровня), годовая компенсация отбора составила 11 %, что соответствует проектному значению. Фонд добывающих скважин - 219 (93 % от проектного количества), действующий фонд нагнетательных скважин - 7 (78 % от проектного количества).
Мишкинское месторождение находится на III стадии разработки.
На Мишкинском месторождении, согласно технологической схеме, выделено 4 объекта разработки: верейский (I) - пласты В-II, B-III верейского горизонта, башкирский (II) - пласт А 4 башкирского яруса, визейский (III) - пласты С-II-C-VII визейского яруса и турнейский (IV) ) - пласты Ct-III, Ct-IV турнейского яруса. В разработке находятся два поднятия Воткинское и Черепановское.
По I, II и III объектам технологической схемой предусматривался переход от реализованной треугольной сетки 500?500 м (семиточечный площадной элемент) к уплотненной сетке 250?500 м (тринадцатиточечный площадной элемент).
Уплотнение практически полностью реализовано на II и III объектах и частично на I объекте, где переход на сетку 250?500 м произведен в западной части Воткинского поднятия. Непробуренные проектные скважины в основном располагаются на периферийных участках объектов, а также в элементах где предусматривался переход на уплотняющую сетку.
В 2000 году ТКР утвержден отчет по теме "Дополнение к технологической схеме разработки Мишкинского месторождения (Черепановское поднятие)" (протокол ТКР № 15 от 23.11.2000 г.).
Утвержденный вариант предусматривал следующие основные положения:
- выделение двух эксплуатационных объектов разработки: верейский и турнейский;
- разработка верейского объекта самостоятельной сеткой вертикальных и горизонтальных скважин 400?400 м при площадной системе заводнения;
- разработка турнейского объекта имеющимися разведочными скважинами с довыработкой запасов боковыми горизонтальными стволами;
- общий фонд скважин - 48, в т.ч. добывающих - 35, нагнетательных - 13;
- фонд скважин для бурения - 42, в том числе 23 горизонтальные;
- механизированный способ эксплуатации.
Сопоставление фактических показателей разработки по Мишкинскому месторождению за период 2002-2006 г.г. проведено в соответствии с проектными документами: "Технологическая схема разработки Мишкинского нефтяного месторождения" от 1986 года (верейский, башкирский и яснополянский объекты); "Дополнение к технологической схеме разработки Мишкинского месторождения с разбуриванием черепетской залежи горизонтальными скважинами" от 1995 года (турнейский объект); "Дополнение к технологической схеме Мишкинского месторождения (Черепановское поднятие)" от 2000 года; "Авторский надзор за разработкой Мишкинского месторождения" от 2001 года и 2004 года.
2.2 Технико-эксплуатационная характеристика фонда скважин
Добыча нефти ведется механизированным способом. Коэффициент использования фонда составляет 0,927. По состоянию на 01.07.2007 г. на месторождении числится 1300 скважин. Из них 877 добывающих, в том числе 813 действующих, 248 нагнетательных, в том числе 216 действующих, 92 контрольных и 26 поглощающих скважины (серпуховские отложения), 33 скважины в консервации и 25 ликвидированы. Характеристика фонда скважин приведена в таблице 8. Общий добывающий фонд месторождения составляет 877 скважин, в т.ч. 813 скважин эксплуатационного фонда, 33 в консервации и 24 ликвидированы. Из скважин эксплуатационного фонда действующими являются 813, в бездействии находится 64 скважины, основной способ добычи ШГН (650 скв. - 80%).
Таблица 8. - Характеристика фонда скважин по состоянию на 01.07.2007 г.
Разработка месторождения осуществляется при поддержании пластового давления. Для этих целей пробурено 246 нагнетательных скважин, 129 скважин переведены из добывающих, 4 скважины возвращены с других пластов. По состоянию на 1.01.07 г. эксплуатационный нагнетательный фонд состоит из 246 скважины, из которых под закачкой находятся 216, в бездействии - 18.
2.3 Осложнения при эксплуатации скважин, оборудованных ЭЦН
В данный момент на Мишкинском месторождении 17 % фонда эксплуатируется установками электроцентробежных насосов, в основном этот фонд является высокодебитным и отказы на этих скважинах сопровождаются большими затратами. В процессе эксплуатации скважин оборудованных УЭЦН приходится неизбежно сталкиваться с проблемами снижения производительности, нестабильной работой насоса, заклиниванием УЭЦН . Анализируя распределение отказов УЭЦН за 2008 год по причинам (график 1), видим что основной и главной причиной является засорение механическими примесями рабочих органов установок (составляет 47 % от общего числа отказов), далее- снижение производительности УЭЦН и заклинивание рабочих агрегатов установки. Химический состав механических примесей будет различным в зависимости от объекта разработки (рис. 3,4,5), но для всех объектов характерна одна картина, это высокое содержание сульфидов железа которое колеблется от 50 до 70%, такое высокое содержание не может не влиять на нормальную работу оборудования, далее по содержанию преобладают гипс и соли. Эти отложения называют сульфидосодержащими отложениями: в условиях месторождений Удмуртии это, в основном, гипсосульфидоуглеводородные (CaSO3 + FeS + АСПО) и карбонатосульфидоуглеводородные (CaCO3 + FeS + АСПО) отложения. Сульфид железа представляет собой рыхлую черную массу, которая хорошо агрегатируется с другими солями и АСПО, часто играет роль стимулятора образования солей и АСПО в зоне приема насоса, забивая при этом фильтры и рабочие органы насосов, которые в обычных условиях находятся ниже интервала образования АСПО. Работы многих ученых нефтяной отрасли и данные промысловых исследований показывают, что сульфиды железа образуются в большей части в призабойной части пласта при наличии железосодержащей воды и сероводорода в результате изменения термобарических условий при движении жидкости. Образованные "хлопья" сульфида железа, соединяясь с кристаллами других солей и агломератами АСПО, образуют сульфидосодержащие осадки на поверхности оборудования и рабочих органах насосов.
Интенсивное перемешивание пластовых жидкостей в рабочих органах насосных установок и последующая адсорбция природных стабилизаторов на межфазной поверхности приводит к тому, что в массе самой жидкости и на поверхности оборудования образуются кристаллы и агрегаты самых различных солей в сочетании с мех. примесями и АСПО, приводящие в конечном счете к отказу насосного оборудования.
Наиболее эффективными методами борьбы с солеотложениями в ПЗП, в скважинах и скважинном оборудовании являются методы предупреждения отложений. В зависимости от условий образования и разновидности и химического состава солей методы предупреждения солеотложений могут быть самыми различными. Однако после группирования их по основным направлениям работы по борьбе с наиболее часто встречающимися солями можно назвать следующие методы предупреждения солеотложений:
§ прогнозирование интенсивности солеотложений
§ обработка призабойных зон ингибиторами солеотложений ( или бактерицидами-поглотителями сероводорода для предупреждения отложений сульфида железа)
§ постоянно дозировать в затрубное пространство скважин соответствующие ингибиторы
§ периодически заливать в затрубное пространство расчетное количество ингибитора
§ для ППД применять вместо пресной воды подтоварную
§ периодически обрабатывать закачиваемую в систему ППД воду бактерицидом для снижения в пласте СВБ и сероводорода.
Эффективность данных методов обработки не всегда дает необходимый результат, а применение новых высокоэффективных методов экономически не выгодны или технологически невозможны.
2.4 Обработка скважин с УЭЦН соляной кислотой
При работе с данным фондом предлагается применять соляно-кислотную обработку (СКО), (при условии, что другие методы воздействия и обработки оказались неэффективны), которая по своей результативности превосходит применяемые сегодня технологии восстановления работоспособности УЭЦН. Критерием выбора именно технологии СКО являются следующие основные причины:
§ При расследовании причин отказа УЭЦН в предыдущих ремонтах сделано заключение о причинах отказа в результате солеотложений в рабочих органах УЭЦН и фильтре.
§ Снижение подачи УЭЦН достигает 15-30
§ Частые остановки УЭЦН по причине "защита от перегруза".
§ Остановка УЭЦН по причине заклинивания.
§ Предыдущие СКО были результативными.
§ Отсутствие специальных реагентов - удалителей солей.
§ Отсутствие осложняющих факторов при СКО.
Технология проведения СКО не отличается сложными операциями, наоборот является достаточно простой, но при своей простоте показывает достаточно хорошие результаты. Приготовленный слабокислотный раствор закачивается в затрубное пространство при работающей установке, далее пачка кислоты продавливается расчетным объемом продавочной жидкости. после прокачки кислоты установка останавливается на время реагирования, время реакции определяется с учетом выявленных ранее осложняющих факторов и их процентного содержания и опыта проведения СКО на данной скважине.
После производится пуск установки, неотреагировавшая кислота отбирается в агрегат с последующей закачкой в ПЗП поглощающих скважин, тем самым мы минимизируем отрицательное влияние кислоты на систему сбора и подготовки продукции.
В случае незапуска УЭЦН необходимо иметь дополнительный объем жидкости для принудительного подъема кислота из скважины с дальнейшей утилизацией ее в нагнетательной скважине.
Из комплексных отложений на оборудовании УЭЦН соляная кислота реагирует сульфидами железа, окислами железа и карбонатами. Реагируя с сульфидами железа соляная кислота образует сероводород H 2 S и растворимую в воде FeCl 2 , причем в зависимости от количества солей выделенное количество сероводорода может быть значительным. В результате реакции соляной кислоты с карбонатами образуется хлористый кальций, углекислый газ и вода. Исходя из этого требуется добавлять в кислоту и продавочную жидкость соответствующие ингибиторы и добавочные химреагенты.
Технологические показатели операции СКО УЭЦН:
§ Концентрация соленой кислоты - 5-6%
§ Обьем раствора соляной кислоты - 3м3
§ Добавка ингибитора коррозии в раствор кислоты - 0,5%
§ Количество продавочной пластовой воды - по расчету
§ Добавка в продавочную жидкость нейтрализатора сероводорода (СНПХ - 1100, ЛПЭ-32, сонцид 8102) - 500г/м3
§ Добавка ингибитора солеотложений в продавочную жидкость - 60-150 г/м3
Объем продавочной жидкости (пластовой воды) при обратной закачке кислоты рассчитывается по формуле:
Vпр = 0,785 * (D2э.к.-d2нкт) * L эцн + 0,5 (м3);
§ Lэцн - глубина спуска ЭЦН по стволу скважины (м)
§ Dэ.к - внутренний диаметр эксплуатационной колонны(м)
Рассмотрим эффективность технологии на примере восстановления производительности установки на СКВ 4021 (график 2)
Видно, что установка работала со стабильным снижением дебета, был закачен реагент РАСПО в объеме 500кг, был полечен непродолжительный результат после сего была проведена промывка с реагентом, со временем дебет упал в 3 раза от начального, было принято решение о проведении СКО. В результате чего был получен положительный эффект. В результате проведенной СКО был предотвращен ТРС, восстановлена производительность УЭЦН, продолжительность эффекта сохраняется и составляет более 180 сут, а общая наработка скважины составляет более 350сут.
График 3. Эффективность солянокислотных обработок
Всего в 2008 году в НГДУ "Воткинск" было проведено 42 обработки, из них 25 были результативными и на 9 из них мы получили долгосрочный эффект.
Анализируя результаты проведения СКО по скважинам видно что из 28 обработанных скважин на 20 был получен эффект и в 10 из них был предотвращен ТРС.
В процентном соотношении эффективность по скважинам достигает 71% , а по обработкам 76%. (график 3.)
Неэффективность СКО объясняется отсутствием опыта применения данной технологии в условиях наших месторождений. Проводились обработки установок, которые по результатам расследований признавались полностью неработоспособными по причине полного износа рабочих органов, заводского брака, слома вала и т.д.
3.1 Обоснование показателей экономической эффективности
Основная цель расчетов - экономическая оценка предлагаемого решения по проведению соляно-кислотных обработок скважин оборудованных УЭЦН, отвечающая критерию достижения максимального экономического эффекта от возможно более полного удаления механических примесей на приеме насоса, предотвращения ТРС, снижения затрат на эксплуатацию УЭЦН.
В данной работе проведена экономическая оценка проведения СКО УЭЦН в НГДУ "Воткинск" за 2008 год.
Экономическая оценка вариантов произведена на основании РД 153-39-007-96 с использованием следующих основных показателей эффективности:
· дисконтированный поток наличности (NPV);
В систему оценочных показателей также включены:
· эксплуатационные затраты на добычу нефти.
В расчетах не учтена инфляция, а также изменение цен на нефть и нормативов капитальных вложений и эксплуатационных затрат. Расчет проведен в рублевом исчислении.
3.2 Нормативная база и исходные данные для расчета экономических показателей проекта
ОАО "Удмуртнефть", являющееся дочерним предприятием ОАО НК "Роснефть", реализует всю добытую продукцию только по корпоративным ценам управляющей компании - 6127,50 ру
Применение технологии солянокислотной обработки установок ЭЦН на Мишкинском месторождении курсовая работа. Геология, гидрология и геодезия.
Курсовая работа: Расчёт устойчивости электрических систем
Легенды И Мифы О Музыке Реферат
Боевые Характеристики Обычного Оружия Реферат
Курсовая работа по теме Денежные потоки организации
Реферат: Социальные страхи и безопасность общества
Дипломная работа по теме Генератор сигнала треугольной формы
Контрольная работа по теме Источники гражданского законодательства Приднестровской Молдавской Республики
Реферат: SameSex Marriages Essay Research Paper SameSex MarriagesIf
Дипломная работа по теме Проектирование железнодорожного участка
Реферат по теме Характеристики выполнения комманд
Реферат На Тему Основные Принципы И Понятия Поведенческой Психотерапии
Реферат: The Birthmark And Rappaccinis Daughter
Реферат: Расчеты по инкассо
Контрольная работа: Информационные технологии на транспорте 3
Теория Электропривода Тпч Ад Вариант 9 Курсовая
Реферат На Тему Химическая Кинетика И Равновесие
Дипломная работа по теме Разработка алгоритма и программы автоматизированной обучающей системы по дисциплине 'Компьютерная графика'
Реферат: А.С. Хомяков. Скачать бесплатно и без регистрации
Курсовая работа по теме Теневая экономика: причины возникновения, масштабы и опыт государственного противодействия в России и других странах
Структура Написания Сочинения По Литературе Егэ 2022
Китай - География и экономическая география презентация
Механика грунтов - Геология, гидрология и геодезия курсовая работа
Учет расчетов на предприятии - Бухгалтерский учет и аудит дипломная работа


Report Page