Получение нитростирола
Получение нитростиролаРады представить вашему вниманию магазин, который уже удивил своим качеством!
И продолжаем радовать всех!
Мы - это надежное качество клада, это товар высшей пробы, это дружелюбный оператор!
Такого как у нас не найдете нигде!
Наш оператор всегда на связи, заходите к нам и убедитесь в этом сами!
Наши контакты:
ВНИМАНИЕ!!! В Телеграмм переходить только по ссылке, в поиске много фейков!
Получение нитростирола
Свердловский учебный центр профессиональных квалификаций Поездка - Медвежьегорск - Воттовара - Янгозеро: По изначальному плану мы должны были стартовать с Янгозера Объективные признаки состава административного правонарушения: Нитрование ароматических соединений — основной путь получения нитросоединений. Процесс нитрования как частный случай электрофильного замещения в ароматическом ряду был уже рассмотрен раньше. Поэтому представляется целесообразным сосредоточить внимание на синтетических возможностях этой реакции. В более жестких условиях способен нитроваться и нитробензол с образованием м -динитробензола. Из—за дезактивирующего влияния двух нитрогрупп ввести третью нитрогруппу в м -динитробензол удается лишь с большим трудом. Трудности получения тринитробензола прямым нитрованием бензола привели к разработке косвенных методов. По одному из них более доступный, чем тринитробензол, тринитротолуол окисляется до 2,4,6-тринитробензойной кислоты, которая легко декарбоксилируется при нагревании в воде. Точно также к косвенным методам приходится прибегать и при необходимости получения 1,2-динитробензола. В этом случае обычно используется способность аминогруппы окисляться до нитрогруппы в о -нитроанилине. Даже в тех случаях, когда получение нитросоединений нитрованием не должно было бы встретить особых затруднений, приходится обращаться к косвенным методам. Так, не удается получить пикриновую кислоту нитрованием фенола, так как азотной кислотой фенол не нитруется, а окисляется. Поэтому обычно используется следующая схема. Тонкости данной схемы в том, что из-за дезактивации кольца хлором и двумя уже имеющимися нитрогруппами, не удается вводить в него третью нитрогруппу. Поэтому хлор в динитрохлорбензоле предварительно замещается на гидроксил, чему нитрогруппы как раз способствуют бимолекулярное замещение. Образовавшийся динитрофенол легко принимает еще одну нитрогруппу, не окисляясь в заметной степени. Имеющиеся нитрогруппы предохраняют бензольное кольцо от окисления. Еще одним неочевидным способом получения пикриновой кислоты является сульфирование фенола до 2,4-фенолдисульфокислоты с последующим нитрованием образовавшегося соединения. При этом одновременно с нитрованием происходит замещение сульфогрупп на нитрогруппы. Один из важнейших ароматических нитропроизводных — тринитротолуол в технике получают нитрованием толуола, которое протекает по следующей схеме. Ароматические нитросоединения способны реагировать как с участием бензольного кольца, так и нитрогруппы. Указанные структурные элементы влияют на реакционную способность друг друга. Так, под воздействием нитрогруппы нитробензол в реакции электрофильного замещения вступает неохотно и новый заместитель принимает в м -положение. Нитрогруппа влияет не только на реакционную способность бензольного кольца, но и на поведение соседних функциональных групп в химических реакциях. Одной из важнейших реакций нитросоединений является их восстановление до ароматических аминов, широко используемых при производстве красителей, лекарственных препаратов и фотохимикатов. Возможность преобразования нитрогруппы в аминогруппу восстановлением нитросоединений впервые была показана Зининым в году на примере реакции нитробензола с сульфидом аммония. В последующем восстановление ароматических нитросоединений было предметом глубокого изучения. При этом установлено, что в общем случае восстановление носит сложный характер, протекает через ряд стадий с образованием промежуточных продуктов. Амины являются лишь конечным продуктом реакции. Результат восстановления определяется силой восстанавливающего агента и рН-среды. При электрохимическом восстановлении состав продуктов зависит от величины потенциала на электродах. Варьируя указанными факторами можно задержать процесс восстановления на промежуточных стадиях. В нейтральной и кислой средах восстановление нитробензола идет последовательно через образование нитрозобензола и фенилгидроксиламина. Когда восстановление проводится в щелочной среде, образовавшийся нитрозобензол и фенилгидроксиламин получают возможность конденсироваться между собой с образованием азоксибензола, в котором атомы азота и кислорода связаны между собой семиполярной связью. Все упомянутые выше промежуточные продукты восстановления нитробензола в анилин могут быть получены либо непосредственно из нитробензола, либо исходя друг из друга. Влияние нитрогруппы на реакционную способность других функциональных групп. При изучении ароматических галогенпроизводных мы уже встречались со случаем, когда подходящим образом расположенная нитрогруппа нитрогруппы существенно влияла на нуклеофильное замещение галогена бимолекулярное замещение ароматически связанного галогена. На примере о - и п -динитробензолов было установлено, что нитрогруппа может способствовать нуклеофильному замещению не только галогена, но даже другой нитрогруппы. Механизм бимолекулярного замещения нитрогруппы на гидроксильную группу можно представить как следующий двухстадийный процесс. Карбанион, образующийся на первой стадии рассматриваемой реакции, резонансно стабилизирован из-за вклада предельной структуры 1, в которой нитрогруппа оттягивает электроны именно с того углерода бензольного кольца, у которого их избыток. Особенностью нуклеофильного замещения одной нитрогруппы под влиянием другой нитрогруппы является то, что реакция весьма чувствительна к расположению нитрогрупп относительно друг друга. Известно, что м -динитробензол не реагирует со спиртовым раствором аммиака даже при о С. Другими примерами содействия нитрогруппы замещению, в данном случае гидроксила, являются превращения пикриновой кислоты. Комплексообразование с ароматическими углеводородами. Характерным свойством ароматических нитросоединений является их склонность образовать комплексы с ароматическими углеводородами. Связи в таких комплексах носят электростатический характер и возникают между электронодонорными и электроноакцепторными частицами. Особенно часто для комплексообразования используется пикриновая кислота, комплексы которой неправильно называются пикратами. По степени замещения водородных атомов в аммиаке на алкильные и арильные заместители различают первичные, вторичные и третичные амины. В зависимости от природы заместителей амины могут быть жирно — ароматическими и чисто ароматическими. Ниже приведены наиболее часто встречающиеся амины и их названия. Со многими из методов получения аминов мы уже встречались при изучении алифатических аминов. При приложении этих методов к синтезу ароматических аминов встречаются некоторые особенности, поэтому, не опасаясь повторов, рассмотрим их. Восстановление нитросоединений — основной метод как лабораторного, так и промышленного получения аминов, который можно осуществить несколькими способами. К ним относятся каталитическое гидрирование, восстановление атомарным водородом и химическое восстановление. Каталитическое восстановление осуществляется молекулярным водородом в присутствии тонко измелченных никеля или платины, комплексных соединений меди на носителях. При выборе катализатора и условий восстановления надо иметь в виду, что при этом могут восстановиться и другие функциональные группы. Кроме того, каталитическое восстановление нитросоединений должно проводиться с соблюдением определенной осторожности из-за чрезвычайной экзотермичности реакции. При использовании в качестве химического восстановителя сульфида аммония появляется возможность восстановления только одной из нескольких нитрогрупп. Однако, как уже об этом говорилось не раз, электроноакцепторные заместители в бензольном кольце, расположенные надлежащим образом, значительно облегчают замещение галогена в арилгалогенидах, направляя процесс по бимолекулярному механизму. Для сравнения ниже приведены условия аминирования хлорбензола и динитрохлорбензола. Расщепление амидов кислот по Гофману позволяет получить первичные амины, которые содержат на один углерод меньше, чем исходные амиды. Реакция протекает с миграцией фенила от карбонильного углерода к атому азота 1,2-фенильный сдвиг по следующему предполагаемому механизму. Алкилирование и арилирование аминов. Алкилирование первичных и вторичных ароматических аминов галогеналкилами или спиртами позволяет получить вторичные и третичные жирноароматические амины. К сожалению, при участии в реакции первичных аминов получается смесь. Этого можно избежать, если исходный амин предварительно проацилировать, а уже потом проалкилировать. Такой прием защиты аминогруппы позволяет получить чистые вторичные ароматические амины, а также третичные амины с разными замещающими радикалами. Ароматические амины реагируют как с участием аминогруппы, так и бензольного кольца. При этом каждая функциональная группа испытывает влияние другой группы. Благодаря наличию аминогруппы ароматические амины вступают в многочисленные реакции. Некоторые из них были уже рассмотрены: Другие реакции, которым будет уделено внимание, легко предсказуемы, однако им присущи определенные особенности. Наличие неподеленной пары электронов у атома азота, которые могут быть представлены на образование связи с протоном, обеспечивает ароматическим аминам основные свойства. Интерес представляет сопоставление основности алифатических и ароматических аминов. Как уже было показано при изучении алифатических аминов, об основности аминов удобно судить по константе основности К в. Из этих данных видно, что появление электронодонорной метильной группы повышает электронную плотность у атома азота и приводит к усилению основности метиламина по сравнению с аммиаком. В то же время фенильная группа более чем в 10 5 раз ослабляет основность анилина по сравнению с аммиаком. Уменьшение основности анилина по сравнению с алифатическими аминами и аммиаком может быть объяснено сопряжением неподеленной пары электронов азота с секстетом электронов бензольного кольца. Это снижает способность неподеленной пары электронов присоединять протон. Еще более эта тенденция сказывается у ароматических аминов, которые содержат в бензольном кольце электроноакцепторные заместители. Как и можно было ожидать, электронодонорные заместители в бензольном кольце усиливают основность ароматических аминов. Реакция с азотистой кислотой. Особый интерес к реакции аминов с азотистой кислотой вызван тем, что она позволяет различить первичные, вторичные и третичные амины. Кроме того, в случае участия в реакции первичных аминов получаются, имеющие большое препаративное значение, соли диазония. Поскольку азотистая кислота неустойчива, ее обычно получают из ее соли и более сильной минеральной кислоты по ходу опыта. Азотистая кислота в кислой среде диссоциирует с образованием нитрозокатиона, который и реагирует с амином. С вторичными жирно-ароматическими аминами азотистая кислота реагирует с образованием п -нитрозоаминов. Такие соединения в кислой среде перегруппировываются таким образом, что нитрозогруппа перемещается в п -положение бензольного кольца. Реакция третичных аминов с азотистой кислотой представляют собой частный случай электрофильного замещения. При этом слабый электрофил —. А если оно занято — в о -положение. Несмотря на различный результат реакции азотистой кислоты с первичными, вторичными и третичными аминами, все они идут по одной схеме — ион нитрония атакует в молекуле амина место с наибольшей электронной плотностью и замещает протон. В случае первичных и вторичных аминов — это атом азота, у третичных аминов — активированное аминогруппой п -положение бензольного кольца. Появление аминогруппы в бензольном кольце делает его крайне уязвимым к действию окислителей. Действительно, анилин легко окисляется при хранении под действием кислорода воздуха. При окислении анилина различными окислителями получается множество соединений: Предполагается, что в процессе окисления первоначально образуется нестабильный свободный радикал, который далее окисляется как с участием азота, так и бензольного кольца. Алкины, их общая формула. Этин ацетилен , строение молекулы, химические свойства горение, реакции присоединения , получение и применение Волокниты, текстолиты, гетинаксы — их состав, получение, применение Выбор поставщика, получение и оценка предложений. Получение, химические свойства, применение. Главной целью любого коммерческого предприятия является получение прибыли в размере, необходимом для обеспечения нормального функционирования Корректировка на неполучение данных.
Получение нитростирола
Айя Напа купить закладку Кокаин Супер Качества [Ecuador]
Получение нитростирола
Купить закладки спайс россыпь в Кузнецк-8
Получение нитростирола
Получение нитростирола
Москва Тёплый Стан купить Амфетамин (фен)
Закладки скорость в Советской Гавани
Получение нитростирола
Купить Наркотики в Петровск-забайкальском
Получение нитростирола
Облако тегов:
Купить | закладки | телеграм | скорость | соль | кристаллы | a29 | a-pvp | MDPV| 3md | мука мефедрон | миф | мяу-мяу | 4mmc | амфетамин | фен | экстази | XTC | MDMA | pills | героин | хмурый | метадон | мёд | гашиш | шишки | бошки | гидропоника | опий | ханка | спайс | микс | россыпь | бошки, haze, гарик, гаш | реагент | MDA | лирика | кокаин (VHQ, HQ, MQ, первый, орех), | марки | легал | героин и метадон (хмурый, гера, гречка, мёд, мясо) | амфетамин (фен, амф, порох, кеды) | 24/7 | автопродажи | бот | сайт | форум | онлайн | проверенные | наркотики | грибы | план | КОКАИН | HQ | MQ |купить | мефедрон (меф, мяу-мяу) | фен, амфетамин | ск, скорость кристаллы | гашиш, шишки, бошки | лсд | мдма, экстази | vhq, mq | москва кокаин | героин | метадон | alpha-pvp | рибы (психоделики), экстази (MDMA, ext, круглые, диски, таблы) | хмурый | мёд | эйфория