Приемно-адаптерный прибор пожарной сигнализации - Безопасность жизнедеятельности и охрана труда научная работа

Приемно-адаптерный прибор пожарной сигнализации - Безопасность жизнедеятельности и охрана труда научная работа




































Главная

Безопасность жизнедеятельности и охрана труда
Приемно-адаптерный прибор пожарной сигнализации

Система обеспечения пожарной безопасности. Перспективы развития раннего обнаружения пожара. Прибор приемно-адаптерный пожарной сигнализации. Описание адаптера. Принцип работы. Работа с драйвером, передача информации по сети.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Девиз “Не отступать и не сдаваться! ”
Приемно-адаптерный прибор пожарной сигнализации
ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ………………………… .. 2
ВВЕДЕНИЕ………………………………………………………………….3
1. ОБОСНОВАНИЕ И ЦЕЛЬ РАБОТЫ…………………………………...5
2. ПЕРСПЕКТИВЫ РАЗВИТИЯ РАННЕГО ОБНАРУЖЕНИЯ ПОЖАРА…………………………………………………………………. 12
3. ПРИБОР ПРИЕМНО-АДАПТЕРНЫЙ ПОЖАРНОЙ СИГНАЛИЗАЦИИ………………………………………………………. 16
3.1. Описание адаптера. Принцип работы. ……………………………..16
3.2 Работа с драйвером, передача информации по сети………………22
ЗАКЛЮЧЕНИЕ………………………………………………………. ……..30
ЛИТЕРАТУРА ……………………………………………………………….32
ПРИЛОЖЕНИЯ……………………………………………… .. …………….3 4
АСП - автоматическая система пожаротушения
АСУ - автоматизированная система управления
АУП - автоматическая установка пожаротушения
ВУОС - выносное устройство оптической сигнализации
ГПН - государственный пожарный надзор
МЧС - министерство по чрезвычайным ситуациям
ПАСО - пожарный аварийно-спасательный отряд
ППКУ - прибор приемно-контрольный управляющий
ПЦН - пункт централизованного наблюдения
УМЧС - управление министерства по чрезвычайным ситуациям
ШЛЧС - штаб ликвидации чрезвычайных ситуаций
ЭВМ - электронно-вычислительная машина
Рост количества пожаров, тяжести и ущерба последствий от них требует разработки новых подходов к обеспечению пожарной безопасности. Существующая система обеспечения пожарной безопасности предполагала совершенствование организационно-технических мероприятий и систем пожарной безопасности объекта, которые, однако, не рассматривались в единой взаимосвязи регионов. Сложившаяся пирамидальная структура подразделений МЧС, осуществляющих защиту от аварий, пожаров, стихийных бедствий и государственный пожарный надзор в регионе для успешного выполнения поставленных задач требует кардинальных мер по обеспечению пожарной безопасности.
С каждым годом вычислительная техника оказывает все большее влияние на нашу жизнь. Такая тенденция не обошла и Министерство по чрезвычайным ситуациям Республики Беларусь. Теперь вычислительная техника - незаменимый помощник в повседневной служебной деятельности.
Персональные компьютеры используются для накопления, систематизации и анализа информации. Апробирована и используется локальная сеть в центральном аппарате МЧС (объединение 17 компьютеров в сеть), организована связь по модему («электронная почта») между министерством и управлениями, а также управлениями и некоторыми районными подразделениями. Будущее - это глобальная сеть постоянного функционирования между подразделениями МЧС всех уровней, когда данные по Республике Беларусь стекаются в центральный компьютер. Это могут быть результаты спутникового наблюдения за лесами и торфомассивами, отчеты систем раннего обнаружения пожара на всех объектах республики, данные о перемещениях пожарной техники, а также о нарушениях норм и правил, выявленных в ходе пожарно-технических обследований органов ГПН. Возможно реализовать передачу и отображение информации с объектов на компьютере (электронной карте).
АСУ будет обнаруживать, идентифицировать и точно указывать положение любых потенциальных очагов возгорания, определять маршруты эвакуации людей, а также обеспечивать скоординированное выполнение мер пожарной безопасности и защиты, предоставляя оператору ясную и точную информацию и позволяя, таким образом, своевременно принять верное решение. Возможно создание баз данных по охраняемым объектам (адрес, пароли, карты подъезда к объекту), принятым сигналам, выданным указаниям группам реагирования, времени установления нарушения. Вычислительная техника проанализирует оперативную обстановку с пожарной безопасностью, скоординирует действия подразделений МЧС, поставит задачи, определит их приоритет и выработает стратегию решения, поэтому наблюдается стремление к созданию более интеллектуальных приборов с использованием современных возможностей микроэлектроники. Главным звеном остается задача обеспечения высокого порога технологической надежности и многофункциональной работоспособности комплектов систем пожарной сигнализации. В свою очередь это определяется составляющими: типом и видом детекторов (принципом действия); качеством и типом каналов телеметрии (шлейфы); техническим решением исполнительных устройств.
Поэтому необходимо находить новые интересные пути технических решений для создания отечественных высокотехнологичных систем, которые займут достойное место, как на отечественном, так и на мировом рынке продукции.
Главная задача систем пожарной сигнализации - это сохранение жизни и здоровья людей, а также имущества. Рациональный выбор оборудования пожарной сигнализации и пожарной автоматики позволяет правильно использовать средства заказчика и обеспечивать пожарную безопасность объекта на высоком уровне.
Пожарная безопасность объекта должна обеспечиваться системой предотвращения пожара и противопожарной защитой, которые составляют единую систему его пожарной безопасности. Автоматические системы пожарной сигнализации и автоматические системы пожаротушения являются составной частью системы противопожарной защиты. И от того, насколько правильно будет выбрана та или иная система или их комбинация, зависит пожарная безопасность объекта в целом.
В соответствии с ГОСТ 12.1.004-91 «Пожарная безопасность. Общие требования» система противопожарной защиты, в том числе автоматические системы пожарной сигнализации и пожаротушения, должны обеспечивать требуемый уровень пожарной безопасности людей и материальных ценностей, а также характеризоваться экономическими критериями эффективности этих систем при защите материальных ценностей.
При этом автоматические системы пожарной сигнализации и автоматические системы пожаротушения должны выполнять одну из следующих задач:
Ш обеспечение пожарной безопасности людей;
Ш обеспечение пожарной безопасности материальных ценностей;
Ш обеспечение пожарной безопасности людей и материальных ценностей;
Система противопожарной защиты может быть условно разбита на ряд уровней, каждый из которых занимает определенной место в построении системы. Первый уровень - технические средства, предназначенные для обнаружения загораний (пожарные извещатели) - реагируя на первичный фактор, вызывающий возникновение загорания, осуществляют передачу сообщения на второй уровень. Второй уровень - приемно-контрольные приборы и приборы приемно-контрольные управляющие (ПКП и ППКУ) - обеспечивают сигнализацию о возникшем пожаре, передают информацию на пункт централизованного наблюдения (ПЦН) системы безопасности, обеспечивают управление автоматическими системами пожаротушения и дымоудаления, средствами звукового, речевого и светового оповещения людей, находящихся в зоне пожара (рис.1). Третий уровень - пункты централизованного наблюдения призваны решать задачу принятия решения по действию служб безопасности объекта.
Дальнейшие, более высокие уровни системы безопасности, могут охватывать не только конкретные объекты, но и некоторый комплекс объектов, город, район, область и т.д. основными техническими средствами, обеспечивающими работу этого уровня системы, являются устройства передачи и обработки информации. Здесь концентрируется информация от всех подсистем системы безопасности, и обеспечиваются координированные действия служб, призванных обезопасить защищаемый объект (производство).
Более подробно необходимо рассмотреть функции приемно-контрольных приборов:
прием и обработка сигналов от извещателей;
электропитание извещателей по проводному шлейфу пожарной сигнализации или отдельной линии;
формирование извещаний «Пожар» и «Неисправность»;
передача сигнала на пункт централизованного наблюдения;
формирование сигнала включения систем пожаротушения и дымоудаления;
управление звуковыми и световыми сигналами оповещателей.
Основные характеристики приемно-контрольных приборов - информационная емкость и информативность. ПКП большой информационной емкости могут использоваться для объединения сигнализации большого количества помещений одного объекта, а также в качестве пультов для автономных систем защиты объектов.
Для реализации в полном объеме требований нормативных документов при создании автоматических установок пожаротушения приборы приемно-контрольные управляющие кроме функций, приведенных выше, должны в значительной степени выполнять следующие задачи:
формировать сигнал «Внимание» по каждому контролируемому направлению при сработке одного извещателя в шлейфе пожарной сигнализации защищаемого направления с адресным включением световой индикации и звуковой сигнализации на приемно-контрольной аппаратуре и выдачей соответствующего сигнала во внешние цепи;
формировать сигнал «Пожар» по каждому контролируемому направлению при сработке двух извещателей в шлейфе пожарной сигнализации защищаемого направления с адресным включением световой индикации и звуковой сигнализации на приемно-контрольной аппаратуре и выдачей соответствующего сигнала во внешние цепи;
обеспечивать регулировку временной задержки команды «Пуск» на исполнительные устройства автоматической установки пожаротушения;
формировать сигнал «Неисправность» при обрыве или коротком замыкании пожарных шлейфов, линий связи АУП;
обеспечивать возможность переключения режима «Автоматический пуск» - «Ручной пуск» с клавиатуры на приемно-контрольной аппаратуре управления, по команде из диспетчерской, и осуществлять отключение автоматического пуска при открывании дверей в защищаемое помещение с адресным включением световой индикации и звуковой сигнализации на приемно-контрольной аппаратуре и выдачей соответствующего сигнала во внешние цепи;
обеспечивать возможность дистанционного пуска АУП по каждому защищаемому направлению с клавиатуры на приемно-контрольной аппаратуре, по команде из диспетчерской или дистанционных постов управления у эвакуационных выходов из защищаемого помещения.
формировать сигнал «Тушение включено» при подаче огнетушащего вещества на каждом защищаемом направлении с адресным включением световой индикации и звуковой сигнализации на приемно-контрольной аппаратуре и выдачей соответствующего сигнала во внешние цепи;
формировать сигнал «Дверь открыта» по каждому защищаемому направлению с адресным включением световой индикации и звуковой сигнализации на приемно-контрольной аппаратуре и выдачей соответствующего сигнала во внешние цепи;
формировать команду «Пуск» на исполнительное устройство второй очереди АУП через определенный расчетом интервал времени после команды «Пуск» на исполнительное устройство первой очереди АУП и отсутствии сигнала о подаче огнетушащего вещества;
обеспечивать связь с автоматизированной системой управления верхнего уровня в части выдачи информации о состоянии и режимах функционирования АУП и приема управляющей команды.
Для расширения функциональных возможностей ППК и ППКУ необходимо, чтобы эти приборы обеспечивали включение исполнительных устройств АУП различных типов (водяного тушения, газового, порошкового и др.)
Кроме того, следует обеспечить возможность включения световых и звуковых оповещателей, установленных как в административных, так и в производственных помещениях, в том числе и взрывоопасных.
Серийно выпускаемые приемно-контрольные приборы, как правило, имеют жесткую структуру, работают лишь с радиальными шлейфами и с не адресуемыми пожарными извещателями, не обеспечивают документирование информации о загорании и техническом состоянии системы пожарной сигнализации. Практически отсутствуют устройства, в полной мере реализующие весь комплекс функций по управлению АУП.
В этих условиях создание пожарных приемно-контрольных приборов и на их основе систем пожарной сигнализации с высокими эксплуатационными характеристиками является одной из важнейших задач разработчиков.
Современный ПКП должен иметь ярко выраженное интеллектуальное аналитическое ядро системы, обеспечивающее оценку состояния и корректировку аналоговых параметров всех компонентов системы, для повышения надежности систем такого класса, что и определило цель моей работы: повышение надежности и эффективности пожарной защиты объекта, сокращение времени идентификации места возгорания, определения к нему путей подъезда и подхода, автоматизация контроля за состоянием установок автоматического пожаротушения, улучшение социальных условий труда оперативного персонала.
Рис.1. Обобщенная блок-схема приемно-контрольного прибора с подключенными к нему цепями
узел контроля состояния шлейфа сигнализации;
узел сигнального (пультового реле);
узел управления звуковым оповещателем;
узел управления световым оповещателем;
устройство объектовое системы передачи извещения или другого ПКП;
Серийно выпускаемые приемно-контрольные приборы, как правило, имеют жесткую структуру, работают лишь с радиальными шлейфами и с не адресуемыми пожарными извещателями, не обеспечивают документирование информации о загораниях и техническом состоянии системы пожарной сигнализации. Практически отсутствуют устройства, в полной мере реализующие весь комплекс функций по управлению АУП.
В этих условиях создание пожарных приемно-контрольных приборов и на их основе систем пожарной сигнализации с высокими эксплуатационными характеристиками является одной из важнейших задач разработчиков.
Современный ПКП должен иметь ярко выраженное интеллектуальное аналитическое ядро системы, обеспечивающее оценку состояния и корректировку аналоговых параметров всех компонентов системы для повышения надежности систем такого класса, что и определило цель моей работы: повышение надежности и эффективности пожарной защиты объекта, сокращение времени идентификации места возгорания, определения к нему путей подъезда и подхода, автоматизация процессов контроля состояния установок автоматического пожаротушения, улучшение социальных условий труда оперативного персонала.
В настоящее время порт последовательной передачи данных используется очень широко. Вот далеко не полный список примене-ний:
- подключение графопостроителей, сканеров, принтеров, ди-гитайзеров;
- связь двух компьютеров через порты последовательной пе-редачи данных с использованием специального кабеля и таких программ, как FastWire II или Norton Commander;
- подключение модемов для передачи данных по телефонным линиям;
- подключение к сети персональных компьютеров;
Последовательная передача данных означает, что данные пе-редаются по единственной линии. При этом биты байта данных пе-редаются по очереди с использованием одного провода. Для синх-ронизации группе битов данных обычно предшествует специальный стартовый бит, после группы битов следуют бит проверки на чет-ность и один или два стоповых бита. Иногда бит проверки на чет-ность может отсутствовать.
Компьютер может быть оснащен одним или двумя портами последовательной передачи данных. Эти порты расположены либо на материнской плате, либо на отдельной плате, вставляемой в слоты расширения материнской платы.
Бывают также платы, содержащие четыре или восемь портов последовательной передачи данных. Их часто используют для подк-лючения нескольких компьютеров или терминалов к одному, цент-ральному компьютеру. Эти платы имеют название "мультипорт".
В основе последовательного порта передачи данных лежит микросхема INTEL 8250 или ее современные аналоги - INTEL 16450,16550,16550A. Эта микросхема является универсальным асинхронным приемопередатчиком (UART - Universal Asynchronous Receiver Transmitter). Микросхема содержит несколько внутренних регистров, доступных через команды ввода/вывода.
Микросхема 8250 содержит регистры передатчика и приемника данных. При передаче байта он записывается в буферный регистр передатчика, откуда затем переписывается в сдвиговый регистр передатчика. Байт "выдвигается" из сдвигового регистра по битам.
Программа имеет доступ только к буферным регистрам, копирование информации в сдвиговые регистры и процесс сдвига выпол-няется микросхемой UART автоматически.
К внешним устройствам последовательный асинхронный порт подключается через специальный разъем. Существует два стандарта на разъемы интерфейса RS-232-C, это DB-25 и DB-9. Первый имеет 25, а второй 9 выводов. Для работы приемно-адаптерного прибора используется 25-штырьковый разъем.
Номер Назначение контакта Вход или
контакта (со стороны компьютера) выход
-1 Защитное заземление (Frame Ground,FG) -
2 Передаваемые данные (Transmitted Data,TD) Выход
3 Принимаемые данные (Received Data,RD) Вход
4 Запрос для передачи (Request to send,RTS) Выход
5 Сброс для передачи (Clear to Send,CTS) Вход
6 Готовность данных (Data Set Ready,DSR) Вход
7 Сигнальное заземление (Signal Ground,SG) -
8 Детектор принимаемого с линии сигнала
22 Индикатор вызова (Ring Indicator,RI) Вход
Номер Назначение контакта Вход или
контакта (со стороны компьютера) выход
1 Детектор принимаемого с линии сигнала
2 Принимаемые данные (Received Data, RD) Вход
3 Передаваемые данные (Transmitted Data, TD) Выход
5 Сигнальное заземление (Signal Ground, SG) -
6 Готовность данных (Data Set Ready, DSR) Вход
7 Запрос для передачи (Request to send, RTS) Выход
8 Сброс для передачи (Clear to Send, CTS) Вход
9 Индикатор вызова (Ring Indicator,RI) Вход
Компьютер является терминальным устройством. Модем (адаптер ПС) является устройством связи.
Стандарт RS-232-C определяет возможность управления потоком только для полудуплексного соединения, при котором в каждый момент времени данные могут передаваться только в одну сторону.
Технические параметры интерфейса RS-232-C
При передаче данных на большие расстояния без использова-ния специальной аппаратуры из-за помех, наводимых электромаг-нитными полями, возможно возникновение ошибок. Вследствие этого накладываются ограничения на длину соединительного кабеля между устройствами DTR-DTR и DTR-DCE.
Официальное ограничение по длине для соединительного кабе-ля по стандарту RS-232-C составляет 15,24 метра. Однако на практике это расстояние может быть значительно больше. Оно не-посредственно зависит от скорости передачи данных.
300бод - 1524м / 914,4м 1200бод - 914,4м / 914,4м 2400бод - 304,8м / 152,4м 4800бод - 304,8м / 76,2м 9600бод - 76,2м / 76,2м
Уровни напряжения на линиях разъема составляют для логи-ческого нуля -15..-3 вольта, для логической единицы +3..+15 вольт. Промежуток от -3 до +3 вольт соответствует неопределен-ному значению.
На этапе инициализации системы, модуль POST BIOS тестиру-ет имеющиеся асинхронные порты RS-232-C и инициализирует их. В зависимости от версии BIOS инициализируются первые два или че-тыре порта. Их базовые адреса располагаются в области данных BIOS, начиная с адреса 0000:0400h.
Первый адаптер COM1 имеет базовый адрес 3F8h и занимает диапазон адресов от 3F8h до 3FFh. Второй адаптер COM2 имеет ба-зовый адрес 2F8h и занимает адреса 2F8h..2FFh.
Асинхронные адаптеры могут вырабатывать прерывания:
Имеется 7 основных регистров для управления портами:
Регистр данных расположен непосредственно по базовому ад-ресу порта RS-232-C и используется для обмена данными и для за-дания скорости обмена.
Для передачи данных в этот регистр необходимо записать пе-редаваемый байт данных. После приема данных от внешнего уст-ройства принятый байт можно прочитать из этого же регистра (см. Приложение 1).
В зависимости от состояния старшего бита управляющего ре-гистра (расположенного по адресу base_adr+3, где base_adr соответствует базовому адресу порта RS-232-C),назначение этого регистра может изменяться. Если старший бит равен нулю, регистр
используется для записи передаваемых данных. Если же старший бит равен единице, регистр используется для ввода значения младшего байта делителя частоты тактового генератора. Изменяя содержимое делителя, можно изменять скорость передачи данных. Старший байт делителя записывается в регистр управления преры-ваниями по адресу base_adr+1.
Максимальная скорость обмена информацией, которую можно достичь при использовании асинхронного адаптера, достигает 115200 бод, что примерно соответствует 14 Кбайт в секунду.
Этот регистр используется либо для управления прерываниями от асинхронного адаптера, либо (после вывода в управляющий ре-гистр байта с установленным в 1 старшим битом) для вывода зна-чения старшего байта делителя частоты тактового генератора.
в) Регистр идентификации прерывания
Считывая его содержимое, программа может определить причи-ну прерывания
Управляющий регистр доступен по записи и чтению. Этот ре-гистр управляет различными характеристиками UART: скоростью передачи данных, контролем четности, передачей сигнала BREAK, длиной передаваемых слов (символов).
Регистр управления модемом управляет состоянием выходных линий DTR, RTS и линий, специфических для модемов - OUT1 и OUT2, а также запуском диагностики при соединенных вместе входе и выходе асинхронного адаптера.
Регистр состояния линии определяет причину ошибок, которые могут возникнуть при передаче данных между компьютером и мик-росхемой UART.
Регистр состояния модема определяет состояние управляющих сигналов, передаваемых модемом асинхронному порту компьютера.
Инициализация асинхронного адаптера
Первое, что должна сделать программа, работающая с асинх-ронным адаптером - установить формат и скорость передачи дан-ных. После загрузки операционной системы для асинхронных адап-теров устанавливается скорость 2400 бод, не выполняется провер-ка на четность, используются один стоповый и восьмибитовая дли-на передаваемого символа. Можно изменить этот режим командой MS-DOS MODE.
Выполнив ввод из управляющего регистра, программа может получить текущий режим адаптера. Для установки нового режима измените нужные вам поля и запишите новый байт режима обратно в управляющий регистр.
Если вам надо задать новое значение скорости обмена данны-ми, перед записью байта режима установите старший бит этого байта в 1, при этом регистр данных и управляющий регистр используются для задания скорости обмена. Затем последовательно двумя командами ввода загрузите делитель частоты тактового ге-нератора. Младший байт запишите в регистр данных, а старший - в регистр управления прерываниями.
Перед началом работы необходимо также проинициализировать регистр управления прерываниями, даже если в вашей программе не используются прерывания от асинхронного адаптера (см. Приложение 1). Для этого сначала надо перевести регистр данных и регистр управления пре-рываниями в обычный режим, записав ноль в старший бит управляющего регистра. Затем можно устанавливать регистр управления прерываниями. Если прерывания вам не нужны, запишите в этот порт нулевое значение.
Большой интерес представляет использование приемно-адаптерного прибора в локальной сети АСУ МЧС как средства обработки и дальнейшего анализа информации. Одной из возможностей сети является организация электронной почты. Если компьютер подклю-чен к сети, и вы имеете специальное программное обеспечение для обмена почтой, имеется возможность отправлять через сеть письма (сообщения) другим пользователям сети (рис. 3).
Само письмо представляет собой обычный файл, содержащий текст письма и специальный заголовок, в котором указано, от ко-го письмо направлено, кому предназначено, какая тема письма и дата отправления. Автоматизировать данный процесс несложно при наличии программного обеспечения обмена данными по сети на компьютерах.
В результате разработки приемно-адаптерного прибора пожарной мною проанализирован отечественный и зарубежный опыт раннего обнаружения пожара при помощи автоматических систем пожарной сигнализации, основные технические решения в этой области, перспективы развития, пути оптимизации и повышения надежности работы систем пожарной сигнализации. В данной работе в качестве одного из вариантов решения проблемы раннего обнаружения пожара в рамках концепции создания АСУ МЧС Беларуси предложен проект приемно-адаптерного прибора пожарной сигнализации.
Повышение эффективности использования установок автоматического пожаротушения и сигнализации;
Сокращение времени реагирования оперативного персонала на экстремальную информацию;
Улучшение социальных условий труда.
На программном уровне обеспечивается документирование информации о загораниях и техническом состоянии системы пожарной сигнализации, ведется банк протоколов текущих событий, осуществляется дистанционное управление приемно-контрольным прибором, и пуском АУП. Возможна автоматизация контроля состояния установок автоматического пожаротушения. Адаптер прост и удобен в эксплуатации, в определенной степени сможет составить конкуренцию зарубежным приборам. Необходимо глубже проработать вопрос об универсальности подключения прибора к различным типам ПКП.
Несомненно, его применение на объектах хозяйствования даст положительный эффект в улучшении информативности в системе МЧС, а следовательно и повышении пожарной безопасности. Массовое внедрение системы в жилых домах, квартирах, дачах, общежитиях, гостиницах, промышленных предприятиях и других помещениях с постоянным проживанием людей и пребыванием персонала позволит существенно сократить число погибающих (уменьшение времени обнаружения, прибытия), а в сочетании с комплексом других профилактических мер либо исключить их, либо свести к минимуму.
ГОСТ 12.1.004-91. Пожарная безопасность. Общие требования.
ГОСТ 12.3.046 Установки пожаротушения автоматические. Общие требования.
Касаткин А.И. Профессиональное программирование на языке СИ. Управление ресурсами: Справочное пособие. - Мн.: Выш. Шк., 1992.
Малешин В.Г. Аппаратно-программные комплексы систем автоматического контроля и управления процессами пожаротушения, пожарной сигнализации//Пожарная безопасность. Материалы первой республиканской научно-практической конференции, -Мн.; 1994г.
Нилов В.А. Технические средства охранно-пожарной сигнализации.; НОУ «Такир», -М., 1998г.
Панель охранно-пожарная «Control Equipment». Техническое описание.
Пожарная безопасность. Специализированный каталог. - М.: «Гротек», 2000г.
Пожарная сигнализация. Современные устройства пожарной сигнализации. Проектирование систем безопасности на основе компьютерных технологий.; «Гротеск», -М, 1998г.
Пожарно-охранный извещатель «Apollo XP95». Техническое описание.
Пульт приемно-контрольный ППК-2. Паспорт еу2.407.003 ПС.
Руководство по архитектуре IBM PC/AT. под ред. М.Л.Махрхасина.; ООО «Консул», -Мн., 1993г.
СНиП 2.04.09-84 Пожарная автоматика.
Собурь В.А. Установки автоматической пожарной сигнализации: Справочник. Вып. 1-й - М.: Спецтехника, 1999.
Современные средства пожарной и пожарно-охранной сигнализации.; -М, 1990г.
СТБ 11.16.01-98 Системы пожарной сигнализации.
Юлин В.А., Булатова И.Р. Приглашение к СИ. - Мн.: Выш. Шк.,
// ======================================================================
// = Базовая программа работы с последовательным портом COMi.
// = Обмен с использованием прерываний
// ======================================================================
#define COM 2 // задается номер порта 1-COMi; 2-COM2
// дальнейший код справедлив для машин класса AT
#define m_speed 2 // множитель задает скорость передачи
#define cbuf 2000 // размер буфера данных
#define rgmask 16/COM //маска в регистре маски прерываний
int IMR=0x21; // регистр маски прерываний
int base,IER,IIR,LCR,LSR,MSR,MCR,LSB,MSB; // регистры контроллера
char fl_d=0; // флаг устанавливается если принят байт
char overb=0; // флаг устанавливается если буфер переполнен
int head=0,teil=0; // указатели головы и хвоста
char exiterr=0; //номер ошибки при приеме
// exiterr=3 - cбой в приеме: передано неверное
// exiterr=4 - сбой при приeмe или переполнение
void interrupt obrcom(__CPPARGS); /* interrupt prototype */
void interrupt (*oldfunc)(__CPPARGS); /* interrupt function pointer */
void nevid(void); //делает курсор невидимым
void initrs(void); //инициализация COM порта
void init(void); //инициализация переменных
void exitp(void); //!!! необходимо вызывать перед выходом из программы
int trans(char); //передача байта через СОМ порт
void deside(void); //обработка данных
void signal(void); //звуковой сигнал
void outinfo(void); //вывод информации на экран
void reseterr(void); //сброс ошибок RS232
void instvect(void); //Замена вектора прерываний COMi
void restorevect(void); //Восстановление старого обработчика C
void incteil(void); //Увеличение указателя хвоста
void err(char *); //Выход по ошибке
void Transb(char); // посылка байта с сервисом
int Transb_hiden(char); // Не выдает сообщения об ошибках
void clearbof(void); // очистка буфера данных
void definit(void); // определяет работоспособность с той стороны
void clearbofkey(void); // очистка буфера клавиатуры
struct k_win // координаты окна
{ int x0,y0,x1,y1,lastx,lasty; } wmain,wmes;
void nevid(void) //невидимый курсор
// =========== инициализация переменных ====================
wmain.x0=1; wmain.y0=1; wmain.x1=80; wmain.y1=16;
wmes.x0=1; wmes.y0=wmain.y1+2; wmes.x1=80; wmes.y1=25;
wmain.lastx=wmain.lasty=wmes.lastx=wmes.lasty=1;
//============ инициализация последовательного порта ===========
mov ax,40H //вычислить базовый адрес
IER=base+1; IIR=base+2; LCR=base+3; MCR=base+4; LSR=base+5;
instvect(); // установить обработчик
outportb(IMR,(inportb(IMR)&(255-rgmask))); // разрешить прерывание
outportb(IER,5); //разрешить прерывания по доступности данных и по ошибке
outportb(LCR,(inportb(LCR)|0x80)); // доступ к делителю частоты
outportb(LSB,12/m_speed); // 1843200/(x*16)=y бит/c
outportb(LCR,27); // установить параметры :
// длина слова обмена 8 бит + контроль четности + DLAB=0
outportb(MCR,(8)); // ;rts=0 ;dtr=0
// сбросить условия возникновения прерываний

Приемно-адаптерный прибор пожарной сигнализации научная работа. Безопасность жизнедеятельности и охрана труда.
Доклад: Стрелы ревности
На Дне Сочинение Рассуждение 11 Класс
Декабрьское Сочинение Темы По Направлению 20221
Реферат по теме ст. 291 УК РФ Дача взятки
Реферат по теме Фундаменталистская идеология "исламского возрождения"
Дипломная работа по теме Створення баз даних для електричних силових підстанцій
Эссе По Книге Цель
Реферат: Берегової смуга \укр\
Реферат: Легкое дыхание 2
Сочинение По Рассказу Станюковича Рождественская Ночь
Контрольная Работа На Тему Напівфабрикати З Січеної Натуральної І Котлетної Маси
Болезнь Новорожденных Реферат
Практическая Работа По Географии 10
Информационная Безопасность Практика Отчет
Реферат: Откорм взрослого крупного рогатого скота
Реферат: Системы небесных координат
Реферат: Разрешение споров по вопросам приватизации в России
Эссе По Молодежной Политике
Лабораторная Работа Измерение Удельной Теплоемкости Воды
Русский Язык Сочинение После Дождя
Правила безопасного поведения на транспорте. Действия при транспортной катастрофе - Безопасность жизнедеятельности и охрана труда реферат
Поняття, предмет та значення охорони праці - Безопасность жизнедеятельности и охрана труда контрольная работа
Проектирование системы очистки воздуха при производстве растительного масла из семян подсолнечника - Безопасность жизнедеятельности и охрана труда курсовая работа


Report Page