Постановка задачі оптимального керування - Коммуникации, связь, цифровые приборы и радиоэлектроника реферат
Теорія оптимального керування; об’єкт як система, що функціонує під впливом певного фактора, здатного регулювати її еволюцію. Крайові умови задачі оптимального детермінованого керування. Числові характеристики критеріїв якості. Задачі з дискретним часом.
посмотреть текст работы
скачать работу можно здесь
полная информация о работе
весь список подобных работ
Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Множина фазового простору, що включає ті фазові стани, які є бажаними з точки зору цілей керування даним об'єктом, називається множиною мети керування , .
Керування об'єктом у кожний момент часу задається вектором керування , , де , …, - параметри керування.
У загальному випадку стан об'єкта в будь-який момент часу залежить від того, яким було керування до моменту часу і не залежить від майбутнього керування.
У реальних об'єктах керування не може бути довільним, що пов'язано або з конструктивними особливостями об'єкта, або з обмеженістю ресурсів, або з умовами експлуатації об'єкта. У просторі керування (просторі всіх можливих керувань) виділяється деяка множина , що називається множиною припустимих керувань і містить сукупність тих функцій
які, виходячи з умов задачі, можуть бути обрані за керування даною системою серед всіх можливих функцій керування. У прикладних задачах, як правило, область керування є обмеженою замкнутою множиною.
Найчастіше за керування обирають кусково-неперервні вектор-функції, для яких кожна координата має на будь-якому кінцевому інтервалі скінченне число точок розриву першого роду , причому для визначеності припускають, що
і, крім того, керування неперервно на кінцях відрізка .
Кусково-неперервні керування , такі що , називаються припустимими.
Припустимим процесом називається пара функцій , де - припустиме керування, а - відповідна йому фазова траєкторія.
Детермінованість керованого об'єкта означає, що вибір керування , за заданих початкових умов однозначно визначає траєкторію руху , .
Існує два підходи для визначення оптимального керування. Перший полягає в тому, що оптимальне керування будується як функція часу . Таке керування називається програмним керуванням. Із прикладної точки зору такий підхід є недосконалим, тому що не враховує впливів на систему зовнішніх факторів.
Другий підхід полягає в тому, що оптимальне керування будується як функція фазових координат, тобто . Таке керування називають синтезуючим (або позиційним), а відповідну задачу - задачею синтезу оптимальних керувань. Таке керування враховує поточний стан системи, але його пошук значно складніший порівняно з пошуком програмного керування.
Характер зміни фазової траєкторії об'єкта у часі задається законом руху. У теорії детермінованого керування найчастіше розглядаються динамічні системи за законом руху у формі диференціальних рівнянь
Тут - вектор-функція, компоненти якої неперервні по всій сукупності змінних і неперервно диференційовані по змінних . Отже, якщо відоме керування , , то траєкторія об'єкта може бути визначена як розв'язок диференціального рівняння
Якщо для функції виконуються перераховані вище умови, то остання система задовольняє теоремі існування та єдиності розв'язку для задачі Коші, тобто за заданих початкових умов вона має єдиний розв'язок в околі точки .
Задача керування рухом полягає в тому, щоб відшукати припустиме керування, яке реалізує ціль. Це означає, що потрібно відшукати таку кусково-неперервну функцію , визначену на відрізку , для якої система (3) має розв'язок , який задовольняє початковій умові , обмеженню і кінцевій умові . Отже, задача детермінованого керування зводиться до розв'язання крайової задачі для системи -го порядку (3) за заданих обмежень (1) і (2).
3. Якщо значення координат (всіх або частини) вектора стану задані для декількох фіксованих моментів часу , , …, , то задача оптимального керування називається багатоточковою задачею керування.
4. У задачах з рухомими кінцями необхідно визначити керування, що переводить об'єкт із деякого заздалегідь невідомого стану в деякий стан , де множини , відомі. Якщо і вироджуються в точки, то задача оптимального керування стає задачею із фіксованими кінцями.
Якщо час і початкових і кінцевих крайових умов і відомий, то задача оптимального керування називається задачею з фіксованим часом. Якщо ж невідомо, то задача називається задачею з вільним часом.
Найчастіше задача керування має безліч розв'язків, тобто існує безліч керувань, які дозволяють досягти бажаної мети. У такому випадку виникає задача, як серед всіх припустимих керувань вибрати таке, для якого керований процес буде, в певному розумінні, найкращим. Інакше кажучи, якщо якість процесу можна оцінити деякою числовою характеристикою - критерієм якості, то задача полягає у виборі такого керування, що забезпечить його оптимальне значення. Далі вважатимемо, що оптимальним є мінімальне значення критерію . Отже, задача оптимального керування полягає в тому, щоб визначити таке керування
, що реалізує ціль, і для якого функціонал набуває найменшого можливого значення:
Процес з (4) називається оптимальним процесом, а відповідні йому керування і фазова траєкторія - оптимальним керуванням і оптимальною траєкторією.
Припустимий процес називається локально оптимальним у задачі з фіксованим часом , якщо для певного і для будь-якого припустимого процесу , що задовольняє умові
Якщо відрізок не фіксований, то локально оптимальним процесом називається припустимий процес на інтервалі часу , для якого існує таке , що для будь-якого процесу , заданого на інтервалі часу , такого що
Існують такі типи критеріїв якості.
Для керування процесами (3) найчастіше використовуються інтегральні критерії:
Інтегральні критерії розділяються на:
а) інтегральний критерій оптимальної швидкодії:
б) інтегральний квадратичний критерій з підінтегральною функцією
, - коефіцієнти, серед яких є хоча б один ненульовий.
Вивчення системи може проводитися як на скінченному, так і на нескінченному інтервалі часу, тому в інтегралі (5) ;
в) енергетичні критерії якості з підінтегральними функціями
, - коефіцієнти, серед яких хоча б один ненульовий;
г) змішаний інтегральний критерій з підінтегральною функцією
наприклад, критерій кінцевого стану:
Даний критерій використовують, якщо необхідно привести систему в заданий кінцевий стан у момент часу з мінімальною помилкою. У цьому випадку критерій кінцевого стану матиме вигляд
які можна привести до інтегрального вигляду:
де , а - число кроків дискретизації процесу.
Початкові та кінцеві умови для задачі (6) мають вигляд:
Аналоги інтегрального та термінального критеріїв якості для процесу (6) мають наступний вигляд.
1. Необхідно визначити такі вектори , , …, і , , …, , на яких величина
набуває мінімального значення за умов (6), (7).
2. Необхідно визначити такі вектори , , …, і , , …, , на яких величина
набуває мінімального значення за умов (6), (7).
Задача оптимального керування системою. Критерії якості в детермінованих дискретних задачах. Види функцій керування стохастичною системою. Еволюція стохастичної системи. Марковські та напівмарковські позиційні стратегії. Алгоритм розв’язання задачі. реферат [130,8 K], добавлен 28.11.2010
Огляд математичних моделей для системи керування мобільними об'єктами. Постановка задачі керування радіокерованим візком. Розробка структури нечіткої системи керування рухом та алгоритму програмного модуля. Аналіз результатів тестування програми. курсовая работа [903,9 K], добавлен 03.07.2014
Поняття та властивості зовнішнього інтегралу. Математичні сподівання випадкової величини. Припущення монотонності. Аналіз основних задач послідовної оптимізації, що становлять практичний інтерес. Детерміноване оптимальне керування, його функції. реферат [133,9 K], добавлен 25.11.2010
Поняття, цілі, завдання робастного управління. Схема замкнутої структури керування. Метод синтезу за допомогою Н-теорії, який отримав розвиток та поширення в останні десятиліття. Вирішення стандартної задачі даної теорії за допомогою "2-Ріккаті підходу". курсовая работа [369,0 K], добавлен 25.12.2014
Визначення залежності від часу закону руху у випадку неавтономної системи. Дослідження поведінки функції Понтрягіна в режимі оптимального керування та оптимальної швидкодії. Застосування умов трансверсальності для розв'язку задач із рухомими кінцями. реферат [73,2 K], добавлен 04.12.2010
Лінійна система автоматичного керування температурним режимом. Корекція параметрів якості, моделювання і дослідження імпульсної системи: побудова графіка усталеної похибки; розрахунок логарифмічних псевдочастотних характеристик коректуючого пристрою. курсовая работа [396,0 K], добавлен 26.01.2011
Математичний опис лінійних неперервних систем автоматичного керування (САК). Інерційні й не інерційні САК, їх часові та частотні характеристики. Елементарні ланки та їх характеристики. Перетворення схеми математичної моделі САК до стандартного вигляду. курсовая работа [444,8 K], добавлен 10.04.2013
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .
© 2000 — 2021
Постановка задачі оптимального керування реферат. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Магистерские Диссертации По Предпринимательскому Праву
Контрольная работа: Теоретические основы осуществления прокурорского надзора. Скачать бесплатно и без регистрации
Курсовая работа по теме Конструирование средств технологического оснащения
Контрольная работа: Кодирование различных типов информации. Состав системного блока
Творческая Работа На Тему Настенные Часы "Морская Тематика"
Реферат По Теме Решение Задач Алгебраическим Методом
Реферат: Моу «Арская средняя общеобразовательная школа №3» ()
Реферат: Инновационный менеджмент в фармацевтической компании
Понятие И Сущность Права Курсовая Работа
Реферат: Foster Care Parents Essay Research Paper When
Реферат: Работы Ленина, Маркса, Энгельса. Скачать бесплатно и без регистрации
Отчет По Прохождению Практики Пример
Образец Технико Экономического Обоснования Списания
Контрольная работа по теме Августовский путч
Курсовая работа по теме Історія цивілізації Майя
Лекция 6. Психические познавательные процессы.
Готовые Дипломные Работы По Медицине Бесплатно
Эссе На Тему Соломоново Решение
Шпаргалка: Повні відповіді на білети, розроблені Мадей з соціальної культурології. Скачать бесплатно и без регистрации
Курсовая работа по теме Проблемы профессиональной ориентации старшеклассников образовательных учреждений
Концепция Европейского гражданства в трактовке суда Европейского Союза - Государство и право реферат
Теорії виникнення і розвитку біосфери Землі - География и экономическая география дипломная работа
Особенности административной ответственности должностных лиц по нормам российского права: теоретические и практические аспекты - Государство и право дипломная работа