Получение хлорангидрид уксусной кислоты
Получение хлорангидрид уксусной кислотыПолучение хлорангидрид уксусной кислоты
______________
______________
✅ ️Наши контакты (Telegram):✅ ️
✅ ️ ▲ ✅ ▲ ️✅ ▲ ️✅ ▲ ️✅ ▲ ✅ ️
ВНИМАНИЕ!!!
ИСПОЛЬЗУЙТЕ ВПН, ЕСЛИ ССЫЛКА НЕ ОТКРЫВАЕТСЯ!
В Телеграм переходить только по ССЫЛКЕ что ВЫШЕ, в поиске НАС НЕТ там только фейки !!!
______________
______________
Получение хлорангидрид уксусной кислоты
Получение хлорангидрид уксусной кислоты
способ получения хлорангидридов карбоновых кислот
Получение хлорангидрид уксусной кислоты
Восстановление хлорангидридов карбоновых кислот
Получение хлорангидрид уксусной кислоты
Хлорангидриды получают из соответствующих кислот при реакции с тионилхлоридом, треххлористым или пятихлористым фосфором, как рассмотрено в разд. Реакции хлорангидридов Хлорангидриды, подобно другим производным кислот, подвергаются типичным реакциям нуклеофильного замещения. При этом хлор удаляется в виде хлорид-иона или хлористого водорода и его место занимает другая основная группа. Вследствие наличия карбонильной группы эти реакции протекают гораздо быстрее, чем соответствующие реакции нуклеофильного замещения алкилгалогенидов. Хлорангидриды — наиболее реакционноспособные производные карбоновых кислот. Органическая химия 1. Теория строения 1. Представление о химической связи до г. Квантовая механика 1. Атомные орбитали 1. Электронная конфигурация. Принцип запрета Паули 1. Молекулярные орбитали 1. Ковалентная связь 1. Неподеленные пары электронов 1. Внутримолекулярные силы 1. Полярность связей 1. Полярность молекул 1. Строение и физические свойства 1. Температура плавления 1. Межмолекулярные силы 1. Температура кипения 1. Растворимость 1. Кислоты и основания 1. Изомерия 2. Углеводороды 2. Строение метана 2. Физические свойства 2. Источники 2. Реакции 2. Теплота сгорания 2. Хлорирование: реакция замещения 2. Контроль за реакцией хлорирования 2. Реакции с другими галогенами: галогенирование 2. Относительная реакционная способность 2. Механизм реакции 2. Механизм хлорирования. Свободные радикалы 2. Цепные реакции 2. Ингибиторы 2. Проверка механизма хлорирования 2. Энергия диссоциации связей 2. Теплота реакции 2. Энергия активации 2. Течение реакции: изменение энергии 2. Скорость реакции 2. Относительные скорости реакции 2. Реакционная способность галогенов по отношению к метану 2. Строение метильного радикала. Переходное состояние 2. Реакционная способность и переходное состояние 2. Молекулярная формула: ее фундаментальное значение 2. Качественный элементный анализ: углерод, водород и галоген 2. Количественный элементный анализ: углерод, водород и галоген 2. Эмпирическая формула 2. Определение молекулярного веса: метод определения плотности пара. Молекулярная формула 3. Стереохимия и стереоизомерия 3. Число стереоизомеров и тетраэдрический атом углерода 3. Оптическая активность. Плоскополяризованный свет 3. Поляриметр 3. Удельное вращение 3. Открытие энантиомерии 3. Энантиомерия и тетраэдрический атом углерода 3. Энантиомерия и оптическая активность 3. Предсказание энантиомерии. Диссимметрия 3. Асимметрический атом углерода 3. Энантиомеры 3. Рацемическая модификация 3. Оптическая активность: более подробное рассмотрение 3. Конфигурация 3. Обозначения конфигурации: R и S 3. Правила старшинства 3. Обозначение конфигурации соединений с несколькими асимметрическими атомами 4. Свободнорадикальное замещение 4. Строение этана 4. Свободное вращение вокруг простой углерод-углеродной связи. Торсионное напряжение 4. Пропан и бутаны 4. Конформации н-бутана. Вандерваальсово отталкивание 4. Конформационные изомеры 4. Конформационный анализ. Диполь-дипольные взаимодействия 4. Высшие алканы. Гомологический ряд 4. Номенклатура 4. Алкильные группы 4. Тривиальные названия 4. Типы углеродных и водородных атомов 4. Физические свойства 4. Промышленные источники 4. Получение в промышленности и в лаборатории 4. Методы синтеза 4. Реактив Гриньяра 4. Реакция Вюрца 4. Реакции 4. Галогенирование 4. Ориентация при галогенировании 4. Относительная реакционная способность алканов в реакциях галогенирования 4. Легкость отщепления атомов водорода. Энергия активации 4. Устойчивость свободных радикалов 4. Легкость образования свободных радикалов 4. Переходное состояние при галогенировании 4. Направление реакции и реакционная способность 4. Реакционная способность и избирательность 4. Отсутствие перегруппировок свободных радикалов. Изотопные метки 4. Возникновение асимметрического атома углерода 4. Метилен карбен. Внедрение 4. Горение 4. Пиролиз: крекинг 4. Определение строения 4. Анализ алканов 5. Строение и получение 5. Ненасыщенные углеводороды 5. Строение этилена. Двойная углерод-углеродная связь 5. Гибридизация и размер орбиталей 5. Пропилен 5. Бутилены 5. Диастереомерия: геометрическая изомерия 5. Высшие алкены 5. Общие названия 5. Физические свойства 5. Промышленные источники 5. Методы синтеза 5. Дегидрогалогенирование алкилгалогенидов 5. Механизм дегидрогалогенирования 5. Направление реакции и реакционная способность при дегидрогалогенировании 5. Дегидратация спиртов 5. Теория карбониевых ионов 5. Механизм дегидратации спиртов 5. Устойчивость карбониевых ионов. Распределение заряда 5. Легкость образования карбониевых ионов 5. Перегруппировки карбониевых ионов 5. Направление реакции и реакционная способность при дегидратации 6 Алкены II. Реакции двойной углерод-углеродной связи 6. Реакции двойной углерод-углеродной связи: присоединение 6. Теплота гидрирования 6. Теплота гидрирования и устойчивость алкенов 6. Присоединение галогенов 6. Присоединение галогеноводородов. Правило Марковникова 6. Присоединение бромистого водорода. Влияние перекисей 6. Присоединение серной кислоты 6. Присоединение воды. Гидратация 6. Электрофильное присоединение: механизм 6. Электрофильное присоединение: направление присоединения и реакционная способность 6. Электрофильное присоединение: перегруппировки 6. Механизм присоединения галогенов 6. Образование галогенгидринов 6. Присоединение алкенов. Димеризация 6. Присоединение алканов. Алкилирование 6. Свободнорадикальное присоединение. Механизм присоединения бромистого водорода, инициируемый перекисями 6. Другие реакции свободнорадикального присоединения 6. Образование гликолей 6. Реакции замещения. Аллильный водород 6. Ориентация и реакционная способность при замещении 6. Определение структуры методом расщепления 6. Анализ алкенов 7. Классификация стереоизомеров 7. Реакции стереоизомеров 7. Реакции диссимметричных молекул. Разрыв связи 7. Относительные конфигурации 7. Оптическая чистота 7. Стереоизомеры: диастереомеры 7. Стереоизомеры: мезо-формы 7. Образование второго асимметрического атома углерода 7. Механизм свободнорадикального хлорирования 7. Реакции диссимметричных молекул с оптически активным реагентами. Расщепление 8. Алкины и диены 8. Высшие алкины. Номенклатура 8. Физические свойства алкинов 8. Промышленный источник ацетилена 8. Методы синтеза алкинов 8. Реакции алкинов 8. Реакции присоединения алкинов 8. Восстановление алкинов в алкены. Стереоселективные реакции 8. Кислотность алкинов. Очень слабые кислоты 8. Образование ацетиленидов тяжелых металлов 8. Реакция ацетиленидов натрия с алкилгалогенидами. Сравнение реакций замещения и элиминирования 8. Гидратация алкинов. Таутомерия 8. Строение и номенклатура диенов 8. Методы синтеза и свойства диенов 8. Устойчивость сопряженных диенов 8. Электрофильное присоединение к сопряженным диенам. Скорость и равновесие 8. Свободнорадикальное присоединение к сопряженным диенам: направление присоединения 8. Свободнорадикальная полимеризация алкенов 8. Свободнорадикальная полимеризация диенов. Натуральный каучук и его заменители 8. Сополимеризация 8. Ионная полимеризация 8. Изопрен и изопреновое правило 8. Анализ алкинов и диенов 9. Циклические алифатические углеводороды 9. Ациклические и циклические соединения 9. Реакции соединений с малыми циклами. Циклопропан и циклобутан 9. Теория напряжения Байера 9. Теплоты сгорания и относительная стабильность циклоалканов 9. Орбитальное описание углового напряжения 9. Факторы, влияющие на устойчивость конформаций 9. Конформация циклоалканов 9. Стереоизомерия циклических соединений. Диастереомерия: цис- и транс-изомеры 9. Энантиомерия 9. Конформационный анализ 9. Стереоспецифические реакции 9. Присоединение метиленов 9. Замещенные метилены. Анализ циклических алифатических углеводородов Алифатические и ароматические соединения Структура бензола Молекулярная формула. Число изомеров. Структура Кекуле Стабильность бензольного кольца. Реакции бензола Устойчивость бензольного кольца. Теплоты гидрирования и сгорания Длины углерод-углеродных связей в бензоле Теория резонанса Резонансная структура бензола Длины связей в бензоле Число изомеров Стабильность бензола Орбитальное представление структуры бензола Изображение бензольного кольца Ароматические свойства. Применение теории резонанса Резонанс в сопряженных диенах Стабильность диенов и алкенов: альтернативная интерпретация Номенклатура производных бензола Метод Кернера для определения абсолютной ориентации Качественный элементный анализ: азот и сера Количественный элементный анализ: азот и сера Определение молекулярного веса: понижение температуры замерзания. Метод Раста Электрофильное замещение в ароматическом ряду Ориентация в дизамещенных бензолах Ориентация и синтез Механизм нитрования Механизм сульфирования Механизм галогенирования Механизм алкилирования по Фриделю-Крафтсу Механизм электрофильного замещения в ароматическом ряду: общие положения Изотопный эффект Механизм электрофильного замещения в ароматическом ряду: две стадии Реакционная способность и ориентация Теория реакционной способности Теория ориентации Подача электронов за счет эффекта резонанса Связь с другими реакциями карбониевых ионов Арены Жирноароматические углеводороды Промышленные источники алкилбензолов Методы синтеза алкилбензолов Алкилирование по Фриделю-Крафтсу Ограничения для реакции алкилирования по Фриделю-Крафтсу Реакции алкилбензолов Гидрирование алкилбензолов Окисление алкилбензолов Нитрование алкилбензолов Сульфирование алкилбензолов Алкилирование алкилбензолов по Фриделю-Крафтсу Галогенирование алкилбензолов в кольцо и в боковую цепь Бромирование алкилбензолов в боковую цепь: ориентация и реакционная способность Хлорирование алкилбензолов в боковую цепь: ориентация и реакционная способность. Полярные факторы при свободнорадикальных реакциях Резонансная стабилизация свободного аллильного радикала Резонансная стабилизация свободного бензильного радикала Резонансная стабилизация свободных алкильных радикалов. Гиперконъюгация Трифенилметил: устойчивый свободный радикал Получение алкилбензолов. Сопряжение с кольцом Реакции алкенилбензолов Присоединение к сопряженным алкенилбензолам: ориентация. Устойчивость бензильного карбониевого иона Присоединение к сопряженным алкенилбензолам: реакционная способность Полимеризация стирола Алкинилбензолы Анализ алкилбензолов Анализ алкенил- и алкинилбензолов Спектроскопия и строение органических соединений Масс-спектры Электромагнитный спектр Инфракрасный спектр Ультрафиолетовый спектр Спектр ядерного магнитного резонанса ЯMP Число сигналов. Эквивалентные и неэквивалентные протоны Положение сигналов. Химический сдвиг Площадь пика и определение числа протонов Расщепление сигналов. Спин-спиновое взаимодействие Константы взаимодействия Сложные спектры. Дейтериееая метка Магнитная эквивалентность протонов: более подробное рассмотрение ЯМР и конформационный анализ Спектр электронного парамагнитного резонанса ЭПР Спектральный анализ углеводородов. Инфракрасные спектры ЯМР-спектры Кинетика реакции нуклеофильного замещения в алифатическом ряду. Реакции первого и второго порядка SN2-Реакция: механизм и кинетика SN2-Реакция: стереохимия SN2-Реакция: реакционная способность SN1-Реакция: механизм и кинетика. Стадия, определяющая скорость Стереохимия SN1-реакций SN1-Реакция: реакционная способность SN1-Реакция: перегруппировки Сравнение SN1- и SN2-реакций Элиминирование отщепление : Е2 и Е1 Доказательства Е1-механизма Доказательства E2-механизма Сравнение реакций элиминирования и замещения Апротонные растворители Спектральный анализ алкилгалогенидов Получение и физические свойства Водородная связь. Ассоциация Промышленные источники Этиловый спирт Абсолютный спирт Методы синтеза Гидроборирование — окисление Направление присоединения в реакции гидроборирования Механизм реакции гидроборирования Синтез спиртов с помощью реактивов Гриньяра Продукты синтезов Гриньяра Планирование синтезов Гриньяра Ограничения синтеза Гриньяра Стероиды Реакции Реакции с галогеноводородами Реакция с галогеноводородами: механизм Спирты как кислоты Окисление спиртов Уравнивание окислительно-восстановительных реакций Синтезы с использованием спиртов Анализ спиртов. Характерные реакции. Проба Лукаса. Иодоформная реакция Спектральный анализ Простые эфиры Перекиси в эфирах Абсолютный эфир Опасности при работе с диэтиловым эфиром Синтез Вильямсона Получение замещенных эфиров Реакции простых эфиров. Расщепление кислотами Электрофильное замещение в ароматических эфирах Циклические эфиры Анализ простых эфиров Спектральный анализ простых эфиров Карбоновые кислоты Соли карболовых кислот Синтез Гриньяра Нитрильный синтез Ионизация карбоновых кислот. Константа кислотности Равновесие Кислотность карбоновых кислот Структура карбоксилат-ионов Влияние заместителей на кислотность Превращение в хлорангидриды кислот Превращение в сложные эфиры Превращение в амиды Восстановление кислот в спирты Галогенирование алифатических кислот. Реакция Геля — Фольгарда — Зелинского Анализ карбоновых кислот. Эквивалент нейтрализации Спектральный анализ карбоновых кислот Альдегиды и кетоны. Синтез альдегидов окислением Синтез кетонов ацилированием по Фриделю — Крафтсу Синтез кетонов с использованием кадмийорганических соединений Нуклеофильное присоединение Окисление Восстановление Присоединение реактивов Гриньяра Восстановление гидридами металлов Присоединение цианид-иона Присоединение бисульфита Присоединение производных аммиака Присоединение спиртов. Образование ацеталей Реакция Канниццаро Анализ альдегидов и кетонов Спектроскопический анализ альдегидов и кетонов Функциональные производные карбоновых кислот. Нуклеофильное замещение в ацильной группе. Роль карбонильной группы Получение хлорангидридов Методы синтеза уксусного ангидрида Щелочной гидролиз сложных эфиров Кислотный гидролиз сложных эфиров Аммонолиз сложных эфиров Переэтерификация Реакции сложных эфиров с реактивом Гриньяра Восстановление сложных эфиров ЖИРЫ Нахождение жиров в природе и их состав Гидролиз жиров. Мыло Жиры как источники чистых кислот и спиртов Детергенты Непредельные жиры. Отвердение жиров. Высыхающие масла Анализ производных карбоновых кислот. Эквивалент омыления Спектральный анализ производных карбоновых кислот Сульфокислоты и их производные Методы синтеза сульфокислот Реакции сульфокислот Десульфирование Сульфохлориды Амиды сульфокислот Эфиры сульфокислот Стереохимическое обращение Сравнение производных сульфокислот с производными карбоновых кислот Анализ сульфокислот Спектральный анализ сульфокислот Соли аминов Стереохимия азота Промышленные источники аминов Методы синтеза аминов Восстановление нитросоединений Аммонолиз галогенпроизводных Восстановительное аминирование Методы синтеза вторичных и третичных аминов Расщепление амидов по Гофману Стереохимия 1,2-сдвигов. Мигрирующая группа Миграция арилъных групп Основность аминов. Константа основности Структура и основность Влияние заместителей на основность ароматических аминов Соли четвертичного аммония. Исчерпывающее метилирование. Элиминирование по Гофману Превращение аминов в замещенные амиды Замещение в кольцо ароматических аминов Галогенирование ароматических аминов Сульфирование ароматических аминов. Диполярные ионы Сульфамидные препараты Реакция аминов с азотистой кислотой Анализ аминов. Проба Хинсберга Анализ замещенных амидов Спектральный анализ аминов и замещенных амидов Соли диазония Замещение на галоген. Реакция Зандмейера Замещение на CN. Синтез карбоновых кислот Замещение на OH. Синтез фенолов Замещение на Н Синтезы с использованием солей диазония Реакция сочетания. Синтез азосоединений Азосоединения Бензидиновая перегруппировка Фенолы Фенол из гидроперекиси кумола. Миграция к электронодефицитному атому кислорода Методы синтеза фенолов Реакции фенолов Кислотность фенолов Образование простых эфиров. Образование сложных эфиров. Перегруппировка Фриса Замещение в кольцо Нитрование фенолов Сульфирование фенолов Галогенирование фенолов Алкилирование и ацилирование по Фриделю — Крафтсу Нитрозирование Сочетание с солями диазония Реакция Кольбе. Синтез фенолкарбоновых кислот Реакция Реймера — Тимана. Синтез ароматических альдегидов, содержащих ОН-группу. Дихлорметилен Реакция с формальдегидом. Фенолформальдегидные смолы Анализ фенолов Спектральный анализ фенолов Низкая реакционная способность арил- и винилгалогенидов Структура арил- и винилгалогенидов Влияние галогена на реакцию электрофильного замещения в ароматическом ряду Нуклеофильное замещение в ароматическом ряду: бимолекулярный механизм Бимолекулярный механизм нуклеофильного замещения, в ароматическом ряду Реакционная способность при нуклеофильпом замещении в ароматическом ряду Ориентация при нуклеофильном замещении в ароматическом ряду Оттягивание электронов за счет резонансного эффекта Данные в пользу наличия двух стадий в бимолекулярном замещении Нуклеофильное замещение в алифатическом и ароматическом рядах Механизм элиминирования — присоединения при нуклеофильном замещении в ароматическом ряду. Дегидробензол Анализ арилгалогенидов Карбанионы Реакции с участием карбанионов Галогенирование кетонов, промотируемое основаниями Стереохимия карбанионов Галогенирование кетонов, катализируемое кислотами. Енолизация Альдольная конденсация. Присоединение альдегидов и кетонов Дегидратация продуктов альдольной конденсации Применение альдольной конденсации в синтезе Перекрестная альдольная конденсация Конденсация Перкина. Присоединение ангидридов Реакции, родственные альдольной конденсации Реакция Виттига Гликоли и эпокиси Окисление гликолей йодной кислоты Пинаколиновая перегруппировка Стереохимия 1,2-сдвигов: центр, к которому осуществляется миграция Методы синтеза эпокисей Реакции эпокисей Раскрытие кольца эпокисей, катализируемое кислотами Раскрытие кольца эпокисей, катализируемое основаниями Реакция окиси этилена с реактивом Гриньяра Направление раскрытия кольца эпокисей Стереохимия образования гликолей. Циклические соединения Ациклические соединения Стереохимия присоединения галогена Дикарбоновые кислоты Реакции циклических ангидридов Синтез чистых первичных аминов по Габриэлю Функциональные производные угольной кислоты Фосген Барбитураты Цианамид Изоцианаты Кетокислоты Получение b-кетоэфиров. Конденсация Клайзена Перекрестная конденсация Клайзена Синтез кетонов при помощи ацетоуксусного эфира Декарбоксилирование кетокислот Синтез кислот при помощи ацетоуксусного эфира Кето-енольная таутомерия и ацетоуксусный эфир Состав кето-енольных смесей Кислоты и основания и кето-енольная таутомерия Оксикислоты Методы синтеза b-оксикислот. Реакция Реформатского Образование лактона Стереохимия оксикислот Оптические ряды. Глицериновый альдегид Винная кислота. Относительные конфигурации 32 a,b-Непредельные карбонильные соединения Электрофильное присоединение Сравнение реакций нуклеофильного и электрофильного присоединения Присоединение по Михаэлю Хиноны Моносахариды Номенклатура производных альдоз Действие щелочей Образование озазона. Эпимеры Увеличение длины углеродной цепи альдоз. Синтез Килиани — Фишера Уменьшение длины цепи альдоз. Расщепление по Руффу Превращение альдозы в ее эпимер Доказательство Фишера Конфигурации альдоз Семейство альдоз. Абсолютная конфигурация Образование глюкозидов Конфигурация при С-1 Метилирование Определение размера цикла Конформация Дисахариды и полисахариды Полисахариды Крахмал Структура амилозы. Определение концевых групп Структура амилопектина Структура целлюлозы Реакции целлюлозы Нитрат целлюлозы Ацетат целлюлозы Искусственный шелк. Целлофан Простые эфиры целлюлозы Номенклатура производных нафталина Структура нафталина Реакции нафталина Окисление нафталина Восстановление нафталина Дегидрирование гидроароматических соединений. Ароматизация Нитрование и галогенирование нафталина Ориентация электрофильного замещения в нафталине Ацилирование нафталина по Фриделю-Крафтсу Сульфирование нафталина Нафтолы Ориентация в реакциях электрофильного замещения производных нафталина Синтез производных нафталина циклизацией. Номенклатура производных антрацена и фенантрена Получение антрацена циклизацией. Антрахиноны Получение производных фенантрена циклизацией Канцерогенные углеводороды Структура пиррола, фурана и тиофена Источники получения пиррола, фурана и тиофена Электрофильное замещение в пирроле, фуране и тиофене. Структура пиридина Нуклеофильное замещение в пиридине Основность пиридина Синтез Скраупа Синтез Бишлера — Напиральского Аминокислоты и белки Аминокислоты как биполярные ионы Изоэлектрическая точка аминокислот Конфигурация природных аминокислот Синтез аминокислот Реакции аминокислот Геометрия пептидной связи Определение структуры пептидов. Определение концевых групп. Частичный гидролиз Синтез пептидов Классификация и функция. Денатурация Структура белков Пептидная цепь Боковые цепи. Изоэлектрическая точка. Электрофорез Сложные белки. Простетические группы Вторичная структура белков Нуклеопротеиды и нуклеиновые кислоты Химия и наследственность. Научная библиотека. Наш канал. Получение хлорангидридов Хлорангидриды получают из соответствующих кислот при реакции с тионилхлоридом, треххлористым или пятихлористым фосфором, как рассмотрено в разд. Оглавление Предисловие 1 Строение и свойства 1. Генетический код Список литературы для углубленного изучения.
Получение хлорангидрид уксусной кислоты
Квартиры в Самаре от застройщика
Хлорангидриды карбоновых кислот
Купить закладки кокаин в Гусеве
Получение хлорангидрид уксусной кислоты
Воскресенск купить закладку бошки
Алифатические и ароматические альдегиды получают восстановлением хлорангидридов карбоновых кислот:. В лабораториях ароматические альдегиды получают окислением метиларенов триоксидом хрома в присутствии уксусного ангидрида. При действии на толуол смеси окиси углерода и хлористого водорода в присутствии катализатора, в качестве которого используют смесь хлористого алюминия и однохлористой меди, получается п -толуиловый альдегид:. При действии диметилформамида ДМФА на анизол в присутствии хлорокиси фосфора образуется анисовый альдегид:. Муравьиный альдегид является газом с сильным резким запахом. Другие низшие альдегиды и кетоны являются жидкостями, легко растворимыми в воде. Низшие альдегиды обладают удушливым запахом. Запах кетонов более приятный. При одном и том же строении углеродной цепи кетоны кипят при более высокой температуре, чем альдегиды. Альдегиды и кетоны кипят при температурах более низких, чем спирты, что свидетельствует об отсутствии ассоциатов. Но температуры кипения карбонильных соединений выше, чем температуры кипения углеводородов, что свидетельствует о наличии межмолекулярных взаимодействий между молекулами карбонильных соединений в жидкой фазе. Причиной взаимодействий может быть полярность молекул карбонильных соединений. Карбонильная группа построена из атомов углерода и кислорода, находящихся в состоянии sp 2 -гибридизации и соединенных друг с другом двойной связью. Наличие двойной связи предполагает склонность карбонильных соединений к реакциям присоединения. Причем наличие электроотрицательного атома кислорода в ненасыщенной системе делает двойную связь электрофильной, а, следовательно, для такой связи будут характерны реакции нуклеофильного присоединения. Присоединение водорода к карбонильным соединениям происходит в присутствии катализаторов гидрирования Ni, Co, Cu, Pt, Pd и др. При этом альдегиды образуют первичные спирты, а кетоны — вторичные. Эта реакция начинается с атаки атома углерода карбонильной группы цианид-ионом, поскольку реакция ускоряется в присутствии едкого кали или цианистого калия:. При действии на альдегиды и кетоны спиртов образуются полуацетали и полукетали. В присутствии каталитических количеств минеральной кислоты из альдегидов и спиртов получаются ацетали:. Карбонильные соединения присоединяют производные аммиака, например, гидроксиламин, гидразин, фенилгидразин. Как и в случае образования ацеталей эти реакции катализируются минеральными кислотами. Причем, поскольку амины являются основаниями и способны связывать протоны, то максимальные скорости реакции присоединения достигаются в интервале рН 4,0- 5,5 ед рН. Образующиеся в соответствии с данным механизмом оксимы применяются для идентификации альдегидов и кетонов. Восстановлением оксимов могут быть получены первичные амины. Чаще для идентификации альдегидов и кетонов используют арилгидразины. Это твердые вещества с характерными температурами плавления. Самым распространенным из них является 2,4-динитрофенилгидразон:. Поэтому ускорению реакции будет способствовать рост частичного, положительного заряда на атоме углерода. Убыль величины положительного заряда будет способствовать понижению реакционной способности карбонильного соединения. Поэтому реакционная способность карбонильных соединений будет понижаться с увеличением числа заместителей с положительным индуктивным и мезомерным эффектом, что выполняется в следующем ряду:. Причем в случае прекрестной альдольно-кротоновой конденсации два разных карбонильных соединения нуклеофильной атаке подвергается соединение, обладающее более высокой реакционной способностью. Например, реакция альдольно-кротоновой конденсации уксусного альдегида и ацетона:. Сами кетоны вступают в альдольную конденсацию в более жестких условиях в присутствии более сильных оснований, например гидроокиси бария:. Ароматические альдегиды вступают в реакции типа альдольно-кротоновой конденсации с альдегидами, кетонами, сложными эфирами и ангидридами карбоновых кислот. Причем если в качестве основания используют раствор щелочи или этилат натрия, то реакция называется конденсацией Кляйзена. Если в качестве основания используют ацетат калия или натрия и ангидрид карбоновой кислоты, то это реакция Перкина. Механизм реакции Канниццаро включает особую стадию — гидридный перенос:. Чаще всего проводят перекрестную реакцию Канниццаро, где в качестве восстановителя используется формальдегид почему? Перекрестная реакция Канниццаро с участием ароматических альдегидов и формальдегида является общим способом получения так называемых ароматических спиртов. Спиртов, в которых гидроксильная группа присоединена в бензильному радикалу. Примером таких спиртов является бензиловый спирт. Другой реакцией, в которой происходит гидридный перенос является сложноэфирная конденсация или реакция Тищенко. Например, для двух молекул уксусного альдегида:. В реакции Тищенко используется в качестве катализатора кислота Льюиса, а механизм реакции предусматривает атаку углерода карбонильной группы атомом кислорода карбонильной группы второй молекулы альдегида. Применение кислоты и атака углерода карбонильной группы атомом кислорода карбонильной группы второй молекулы альдегида характерны для реакций полимеризации альдегидов. Например, формальдегид, будучи при нормальных условиях газом, под влиянием разбавленных кислот образует циклический кристаллический тример, называемый триоксиметиленом:. При пропускании газообразного формальдегида над карбонилом железа образуется высокомолекулярный полиформальдегид или параформ:. В условиях кислотного катализа уксусный альдегид тримеризуется с образованием циклического паральдегида:. Механизм реакции предусматривает протонирование атома кислорода карбонильной группы одной молекулы альдегида и последующую атаку, образовавшегося карбкатиона, атомом кислорода другой молекулы альдегида. Альдегиды легко окисляются до карбоновых кислот. Окисление можно проводить на холоду разбавленным раствором перманганата калия, хромовой кислотой, пероксидом водорода:. Альдегиды легко окисляются реактивом Толленса. Это раствор аммиаката серебра, при этом выделяется осадок металлического серебра в виде зеркального покрытия. Альгедиды окисляются фелинговой жидкостью. Это водно-щелочной раствор, комплексной соли меди с винной кислотой. Получают смешением гидроокиси меди с натрийкалиевой соли винной кислоты. При нагревании альдегидов с фелинговой жидкостью медь II восстанавливается до меди I , а альдегид окисляется до кислоты. При этом выделяется красный осадок закиси меди. Окисление кетонов протекает в жестких условиях с разрывом углеродной цепи и образованием смеси карбоновых кислот:. Ароматические кетоны проявляют те же свойства, что и ароматические альдегиды. Особенностью являются оксимы несимметричных ароматических кетонов. В силу того, что в оксимах между атомы углерода азота соединены двойной связью, то возможна геометрическая изомерия. По Е,Z-системе син -форма будет рассматриваться как Е-изомер. Анти -Формой принято считать изомер, содержащий меньший радикал в транс -положении по отношению к гидроксильной группе. По Е,Z-системе анти -форма будет рассматриваться как Z —изомер:. В присутствии минеральных кислот оксимы претерпевают перегруппировку, которая носит имя Бекмана. Механизм бекмановской перегруппировки:. Когда производственнику особенно важно наличие гибких производственных мощностей? Роль химии в жизни человека : Химия как компонент культуры наполняет содержанием ряд фундаментальных представлений о Основные признаки растений : В современном мире насчитывают более тыс. Они составляют около Решебник для электронной тетради по информатике 9 класс : С помощью этого документа вы сможете узнать, как Поиск по сайту. Данный сайт не претендует на авторства, а предоставляет бесплатное использование. Дата создания страницы: Нарушение авторских прав и Нарушение персональных данных. Читайте также: Деталирование сборочного чертежа Когда производственнику особенно важно наличие гибких производственных мощностей? Собственные движения и пространственные скорости звезд Тема Интересно: Что такое комплекс маркетинга. Роль грибов в заболеваниях растений. Роль грибов в заболеваниях растений Обратная связь.
Получение хлорангидрид уксусной кислоты
Кубинка купить закладку MDMA Pills - RED
Хлорангидриды карбоновых кислот
Получение хлорангидрид уксусной кислоты
Москва Замоскворечье купить закладку бошки
Получение хлорангидрид уксусной кислоты