Применение соляно-кислотной обработки призабойных зон скважин - Геология, гидрология и геодезия дипломная работа

Применение соляно-кислотной обработки призабойных зон скважин - Геология, гидрология и геодезия дипломная работа




































Главная

Геология, гидрология и геодезия
Применение соляно-кислотной обработки призабойных зон скважин

Характеристика Ромашкинского месторождения: орогидрография, стратиграфия, тектоника. Коллекторские свойства продуктивных горизонтов. Физико-химические свойства нефти, газа и пластовой воды. Причины низкой продуктивности скважин и пути их разрешения.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Призабойной зоной скважины (ПЗС) называют область пласта в интервале фильтра, примыкающую к стволу. Эта область подвергается наиболее интенсивному воздействию различных физических, механических, гидродинамических, химических и физико-химических процессов, обусловленных извлечением жидкостей и газов из пласта или их закачкой в залежь в процессе ее разработки. Через ПЗС проходит весь объем жидкостей и газов, извлекаемых из пласта за все время его разработки. Вследствие радиального характера притока жидкости в этой зоне возникают максимальные градиенты давления и максимальные скорости движения. Фильтрационные сопротивления здесь также максимальны, что приводит к наибольшим потерям пластовой энергии. От состояния ПЗС существенно зависит текущая и суммарная добыча нефти, дебиты добывающих скважин и приемистость нагнетательных скважин. Поэтому в процессе вскрытия пласта при бурении и последующих работах по креплению скважины, оборудованию ее забоя и т.д. очень важно не ухудшить, а сохранить естественную проницаемость пород ПЗС. Однако нередко в процессе работ по заканчиванию скважины и последующей ее эксплуатации проницаемость пород оказывается ухудшенной по сравнению с первоначальной, естественной. Это происходит вследствие отложения в породах ПЗС глинистых час т смолы, асфальтенов, парафина, солей и т.д. В результате резко возрастают сопротивления фильтрации жидкости и газа, снижается дебит скважины и т.д. В таких случаях необходимо искусственное воздействие на ПЗС для повышения ее проницаемости и улучшения сообщаемости пласта со скважиной.
Методы воздействия на ПЭС можно разделить на три основные группы: химические, механические и тепловые.
Химические методы применяют в тех случаях, когда проницаемость призабойной зоны ухудшена вследствие отложения веществ, которые можно растворить в различных химических реагентах (например, известняк в соляной кислоте). Пример такого воздействия - соляно-кислотная обработка пород ПЗС.
Механические методы применяют в малопроницаемых твердых породах. К этому виду воздействия относится гидравлический разрыв пласта (ГРП).
Тепловые методы применяют в тех случаях, когда в ПЗС отложились вязкие углеводороды (парафин, смолы, асфальтены), а также при фильтрации вязких нефтей. К этому виду воздействия относят различные методы прогрева ПЭС.
Кроме перечисленных существуют методы, представляющие их сочетание. Например, гидрокислотный разрыв представляет собой сочетание ГРП и соляно-кислотной обработки, термокислотная обработка сочетает как тепловые, так и химические воз действия на ПЗС и т.д.
Методы воздействия на ПЗС на нефтегазодобывающих промыслах осуществляют бригады по текущему и капитальному ремонту скважин.
В географическом отношении залежи 302,303 Ромашкинского месторождения прослеживаются от Северо - Западной оконечности Бугульмино - Белебеевской возвышенности через Шугуровское плато до границы Республики Татарстан.
В административном отношении изучаемые залежи принадлежат Лениногорскому району.
Ближайшие крупные населенные пункты - районные центры: город Лениногорск - располагается в 12 км на восток и город Альметьевск в 25 км на север от северо-восточной части, изучаемой площади. Непосредственно на площади залежей расположены поселки городского типа - Шугурово, Куакбаш, Зеленая Роща. Остальные населенные пункты сельского типа - это Верхняя Чершила. Нижняя Чершила, Алешкино, Кузайкино, Тукмак и другие. Все населенные пункты связаны между собой широко развитой сетью асфальтированных и грунтовых работ.
Ближайшими железнодорожными станциями являются Бугульма (50 км) и Клявлино (30 км) через которые проходит однопутная железнодорожная линия Ульяновск - Уфа. Кроме того, восточнее месторождения проходит железнодорожная линия, соединяющая нефтяные районы Бугульма - Лениногорск - Альметьевск - Акташ-Кама.
Населенные пункты электрофицированны. Электроснабжение осуществляется посредством линии передач от Куйбышевской, Уруссинской, и Заинской ГРЭС.
Местные месторождения твердых полезных ископаемых известняка, гравия, глины, песков - находя широкое применение в качестве строительных материалов.
Климат района умеренно континентальный. Зима (середина ноября - март) умеренно холодная, снежная, с устойчивыми морозами, Средняя температура января -13,4 -15 °С, в отдельные годы абсолютный минус опускается до -40 - 45 °С Снежный покров устанавливается в конце ноября, его толщина в марте достигает 50-60 см. Лето (июнь-середина сентября) теплое. Средняя температура самого жаркого месяца июля +18,2 +20 °С, может достигать +36 +38 °С.
Преобладающее направление ветров западное и юго-западное, со скоростью 2 - 5 м/сек. В летний период до 14 дней с суховеями. Атмосферные осадки выпадают неравномерно, среднегодовое количество их составляет 400 - 500 мм
Замерзание почвы с поверхности наблюдается с октября - ноября по апрель - май месяцы. Средняя глубина промерзания почвы достигает - 1 метра, минимальная -1,5 м. Рельеф описываемой территории представляет собой довольно расчлененную равнину с самыми высокими абсолютными отметками у деревни Алешкино (+337 м) и на Шугуровском плато (+320 м). Минимальные отметки приурочены к речным долинам (+60, +100 м).
Реки, протекающие здесь, не судоходны и транспортного значения не имеют. Это река Шешма и ее правые притоки: Лесная Шешма, Каратай, Кувак. Реки текут с юга на север, северо-запад, что обусловлено общим понижением рельефа в этом направлением.
В геологическом строении залежей 301-303 принимает участие кристаллический фундамент и платформенный чехол. Кристаллический фундамент сложен метаморфическими породами архейской группы. Осадочный чехол включает отложения девона, карбона, перьми и четвертичной систем. На поверхность обнажаются четвертичные и верхнеказанские отложения. Более древние образования вскрыты многочисленными скважинами. Общая мощность осадочного чехла около 2000 м. Из них 75% приходится на карбонатные и 25% на терригенные породы.
Вопросами корреляции и стратиграфической идентификации разрезов скважин занимались многие исследователи. Эти вопросы отработаны достаточно хорошо, поскольку в разрезе, по данным ГИС, присутствует большое количество реперных пластов, имеющих площадной характер распространения. Поэтому, достаточно однозначно выделяются интервалы залегания продуктивных пластов.
В пределах 302 -303 залежей отложения каменноугольной системы представлены карбонатными отложениями нижнего и среднего отделов.
В составе яруса выделяются тарусский, стешевский и протвинский горизонты. Литологически отложения представлены известняками и доломитами кристаллически зернистыми, часто кавернозными и трещиноватыми.
Верхняя граница яруса (протвинский горизонт) проводится по резкой смене нижнекаменноугольной фауны (фораминифер, брахиопод и кораллов) среднекаменноугольными. Продуктивная часть серпуховского яруса - протвинский горизонт (залежь 303), представлена известняками и доломитами зернистыми, светло-серыми, сахаровидными. Толщина горизонта 36-57 м.
В основании яруса залегают плотные известняки и доломиты общей мощностью иногда до 25 м. Однако, не всегда подошва яруса отбивается достаточно четко. Толщина серпуховского яруса в целом составляет 116-157 м.
Среднекаменноугольные отложения повсеместно залегают со стратиграфическим несогласием на породах серпуховского яруса. В среднем карбоне выделяют два яруса: башкирский и московский. Общая толщина среднекаменноугольных отложений 255-375 м.
По подошве башкирского яруса залегают плотные глинистые известняки и доломиты толщиной до 4-8 м. В литологическом отношении ярус, в основном, сложен известняками органогенными, органогенно-обломочными, микрозернистыми, брекчиевидными и доломитами, кавернозными и трещиноватыми.
Продуктивная часть разреза сложена пористыми известняками, толщина которых колеблется от 2 до 16 м. В кровельной части они перекрываются плотными глинистыми известняками (до 3 и более метров). В Шугуровском типе разреза пачка пористых известняков представлена в более сокращенном виде. Толщина яруса изменяется от 6 до 36 м.
В тектоническом отношении основным структурным элементом, контролирующим в современном плане закономерности распределения промышленных скоплений нефти на площадях Ромашкинского месторождения является Южный купол Татарского свода - структура первого порядка. Купол представляет собой крупное платообразное поднятие изометрической формы размером около 100100 км.
По кровле продуктивных отложений Серпуховского яруса четко прослеживается крупная структура второго порядка - Шугурово-Куакбашский вал. В пределах изогипс 550-555 м - это асимметричное поднятие, вытянутое в субмеридиальном направлении на 18-20 км, ширина изменяется от 1,5 до 6,0 км, постепенно сужаясь к переклинальным частям структуры. Наиболее приподнятая часть с амплитудой свыше 60 м находится в районе Шугуровского поднятия. Восточное крыло структуры, особенно на юге, круче западного.
С юга на север в границах вала выделяется ряд иногда довольно крупных поднятий третьего порядка: Ойкинское, Шугуровске, Сортоводское, Куакбашское. Размеры их колеблются от 60 до 15 метров. Последние в свою очередь осложняются большим количеством более мелких локальных поднятий и прогибов.
Ойкинское поднятие занимает юго-западную переклиналь. Это относительно небольшое (2,51,5 км) мало - амплитудное (15 м).
Шугуровское поднятие в границах изогипсы 530 м приобретает в плане вытянутую с юга на север овальную форму с размерами длиной 7,5 -8,0 км, шириной 1,5 - 3,0 км. Сводовая часть имеет абсолютную отметку 486-490 метров. Амплитуда поднятия до 60 метров. На север и юг поднятие заметно выхолаживается до 15 и менее метров.
Сортоводское поднятие занимает южную Куакбашской структуры, по изогипсе 530 метров объединяет ряд более мелких приподнятых участков. Размер поднятий 7,02,0 км, амплитуда до 20 метров. На юге намечается пологая зона перехода Соратоводской структуры в Шугуровскую.
В пределах Куакбашской структуры в пределах изогипсы 530-540 метров выделяют два замкнутых приподнятых участка с размером 3,0 - 3,5 х 0,5 - 2,0 км, и амплитуда 15 - 10 метров.
Рассмотренные поднятия отделены друг от друга и вышеописанной Сартоводской структуры широтными зонами прогибания с отметками более 535-540 метров.
Далее на север в приклинной части вала в пределах изогипсы 540 - 545 метров выделяется ряд мелких мелкоамплитудных (5-10 м), куполовидных локальных участков.
В пределах Зай - Каратаевской структуры в границах изогипсы 545 м выделяются малоамплитудные (5-10 м) поднятия широтного простирания с размерами 4,20,22 км.
1 .4 Коллекторские свойства продуктивных горизонтов
В процессе геологической съемки, бурения структурно-поисковых, разведочных, эксплуатационных и нагнетательных скважин на территории Ромашкинского месторождения к 1980 году было выявлено более 200 залежей и установлена нефтеносность 14 горизонтов. В том числе на рассматриваемых площадях Шугуровско-Куакбашской зоны доказано наличие промышленных скоплений нефти в терригенно-карбонатных коллекторах турнейского яруса, бобриковского горизонта, серпуховского и башкирского ярусов и верейского горизонта - отложений нижнего и среднего карбона.
В нижне и среднекаменноугольных отложениях Ромашкинского месторождения самые крупные залежи открыты в его юго-западной части на наиболее приподнятой части Миннибаевской террасы - Куакбашско-Шугуровской структуре, вытянутой в меридиональном направлении. Нефтепроявления в этом районе приурочены, в основном, к отложениям серпуховского и башкирского ярусов нижнего и среднего карбона, которые отличаются чрезвычайной неоднородностью и невыдержанностью по площади и по разрезу.
Нефтеносность отложений нижнего карбона (залежь 303)
Промышленная нефтеносность этих отложений (в объеме протвинского горизонта) впервые доказана в 1943 году на Шугуровском месторождении. В дальнейшем его продуктивность получила подтверждение на Ойкинском и, в основном, Шугуровско-Куакбашском поднятии.
Залежь в серпуховских отложениях до 1981 года опробовали в 34 скважинах, в том числе в 11 совместно с башкирским ярусом. В 21 из них получили притоки нефти с дебитом от 0,1 до 30 т/сут. В остальных 10 - нефть с водой и в 3 скважинах - вода.
Имелись скважины, которые довольно стабильно работали в течение нескольких лет, что подтвердило наличие в серпуховских отложениях промышленных скоплений нефти. Продуктивная часть разреза на 303 залежи в основном представлена двумя пористо-трещиноватыми интервалами (пластами). Обладая довольно хорошими коллекторскими свойствами, они образуют единый природный резервуар, приподнятая часть которого представляет собой ловушку, где сформировались скопления нефти массивного типа.
Нефтеносность отложений среднего карбона (залежь 302)
В настоящее время уже доказана его региональная нефтеносность не только в пределах рассматриваемой юго-западной части Ромашкинского месторождения, но и на многих других площадях Татарстана. Промышленная разработка залежи башкирский яруса ведется на месторождениях западного склона Южного купола. В плане залежь 302 совпадает с выше рассматриваемой залежью 303 серпуховского возраста и также контролируемая крупной брахиантиклинальной структурой северо-восточного простирания - Шугуровско-Куакбашским валом.
Большинство положений по особенностям распределения коллекторов, покрышек, степени насыщения, определение ВНК и др., изложенные выше для серпуховских отложений, также характерны для залежей башкирского возраста. Стоит отметить, что 302 и 303 залежи обладают вертикальной трещиноватостью и глинистая перемычка в кровле протвинского горизонта не может являться надежной изоляцией этих двух залежей друг от друга. Исходя из этого 302, 303 залежи являются одним объектом разработки.
Границы 302 и 303 залежей, приуроченных к данным отложениям, проведены по линии ВНК на отметках -540,1 м (скв. 410) в северной части и -540,0 м (скв. 533) в южной части. ВНК имеет наклонную плоскость с юга на север. Средняя абсолютная отметка ВНК по залежам составляет -543 м. При определении положения ВНК, главным образом, использовались данные испытания скважин. По большинству из них, с учетом характера распределения пористо-проницаемых пропластков в интервале перфорации и диапазона нефтеносности по данным геофизических исследований, этаж нефтеносности залежей достигает 70-90 метров.
Начальная средняя нефтенасыщенная толщина по 302 залежи - 6,4 м, по 303 - 12 метров.
Таблица 1. Геолого-физические характеристики эксплуатационных объектов
Площадь нефтегазоносности, тыс. м 2
Средне взвешанная нефтенасыщенная толщина, м
Начальная нефтенасыщенность, доли ед.
Проницаемость нефтенасыщенная, мкм 2
Коэффициент песчанистости, доли ед.
Коэффициент расчлененности, доли ед.
Запасы нефти в башкирско-серпуховских отложениях распределены неравномерно и, в основном, сосредоточены в серпуховских отложениях.
Коллекторские свойства по пористости и проницаемости представлены в таблице 1.
1 .5 Физико - химические свойства нефти, газа и пластовой воды
Исследование физико-химических свойств пластовых нефтей проводилась по пластовым пробам в отделе исследования нефтей ТатНИПИнефть и в аналитической лаборатории ТГРУ.
Ниже приводится краткая характеристика нефти, воды и газа по ярусам.
Исследование свойств нефти башкирского яруса в пластовых условиях проводилось по 148 пробам, отобранным из 38 скважин. Среднее значение основных параметров нефти, полученных по результатам анализов проб следующие: давление насыщения - 1,4МПа, газосодержание - 5,9 м 3 /т, объемный коэффициент - 1,034, динамическая вязкость составляет 43,63 мПас. плотность пластовой нефти - 877 кг/м 3 , пластовая температура - 23 °С. По данным анализов поверхностных проб нефти башкирского яруса относятся к группе тяжелых нефтей - плотность в поверхностных условиях составляет 908,6 кг/м 3 . По содержанию серы - 3,11% масс и парафина - 3,0% масс нефть является высокосернистой, парафинистой. Кинематическая вязкость при 20 °С составляет 109,9 мПас.
По химическому составу подземные воды башкирских отложений хлоркальциевого типа. Общая минерализация вод колеблется от 7,5 до 258,6 г/л, плотность 1005,0-1180,0 кг/м, вязкость 1,03-1,84мПас. (табл. 2)
Состав газа - азотный. Газонасыщенность 0,08-0,9 м 3 /т. Присутствует сероводород в количестве 0,006 м 3 /т, объемный коэффициент - 1,0001.
Исследования свойств нефти серпуховского яруса в пластовых условиях проводилось по 91 пробам, отобранным из 22 скважин. Среднее значение основных параметров нефти, полученных по результатам анализов проб следующие: давление насыщения - 1,3 МПа, газосодержание - 4,72 м 3 /т, объемный коэффициент - 1,032, динамическая вязкость составляет 52,87 мПас. Плотность пластовой нефти -883,8 кг/м, сепарированной - 906,8 кг/м 3 , пластовая температура 23 °С. По данным анализов поверхностных проб нефти серпуховского яруса относятся к группе тяжелых нефтей - плотность в поверхностных условиях составляет917,3
кг/м 3 . По содержанию серы - 2,6% масс и парафина - 5% масс нефть является высокосернистой, парафинистой. Кинематическая вязкость при 20 0 С составляет 109,4 мПас. Подземные воды серпуховских отложений представлены двумя типами: сульфатно-натриевыми и хлоркальциевыми (по В.А. Сулину). Сульфатные воды в основном связаны с процессами выщелачивания гипсов и ангидритов. Общая минерализация колеблется от 12,6 до 23,0 г/л, плотность 1009,6-1175,0 кг/м, вязкость 1,03-1,8 мПас. (табл. 4)
Также присутствует сероводород в количестве 0,008 м 3 /т. Состав газа - азотный. Газонасыщенность 0,09-0,12 м 3 /т. объемный коэффициент - 1,0003.
Из-за наличия в водах серпуховских и башкирских отложений серы и сероводорода необходимо предусмотреть защиту нефтепромыслового оборудования от коррозии.
Наиболее полные результаты исследований свойств нефти в пластовых и поверхностных условиях, физико-химические свойства и фракционный состав разгазированной нефти, физико-химические свойства пластовых вод, содержание ионов и примесей в пластовых водах представлены в таблицах 2-6, по каждому из горизонтов даны средние значения параметров, диапазон их изменения.
Общая минерализация подземных вод серпуховских и башкирских отложений изменяется в течение года от 0,7 до 258 г./л, удельный вес - с 1005,0 до 1180,0 кг/м 3 . Из всего вышеизложенного можно сделать вывод, что пластовые воды этих залежей неоднородны.
Свойства пластовых нефтей и газа практически не оказывают влияния на выбор марки реагента по ограничению водопритока. При выборе состава закачиваемого реагента наиболее важным является пластовая температура, минерализация (плотность) попутно извлекаемой воды.
Из-за отсутствия результатов поверхностных и пластовых проб воды отобранных на изучаемых участках, нет возможности обнаружить различие между ними
Таблица 2. Физические свойства пластовых вод 302 залежи
Таблица 3. Содержание ионов и примесей в пластовых водах 302 залежи
Таблица 4. Физические свойства пластовых вод 303 залежи
Таблица 5. Содержание ионов и примесей в пластовых водах 303 залежи
Таблица 6. Свойства пластовой нефти
Объемный коэффициент при дифференциальном разгазировании в рабочих условиях, доли единиц
Содержание сероводорода в попутном газе, м 3 /т
Энергетическое состояние залежи - главный фактор ограничивающий темпы ее разработки и полноту извлечения нефти и газа. Каждая залежь обладает запасом пластовой энергии, которая тем больше пластовое давление и размеры залежи. Пока залежь не вскрыта скважинами, нефть и газ в ней неподвижны. Запасы пластовой энергии до тех пор велики, пока не произойдет сообщение пласта со скважиной. Поэтому для характеристики преобладающей в процессе разработки
формы пластовой энергии введено понятие режима работы залежи. Для нефтяных месторождений принято выделять водонапорный, упругий, газонапорный, растворенного газа и гравитационный режимы.
Ромашкинское месторождение работает на водонапорном режиме. Водонапорный режим предполагает возникновение таких условий в залежи, когда нефть находится под постоянным воздействием контурных вод, в свою очередь имеющих постоянный источник питания. При этом происходит непрерывное замещение переместившегося в скважине объема нефти таким же объемом воды.
При учете объемов поступающей в пласт воды, можно добиться такого режима работы залежи, при котором скважины будут работать фонтанным способом в длительное время.
Учитывая, что характеристика нефтяных пластов, на которые воздействует вода неоднородно, то может возникнуть неравномерный характер продвижения воды и нефти на отдельных участках и нарушение режима работы залежи. В частности, величина давления ниже давления насыщения (предельная величина давления, при котором весь газ растворен в жидкости) и начнется интенсивное выделение газа в пласт. Это в свою очередь приведет к изменению режима работы залежи. Условиями, благоприятствующими осуществлению водонапорного режима является: а) хорошая сообщаемость нефтяной залежи с водяным резервуаром; б) небольшая вязкость нефти; в) однородность пласта по проницаемости; г) соответствие темпов отбора нефти и продвижения воды. Естественный водонапорный режим обеспечивает разработку месторождения медленными темпами и требует значительного притока подстилающих вод. Кроме того, он трудно регулируем. Наиболее эффективный искусственный водонапорный режим, разработанной заранее схеме и контролируя ее объемы, удается более эффективно вести разработку месторождения.
На залежи применяется следующая схема бурения:
- под направление скважина бурится на воде;
- под кондуктор бурится турбобуром на воде;
- под эксплуатационную колонну из-под кондуктора до глубины 900 - 1000 м бурится турбобуром на воде;
- с глубины 900 - 1000 м до перехода на глинистый раствор бурится винтовым забойным двигателем на воде;
- дальнейшее бурение до проектной глубины ведется ротором на глинистом растворе.
Все скважины имеют одноколонную конструкцию. Направление диаметром 324 мм с толщиной стенки 9 - 10 мм. Спускается на глубину от 30 до 40 м… Кондуктор диаметром 245 мм с толщиной стенки 8 - 10 мм, спускается на глубину от 165 до 320 м. Эксплуатационная колонна диаметром 146 и 168 мм спускается на глубину от 1669 до 1838 м.
Для обеспечения нормальных условий бурения, закачивания и эксплуатации скважин, а также защиты обсадных колонн от наружной коррозии, выполнения требований охраны недр, тампонажный раствор поднимается до устья, а за эксплуатационной колонной - как минимум с перекрытием башмака кондуктора.
Наиболее частое осложнение, встречающееся при бурении скважин, заключается в полной или частичной потере циркуляции из-за имеющих место зон поглощения в вышележащих пластах. Кроме того, имеют место участки с высоким пластовым давлением выше и нижележащих пластов, что может привести к нефтепроявлению, выбросу или открытому фонтану.
2 . Технико-технологический раздел
2.1 Факторы, ухудшающие коллекторские свойства пласта и дейс т вие различных соединений при соляно - кислотной обработке
Основная причина низкой продуктивности скважин наряду с плохой естественной проницаемостью пласта и некачественной перфорацией - снижение проницаемости призабойной зоны пласта.
Призабойной зоной пласта называется область пласта вокруг ствола скважины, подверженная наиболее интенсивному воздействию различных процессов, сопровождающих строительство скважины и ее последующую среду и нарушающих первоначальное равновесное механическое и физико-химическое состояние пласта.
Само бурение вносит изменение в распределение внутренних напряжений в окружающей забой породе. Снижение продуктивности скважин при бурение происходит также в результате проникновения раствора или его фильтрата в призабойную зону пласта. При взаимодействии фильтрата с пластовой минерализованной водой может происходить образование нерастворимых солей и выпадение их в осадок, набухание глинистого цемента и закупоривание стойких эмульсий, и снижение фазовой проницаемости скважин. Может быть и не качественная перфорация вследствие применения маломощных перфораторов, особенно в глубоких скважин, где эмульсия взрыва зарядов поглощается энергией больших гидростатических давлений.
Снижение проницаемости призабойной зоны пласта происходит при эксплуатации скважин, сопровождающейся нарушением термобарического равновесия в пластовой системе и выделением из нефти свободного газа, парафина и асфальто-смолистых веществ, закупоривающих паровое пространство коллектора.
Интенсивное загрязнение призабойной зоны пласта отмечается и в результате проникновения рабочих жидкостей при проведении в скважинах различных ремонтных работ. Приемистость нагнетательных скважин ухудшается вследствие закупорки порового пространства нефтепродуктами, содержащимися в закачиваемой воде. В результате проникновения подобных процессов возрастают сопротивление фильтрации жидкости и газа, снижаются дебиты скважин и возникает необходимость в искусственном воздействии на призабойную зону пласта с целью повышения продуктивности скважин и улучшения их гидродинамической связи с пластом.
Известняк и доломит растворяются в соляной кислоте: хлористый кальций, хлористый магний, соли - хорошо растворимые в воде носители кислоты, и легко удаляются из пласта. Углекислый газ также легко удаляется из скважин, а при давлении свыше 7,6 МПа растворяются в той же воде. Оптимальная концентрация соляной кислоты в растворе принимается равной 10-16%. Применения кислоты с низкой концентрацией (менее 10%) вызывает необходимость наливать в пласт большое наличие воды, в результате чего может осложниться процесс освоения скважин после кислотной обработки.
Применение кислоты с высокой концентрацией (более16%) также нежелательно, это приводит к образованию в пористой среде насыщенных высоковязких растворов хлористого кальция и хлористого магния, трудно извлекаемых из пласта. Кроме того, с увеличением концентрации кислоты возрастает также коррозионная активность, эмульгирующая способность, вероятность выпадения солей в осадок при контакте кислоты с пластовой водой, а также в результате растворения гипса. Наиболее пригодным для обработок является 8-15%-ный раствор соляной кислоты, в котором на 100 весовых частей водного раствора приходится от 8 до 15 частей чистой соляной кислоты. Количество кислоты для обработки скважин выбирают в зависимости от мощности пласта, от химического состава породы, физических свойств пласта (пористость, проницаемость), числа предыдущих обработок. В среднем берут от 0,4 до 1,5 м раствора кислоты на 1 м обрабатываемого интервала. Наименьшие объёмы раствора кислоты 0,4-0,6 м на 1 м мощности пласта применяют для скважин малопроницаемыми коллекторами и с малыми начальными дебитами. Малый объём кислотного раствора для скважин с такими коллекторами может быть частично компенсирован применением повышенной концентрации раствора. Для скважин с более высокой проницаемостью пород, со среднем пластовым давлением для первичной обработки назначают несколько большие объёмы кислотного раствора в пределах 0,8-1,0 м на 1 м мощности обрабатываемого интервала. Наконец, для скважин с высокими начальными дебитами, с породами большой проницаемости принимают объем кислотного раствора 1,0-1,5 м на 1 м мощности пласта. При повторных обработках во всех случаях увеличивают объём кислотного раствора на 20-40% по сравнению с предыдущей обработкой.
2 .2 Выбор кислотных обработок для различных коллекторов
Соляно кислотная обработка может применяться вскважинах, эксплуатирующая карбонатные, трещиннопоровые пласты любой толщины. Объектами обработок могут быть некачественно освоенные (после бурения или капитального ремонта) скважины и скважины, существенно снизившие дебит в процессе эксплуатации. Обработки назначаются по определению текущего и конвенциального коэффициентов продуктивности. Для проведения соляной обработки нагнетательных скважин следует выбирать скважины, которые должны удовлетворять следующим требованиям:
Приемистость скважины более 500 м 3 /сутки и со временем снижения до 100 м 3 /сутки и ниже;
устьевая арматура и эксплутационная колонна должны быть герметичными.
Солянокислотная обработка может применяться в скважинах, эксплуатирующих карбонатные, трещинно-поровые пласты любой толщины. Объектами обработок могут быть некачественно освоенные (после бурения или капитального ремонта) скважины и скважины, существенно снизившие дебит в процессе эксплуатации. Обработки назначаются по определению текущего и потенциального коэффициентов продуктивности.
Для проведения солянокислотной обработки нагнетательных скважин следует выбирать скважины, которые должны удовлетворять следующим требованиям:
а) проницаемость вскрытых пластов - 300 - 600 мдарси и выше; I
б) приемистость скважины более 500 м/сутки и со временем снижения до 100 м/сут и ниже;
г) устьевая арматура и эксплуатационная колонна должны быть герметичными.
2.4 Реагенты и химические материалы для СКО
Солянокислотная обработка призабойных зон скважин предназначена для очис т ки поверхности забоев (фильтровой части) скважин и увеличения проницаемости призабойной зоны пласта в целях увеличения дебита добывающих или приемист о сти нагнетательных скважин, сокращения сроков их освоения.
Солянокислотная обработка основана на способности растворения карбонатных пород (известняков и доломитов) соляной кислотой в результате химических реа кций, протекающих при взаимодействии соляной кислоты с породами следующим образом.
Продукты реакции соляной кислоты с карбонатами - двухлористый кальций (СаСl 2 ) и двухлористый магний (MgCl 2 ) хорошо растворяются в воде. Эти продукты вместе с остатками прореагировавшей кислоты извлекаются на поверхность при промывке скважины. Углекислый газ (СО 2 ) в зависимости от давления выделяется в виде свободного газа или растворяется. В результате реакции соляной кислоты с карбонатными породами и вымыванием продуктов реакции в призабойной зоне пласта образуют поровые каналы большого сечения, что ведет к увеличению проницаемости призабойной зоны пласта, а следовательно, и производительности (приемистости) скважин.
2.5 Объем и концентрация растворов кислоты
Эффективность солянокнслотлых обработок скважин зависит от концентрации кислоты, ее количества, давле
Применение соляно-кислотной обработки призабойных зон скважин дипломная работа. Геология, гидрология и геодезия.
Курсовая Работа На Тему Активные Операции Банков
Эффективность Деятельности В Сфере Культуры Реферат
Жилищно Коммунальные Услуги Реферат
Реферат Гост Рисунки
Сочинение На Тему Осень На Татарском
Контрольная работа по теме Образование тарифов на воздушном транспорте и их регистрация
Придумать Сочинение Герасимов После Дождя
Курсовая работа по теме Развитие творческого мышления младших школьников в процессе художественно-конструкторской деятельности
Слова Которые Помогут Написать Сочинение
Реферат По Истории Бесплатно
Рефераты На Английском Языке Для Студентов
Реферат по теме Действие гормонов поджелудочной железы и половых гормонов на почки
Я И Другие Итоговое Сочинение Аргументы Обломов
Дипломная работа: Влияние трудной жизненной ситуации экзамена на состояние личности студента
Эссе Примеры Слов
Курсовой Проект Прикладная Механика
Курсовая Работа На Тему Трансмиссия Автомобиля Иж 21251
Деятельность Службы Охраны Труда В Организации Реферат
Статистический смысл энтропии
Реформы Александра Ii И Их Значение Реферат
Флора и фауна Кемеровской области - Биология и естествознание контрольная работа
Учет брака в производстве на примере ООО "БатонСервисПекарь" - Бухгалтерский учет и аудит курсовая работа
Країнознавство: Австралія - География и экономическая география курсовая работа


Report Page