Преобразование Лапласа - Математика реферат

Преобразование Лапласа - Математика реферат




































Главная

Математика
Преобразование Лапласа

Прямое, обратное, двустороннее и дискретное преобразование Лапласа. Применение преобразования Лапласа. Прямое и обратное преобразования Лапласа некоторых функций. Связь с другими преобразованиями. Преобразование Лапласа по энергии и по координатам.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Преобразование Лапласа -- интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией действительного переменного (оригинала). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.
Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями.
Преобразованием Лапласа функции действительной переменной , называется функция комплексной переменной , такая что:
Правая часть этого выражения называется интегралом Лапласа.
Обратным преобразованием Лапласа функции комплексного переменного , называется функция действительного переменного, такая что:
где -- некоторое вещественное число. Правая часть этого выражения называется интегралом Бромвича.
3. Двустороннее преобразование Лапласа
Двустороннее преобразование Лапласа -- обобщение на случай задач, в которых для функции участвуют значения x < 0
Двустороннее преобразование Лапласа определяется следующим образом:
4. Дискретное преобразование Лапласа
Применяется в сфере систем компьютерного управления. Дискретное преобразование Лапласа может быть применено для решётчатых функций. Различают -преобразование и -преобразование.
решётчатая функция, то есть значения этой функции определены только в дискретные моменты времени , где -- целое число, а -- период дискретизации. Тогда применяя преобразование Лапласа получим:
Если применить следующую замену переменных:
Если интеграл Лапласа абсолютно сходится при у = у 0 , то есть существует предел
то он сходится абсолютно и равномерно для и F(s) -- аналитическая функция при ( -- действительная часть комплексной переменной s). Точная нижняя грань у a множества чисел у, при которых это условие выполняется, называется абсциссой абсолютной сходимости преобразования Лапласа для функции f(x).
· Условия существования прямого преобразования Лапласа
Преобразование Лапласа существует в смысле абсолютной сходимости в следующих случаях:
1. Случай : преобразование Лапласа существует, если существует интеграл
2. Случай у > у a : преобразование Лапласа существует, если интеграл
3. Случай у > 0 или у > у a (какая из границ больше): преобразование Лапласа существует, если существует преобразование Лапласа для функции f'(x) (производная к f(x)) для у > у a .
Примечание: это достаточные условия существования.
· Условия существования обратного преобразования Лапласа
Для существования обратного преобразования Лапласа достаточно выполнение следующих условий:
1. Если изображение F(s) -- аналитичная функция для и имеет порядок меньше ?1, то обратное преобразование для неё существует и непрерывно для всех значений аргумента, причём
аналитична относительно каждого z k и равна нулю для
тогда обратное преобразование существует и соответствующее прямое преобразование имеет абсциссу абсолютной сходимости.
Примечание: это достаточные условия существования.
Преобразованием Лапласа свёртки двух оригиналов является произведение изображений этих оригиналов.
Левая часть этого выражения называется интегралом Дюамеля, играющим важную роль в теории динамических систем.
· Дифференцирование и интегрирование оригинала
Изображением по Лапласу первой производной от оригинала по аргументу является произведение изображения на аргумент последнего за вычетом оригинала в нуле справа.
В более общем случае (производная n-го порядка):
Изображением по Лапласу интеграла от оригинала по аргументу является изображение оригинала деленное на свой аргумент.
· Дифференцирование и интегрирование изображения. Обратное преобразование Лапласа от производной изображения по аргументу есть произведение оригинала на свой аргумент, взятое с обратным знаком.
Обратное преобразование Лапласа от интеграла изображения по аргументу есть оригинал этого изображения, деленный на свой аргумент.
· Запаздывание оригиналов и изображений. Предельные теоремы
Примечание: u(x) -- Функция Хэвисайда.
Теоремы о начальном и конечном значении (предельные теоремы):
Все полюсы в левой полуплоскости. Теорема о конечном значении очень полезна, так как описывает поведение оригинала на бесконечности с помощью простого соотношения. Это, к примеру, используется для анализа устойчивости траектории динамической системы.
6. Прямое и обратное преобразование Лапласа некоторых функций
Ниже представлена таблица преобразования Лапласа для некоторых функций.
Область сходимости для причинных систем
запаздывание n-го порядка с частотным сдвигом
функция Бесселя первого рода порядка n
модифицированная функция Бесселя первого рода порядка n
функция Бесселя второго рода нулевого порядка
модифицированная функция Бесселя второго рода, нулевого порядка
· -- постоянная Эйлера -- Маскерони.
Причинная система -- система, в которой импульсная передаточная функция h(t) равна нулю для любого момента времени .
7. Применения преобразования Лапласа
Преобразование Лапласа находит широкое применение во многих областях математики (операционное исчисление), физики и техники.
· Решение систем дифференциальных и интегральных уравнений с помощью преобразования Лапласа легко переходить от сложных понятий математического анализа к простым алгебраическим соотношениям.
· Расчёт передаточных функций динамических систем, таких, к примеру, как аналоговые фильтры.
· Расчёт выходных сигналов динамических систем в теории управления и обработке сигналов -- так как выходной сигнал линейной стационарной системы равен свёртке её импульсной характеристики с входным сигналом, преобразование Лапласа позволяет заменить эту операцию на простое умножение.
· Расчёт электрических схем. Производится путём решения дифференциальных уравнений, описывающих схему операторным методом.
· Решение нестационарных задач математической физики.
8. Связь с другими преобразованиями
Практически все интегральные преобразования имеют схожую природу и могут получаться одно из другого через выражения соответствия. Многие из них являются частными случаями других преобразований. Далее даны формулы, связывающие преобразования Лапласа с некоторыми другими функциональными преобразованиями.
Преобразование Лапласа-Карсона получается из преобразования Лапласа путём домножения его на комплексную переменную.
Двустороннее преобразование Лапласа
Двустороннее преобразование Лапласа связано с односторонним с помощью следующей формулы:
Непрерывное преобразование Фурье эквивалентно двустороннему преобразованию Лапласа с комплексным аргументом s = iщ:
Примечание: в этих выражениях опущен масштабирующий множитель
который часто включается в определения преобразования Фурье.
Связь между преобразованиями Фурье и Лапласа часто используется для того, чтобы определить частотный спектр сигнала или динамической системы.
Преобразование Меллина и обратное преобразование Меллина связаны с двусторонним преобразованием Лапласа простой заменой переменных. Если в преобразовании Меллина
положим и = e ? x , то получим двустороннее преобразование Лапласа.
Z-преобразование -- это преобразование Лапласа решётчатой функции, производимое с помощью замены переменных:
где -- период дискретизации, а -- частота дискретизации сигнала. Связь выражается с помощью следующего соотношения:
Интегральная форма преобразования Бореля идентична преобразованию Лапласа, существует также обобщённое преобразование Бореля, с помощью которого использование преобразования Лапласа распространяется на более широкий класс функций.
9. Преобразование Лапласа по энергии
для моноэнергетического источника S(E)=(E-E 0 ) с интегральным членом в форме:
и, не пренебрегая для простоты зависимостью сечений У(E) и
от E, перейдем от E к новой переменной
Решение этого уравнения можно получить с помощью преобразования Лапласа по энергии:
Его можно рассматривать как разложение дифференциальной плотности потока по системе биортогональной функции и .
Подействуем на все члены уравнения (1) оператором
В соответствии с (3) первый член преобразования к виде
Во втором члене необходимо изменить порядок интегрирования и в интеграле по сделать замену переменных
-трансформанта Лапласа от дифференциального сечения рассеяния.
Правая часть уравнения (1) легко преобразуется, после чего получаем
Подставляя (5) в (2), находим интересующую нас функцию Ф():
быстро убывает с ростом Q экспоненту в (4) можно разложить в ряд.
где -середина потери энергии на единице длины пути. Подставим это разложение в (6) и сделаем замену переменных
Вычисляя, интеграл с помощью вычетов и возвращаясь от переменной к переменной E, получаем:
Экспонента в формуле (7) есть вероятность того, что частица избежит поглощения на пути, где энергия меняется от Е 0 до Е. Если сечение поглощения равно нулю, то
Формула (8) имеет простой физический смысл. По определению Ф(E)=dE есть средний путь, пройденный частицей за время, пока ее энергия меняется от E+dE до E.
В приближении непрерывного замедления dE/dl=, откуда dl/dE=1/, что совпадает с (8).
10. Преобразование Лапласа по координатам
Запишем кинетическое уравнение в приближении «прямо-вперед» (т.е. без учета отклонения частиц при рассеянии), для частиц, испускаемых моноэнергетическим источником, который находится в начале координат:
Поскольку частицы испускаются в положительном направлении оси Оz, в области z0 плотность потока равна 0 и область изменения z в уравнении (208) следует считать полубесконечный интервал (0,). Это обстоятельство позволяет применить для решения уравнения (208) преобразование Лапласа по координатам:
где трансформанта Лапласа Ф(,E) выражается через плотность потока следующим образом:
Умножим обе части уравнения (208) на и проинтегрируем по z от 0 до . Преобразовав первый член интегрированием по частям с учетом граничного условия (209) и, использовав обозначение (211), получим:
После преобразования Лапласа остальных членов уравнения (208) приходим к уравнению для трансформанты плотности потока:
которое в отличие от (208) не содержит производных и является интегральным уравнением типа уравнения деградации энергии. Введя обозначение
При действительных уравнение (214) по форме совпадает с уравнением деградации энергии для частиц с макроскопическим сечением столкновений и дифференциальным сечением рассеяния
Из (213) видно, что по мере уменьшения обращается в нуль, а потом становится отрицательной. Отсюда следует, что решение уравнения (214) существует лишь в области
то для трансформанты рассеянной компоненты плотности потока получим
Если и C не зависят от энергии, формула (215) упрощается:
Перейдем к восстановлению энергетического спектра рассеянных частиц:
Функция , представляющая собой обратное преобразование Лапласа функции s -2 exp(a/s),равна
где I 1 - модифицированная функция Бесселя первого порядка. Таким образом
В частности, при малых значениях аргумента I 1 (x), поэтому
При больших значениях аргумента , следовательно,
Из (219)-(221) видно, что с увеличением z отношение рассеянного излучения к нерассеянному возрастет сначала линейно (когда главную роль играет однократное рассеяние), затем более сложным образом, причем низкоэнергетическая часть спектра, обусловленная многократным рассеянием, растет быстрее высокоэнергетической.
1. А.М. Кольчужкин, В.В. Учайкин «Введение в теорию прохождения частиц через вещество». М., Атомиздат,1978, 256с.
2. В.Н.Русак «Математическая физика», Минск, 1998
3. Деч Густав «Руководство к практическому применению Лапласа и Z-преобразования».М.:Наука,1971
4. Л.Г. Смышляева «Преобразования Лапласа функций многих переменных» Изд-во ЛГУ, 1981
Описание уравнениями в конечных разностях динамических процессов в дискретных системах управления. Операционный метод решения разностных уравнений, основанный на дискретном преобразовании Лапласа. Обобщение обычного преобразования на дискретные функции. реферат [61,7 K], добавлен 21.08.2009
Математический анализ и операционное исчисление. Обращение преобразования с помощью многочленов, ортогональных на промежутке. Интегральное преобразования Лапласа с помощью смещенных многочленов Лежандра и многочленов Чебышева первого рода. реферат [503,6 K], добавлен 10.02.2011
Дискретный периодический сигнал, представленный рядом Фурье. Прямое и обратное дискретное преобразование. Его свойства: линейность и симметрия. Алгоритм вычисления круговой свертки сигналов. Равенство Парсеваля для них. Связь ДПФ с Z-преобразованием. презентация [72,0 K], добавлен 19.08.2013
Однородный Марковский процесс. Построение графа состояний системы. Вероятность выхода из строя и восстановления элемента. Система дифференциальных уравнений Колмогорова. Обратное преобразование Лапласа. Определение среднего времени жизни системы. контрольная работа [71,2 K], добавлен 08.09.2010
Решение системы линейных обыкновенных дифференциальных уравнений, описывающей боковое перемещение нестабильного самолета относительно заданного курса полета методом преобразования Лапласа. Стабилизация движения путем введения отрицательной обратной связи. курсовая работа [335,8 K], добавлен 31.05.2016
Статическая характеристика элемента. Выполнение аналитической линеаризации заданной функции в определенной точке. Обратное превращение Лапласа заданной передаточной функции ОАУ. Преобразование дифференциального уравнения к нормальной форме Коши. контрольная работа [564,9 K], добавлен 30.03.2015
Идея и возможности вейвлет-преобразования. Свойства вейвлетов: непрерывное прямое и обратное образование. Понятие и оценка преимуществ, сферы применения дискретного вейвлет-преобразования. Поиск изображений по образцу. Многомасштабное редактирование. курсовая работа [2,0 M], добавлен 27.04.2011
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Преобразование Лапласа реферат. Математика.
Контрольная работа по теме Современная оценка стоимости
Дипломная работа по теме Товарознавча характеристика та оцінка якості засобів для захисту автомобілів від викрадення
Скачать Реферат Предварительное Следствие
Методы очистки сточных вод
Реферат: Особливості навчання усного монологічного мовлення ліцеїстів старших класів
Реферат: Системный подход в современной науке и технике. Скачать бесплатно и без регистрации
Реферат: Анализ бухгалтерского баланса и эффективности деятельности организации
Курсовая работа: Мирова угода у справах про банкрутство
Реферат по теме Государственная система занятости: структура, основные направления развития на современном этапе
Реферат На Тему Бешенство
Дипломная работа по теме Совершенствование маркетинговой деятельности промышленного предприятия (на примере ОАО 'Строительный трест № 20' ОАО 'Светлогорский завод железобетонных изделий')
Эссе Детские Сады В России
Реферат: Зигмунд Фрейд - Введение в психоанализ (лекции)
Безопасность Личности Общества И Государства Реферат
Контрольная работа по теме Екфрастичні алюзії новели 'Кавалер Глюк' Е.Т.А. Гофмана
Курсовая работа по теме Определение суммарной нагрузки цеха
Сочинение Про Достопримечательности России
Отчет Практика Суд Уголовный
Курсовая работа по теме Программирование микроконтроллеров
Контрольная работа: Лексические нормы
Материальная культура коренных народов Камчатки - Культура и искусство курсовая работа
Президент Российской Федерации и исполнительная власть - Государство и право курсовая работа
Общественно-политическая мысль и литература: А.Н. Радищев - Литература реферат


Report Page