Петрофизические модели горизонта Ю1 месторождений Томской области - Геология, гидрология и геодезия курсовая работа

Петрофизические модели горизонта Ю1 месторождений Томской области - Геология, гидрология и геодезия курсовая работа




































Главная

Геология, гидрология и геодезия
Петрофизические модели горизонта Ю1 месторождений Томской области

Анализ петрофизических уравнений при оценке фильтрационно-емкостных свойств. Характер насыщения коллектора, запасы углеводородов на месторождении. Геофизическая, петрофизическая и литологическая характеристики песчаных пород-коллекторов разных типов.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
« Петрофизические модели горизонта Ю1 месторождений Томской области »
Глава 2 Краткая характеристика геологического разреза и пласта Ю1
Глава 3. Анализ основных уравнений оценки ФЕС и насыщения коллектора
Глава 4. Анализ граничных значений параметров
Глава 5. Емкостные показатели пород в прискважинной области
Цель данной курсовой работы анализ петрофизических уравнений, используемых при оценке фильтрационно-ёмкостных свойств и характера насыщения коллектора, используемых при подсчёте запасов углеводородов на месторождениях Томской области.
Проницаемость - это свойство горных пород пропускать сквозь себя флюиды, т.е. жидкости, газы и их смеси.
При количественной оценки проницаемости породы считаем фильтрацию линейной, т.е. соответствующую линейному закону Дарси:
где К пр - коэффициент пропорциональности. Измеряется в СИ в м 2 , но ввиду малости скорости фильтрации чаще всего используется мкм 2 . В СГС-Д(Дарси), 1Д=1,02*10 -12 м 2 =1,02мкм 2 .
Проницаемость в общем виде зависит от свойств горной породы, числа фильтрующихся фаз, взаимодействия фаз. В соответствии рассматривается абсолютная, фазовая и относительная проницаемости.
Абсолютная проницаемость . Под ней понимают проницаемость пористой среды, определяемую при фильтрации единственной фазы, инертной к породе. Определяется по лабораторным исследованиям на отмытых и сухих образцах. При этом необходимо учитывать эффект «проскальзывания газа».
Фазовая проницаемость . Проницаемость фазы при наличие в коллекторе других фаз. Проницаемость любой из фаз ниже абсолютной проницаемости.
Относительная проницаемость - фазовая проницаемость, отнесённая к абсолютной, и нормированная по эффекту проскальзывания, т.е.
По проницаемости породы подразделяют:
· Полупроницаемые 10 -2 - 10 -4 мкм 2
Пористость - это наличие в массиве горной породы или минерале незаполненного минеральным скелетом пространства. В естественном залегании они вмещают пластовые жидкости. Выделяют первичную и вторичную виды пористости. Первичными являются межзёрновые поры, межкомпонентные; ко вторым относятся чаще тектонические трещины, а также связанные с деятельностью подземных вод.
а)хорошо отсортированный высокопористый песчаник, б) плохо отсортированный песчаник,
в) глины, г)трещиноватая карбонатная порода, при К п =15%, д) К п =30%,
е) трещиновато-кавернозная карбонатная порода.
По форме первичные полости--поры могут быть ромбоэдральными, у хорошо отсортированных рыхлых и скатанных песков, тетраэдрическими у тех же сильно уплотненных пород, щелевидными у глин, слюд и других минералов с кристаллической решеткой пластинчатой структуры, в виде канальцев расширяющейся или сужающейся формы у плохо отсортированных обломочных образований, пузырчатыми в ненарушенных магматических породах; вторичные полости--трещиновидными у скальных метаморфических и магматических пород, каверновидными у карбонатных разностей и гипсов, каналовидными у лессов, ячеистыми у известковистых и кремнистых туфов, соответствующими форме выщелаченным кристаллам минералов в плотных магматических, метаморфических и осадочных породах. По размерам поры и каверны можно характеризовать эффективным диаметром, а трещины--средней шириной (раскрытием).
Классификация пор по размерам положен принцип рассмотрения взаимодействия с насыщающим флюидом.
Сверхкапиллярные поры имеют диаметр d эф > 10 -4 м. Доля воды, связанной капиллярными силами и силами адсорбции с твердой фазой, сравнительно невелика. Поэтому пластовая вода в этих порах может двигаться в основном под действием силы тяжести в соответствии с законами трубной гидромеханики. Характерны для слабосцементированных галечников, гравия, крупно- и среднезернистых песков, обломочных разностей карбонатных пород; в зонах выщелачивания карбонатных пород они могут достигать весьма больших размеров (каверны, карсты).
Капиллярные поры d эф =10 -7 - 10 -4 м Движение воды под действием силы тяжести затруднено, т.е. вода в этих порах удерживается капиллярными силами. Типичны для сцементированных песчаников, обломочных и кристаллических известняков, доломитов.
Субкапиллярные поры (d эф = 2*10 -9 - 10 -7 м) велика доля воды, на которую действуют адсорбционные силы со стороны твердой поверхности. Поры в этом случае заполнены рыхло- и прочносвязанной водой, которая практически не способна к перемещению в поле силы тяжести или под влиянием сил поверхностного натяжения. Свойственны глинам, мелкокристаллическим и мелоподобным известнякам, доломитам, трепелам» пепловым туфам и другим тонкозернистым породам. В отсутствие трещиноватости все эти породы не являются коллекторами.
Микропоры (d эф < 2*10-9 м), диаметр которых соизмерим с толщиной слоя прочносвязанной воды, пластовая вода при температурах менее 70 °С практически неподвижна. Микропоры установлены у некоторых природных цеолитов.
Трещиноватость наиболее характерна для плотных, низко-пористых горных пород. Происхождение трещин чаще всего тектоническое, хотя в природе можно встретить трещины диагенеза (доломитизация карбонатов), трещины уплотнения и трещины автогидроразрыва в зонах образования аномально высоких пластовых давлений.
По характеру взаимной связи между порами и движению флюидов в породе различают общую, открытую, эффективную и динамическую пористости.
Коэффициентом общей пористости К п оценивается объем всех полостей, как сообщающихся между собой (или открытых), так и не сообщающихся (закрытых).
К п = (V-V тв ) / V или К п = (V п мз + V т + V кав ) / V = К п мз + К т + К кав .
Коэффициентом открытой пористости К п о оценивается объем пор, сообщающихся между собой в породе и с окружающей средой. Для низкоглинистых высокопористых и рыхлых пород общая и открытая пористости отличаются незначительно. Для пород с большим содержанием субкапиллярных пор (например, глины) различие может быть весьма существенным.
Коэффициент эффективной пористости К п эф характеризует долю порового пространства, которое может быть заполнено углеводородами. Представляет собой объем открытых пор за исключением объема, заполненного физически связанной и капиллярно - удержанной пластовой водой:
К п эф =(V п о -V в св ) / V=К п о *(1- К в св ).
Следует также отметить, что не весь объем нефти или газа, заполняющих полезную емкость горных пород, можно привести в движение при разработке месторождений. Определенная часть их, находящаяся в мелких и тупиковых порах, при реализуемых градиентах давления вытесняющей жидкости остается в порах без движения. Поэтому при моделировании режима разработки пласта необходимо исходить из критерия коэффициента динамической пористости К п д , показывающего, в какой части объема породы при заданном градиенте давления может наблюдаться движение УВ.
К п д =(V п о -V в св - V н о ) / V=К п о - (1-К в св - К н о ).
Определение коэффициента динамической пористости отличается неоднозначностью и трудоемкостью определения, что ограничивает его широкое применение. При каратаже его возможно определить путем наблюдений в скважинах за проникновением радиоактивных изотопов в пласт.
Глинистость осадочных горных пород характеризуется содержанием в минеральном скелете породы частиц с эффективным диаметром менее 10 мкм. Глинистость устанавливают обычно по данным гранулометрического анализа и рассчитывают по формуле:
В петрофизической и геофизической практике используют параметры глинистости, производные от массовой глинистости Сгл,--объемную К гл и относительную з гл глинистость.
В общем случае, коэффициент объемной глинистости:
К гл = С гл *(1-К п ) * у скел / у глин .
Параметр К гл характеризует долю объема породы, занимаемую глинистым материалом; его удобнее использовать при построении различных моделей породы и для сопоставления с геофизическими параметрами, например с удельной радиоактивностью породы.
К глинистым минералам относят минералы алюмосиликатного состава, образующие группы гидрослюд, каолинита, монтмориллонита.
В петрофизике нефтегазовых коллекторов информация о глинистости изучаемых объектов необходима для решения следующих вопросов:
а) выбора петрофизических уравнений и их констант, адекватных изучаемому объекту, для эффективного использования их при геологической интерпретации результатов ГИС на стадиях подсчета запасов и проектирования разработки месторождений нефти и газа;
б) прогноза поведения коллекторов нефти и газа в прискважинной зоне при вскрытии разреза бурением на пресном РВО;
в) прогноза поведения коллекторов нефти и газа при заводнении их пресной водой, закачиваемой в нагнетательные скважины в процессе эксплуатации.
Под удельной поверхностью (в нефтегазовой петрофизике) пористой среды понимают полную поверхность твердых частиц, образующих твердую фазу этой среды, или полную поверхность поровых каналов среды, отнесенную к единице объема пористой среды.
ГИДРОФИЛЬНЫЕ И ГИДРОФОБНЫЕ ПОВЕРХНОСТИ
Реальные коллекторы нефти и газа в пластовых условиях нередко бывают частично гидрофобными. Это значит, что часть поверхности пор водой не смачивается; в пределах этих «островов» отсутствует пленка воды», а нефть или газ непосредственно граничат с поверхностью твердой фазы.
Избирательная смачиваемость поверхности твердой фазы водой определяется величиной угла смачивания и на границе воды и другой подвижной фазы в капилляре (воздух, газ, нефть).
При и = 0, поверхность считается полностью гидрофильной; при 0<и?90° поверхность преимущественно гидрофильна; при: 90°<и?180 0 --преимущественно гидрофобна; при и=180°-- полностью гидрофобна. Причины частичной или полной гидрофобности поверхности могут быть различными: специфические свойства вещества твердой фазы, состав и физические свойства пластовой воды, нефти и газа.
Преимущественно гидрофобны твердые битумы и ископаемые угли. Глины и агрегаты глинистых минералов в породах-коллекторах (глинистый цемент), как правило, гидрофильны, если не считать глинистых нефтематеринских отложений (например, породы баженовской свиты. Зерна кварца и полевых шпатов в песчаниках и алевролитах, кальцита и доломита в карбонатных коллекторах имеют различную избирательную смачиваемость в зависимости от свойств пластовых флюидов. В нефтеносном коллекторе гидрофобизация поверхности происходит при наличии полярных молекул поверхностно-активных углеводородов -- нефтеновых кислот, асфальтенов и т.д., которые в пределах отдельных участков поверхности прорывают пленку воды и занимают активные центры поверхности. В известняках возможна кроме обычной адсорбции молекул углеводородов их хемосорбция, сопровождаемая образованием на поверхности пор новых соединений, например нафтенатов кальция.
Гидрофобизация породы-коллектора оказывает существенное влияние на величину подсчетных параметров и эффективность разработки месторождения, поэтому необходимы учет степени гидрофобизации и количественная ее оценка.
Породы-коллекторы в условиях естественного залегания содержат воду, нефть и газ. В водоносных коллекторах поровое пространство обычно полностью насыщено водой. Однако в отдельных геологических объектах наблюдается присутствие остаточной нефти, которое является следствием миграции нефти в расположенную поблизости ловушку, где сформировалась нефтяная залежь. В нефтеносном гидрофильном коллекторе поры насыщены нефтью и водой. Нефть занимает обычно межзерновые поры и каверны размером более 1 мкм и трещины раскрытостью больше 1 мкм; иногда возможно присутствие нефти в более мелких порах, кавернах и трещинах меньшей раскрытости. Вся поверхность минерального скелета покрыта пленкой воды. Вода заполняет оставшуюся часть объема пор, не занятую нефтью. Содержание нефти и воды в объеме пор характеризуют коэффициентами нефте- и водонасыщения--Кн, Кв, сумма которых равна 1. Если коллектор находится в зоне предельного насыщения ловушки нефтью, коэффициент нефтенасыщения соответствует выражению:
В частично гидрофобном коллекторе часть поверхности твердой фазы занимают молекулы поверхностно-активных компонентов нефти, водная пленка на поверхности в этих участках отсутствует. Коэффициент нефтенасыщения частично гидрофобного коллектора при прочих равных условиях выше коэффициента нефтенасыщения того же коллектора при полной его гидрофильности.
Коэффициент нефтенасыщения крупных каверн и трещин большой раскрытости в зоне предельного нефтенасыщения принимают равным единице.
Газоносный коллектор также может быть частично гидрофобным. Наиболее вероятна частичная гидрофобность газоносного коллектора в следующих случаях: а) коллектор с высокими проницаемостью и пористостью и очень высоким значением г>0,95; б) коллектор содержит битум на поверхности твердой фазы.
При подсчете запасов нефти и газа для определения параметров К н и К г широко применяют методы ГИС, по данным которых определяют вначале К в , а затем рассчитывают Кн или К г .
В коллекторах с трехфазным насыщением, содержащих в порах нефть, газ и воду, находят раздельно коэффициенты нефте- и газонасыщения, учитывая, что их сумма равна единице.
Задача выделения коллекторов является составной частью задачи литологического расчленения, однако ввиду практической важности ее рассматривают как самостоятельную. Петрофизическая основа решения задачи--граничное значение К п , С гл и других параметров породы, характеризующее границу коллектор--неколлектор. Зная граничное значение К п гр или С гл гр , проводят на диаграмме этого параметра, полученной для данного разреза способом кросс-плотов или каким-либо другим, линию, параллельную оси глубин, соответствующую К п гр или С гл гр , после чего характеризуют его как коллектор или неколлектор.
Оценка характера насыщения коллектора и выделение продуктивного коллектора выполняются путем сравнения удельного сопротивления с п пласта-коллектора с его удельным сопротивлением с вп при полном насыщении пластовой водой. Если с п < с вп --коллектор водоносный; если с п > с вп пласт содержит нефть или газ, но еще неизвестно, является ли он промышленно продуктивным. Пласт считают продуктивным при условии с п > с п кр н , где с п кр н --критическое удельное сопротивление рассматриваемого класса коллектора. Величину с п кр н и соответствующее значение Р н кр н устанавливают с помощью зависимости Р н = f(К в ), в соответствии с величиной К в кр н , определенной путем анализа кривых относительной фазовой проницаемости для системы нефть--вода или газ--вода в зависимости от того, чем насыщен коллектор.
Глава 2. Краткая характеристика геологического разреза и пласта Ю1
Залежь нефти на Крапивинском месторождении приурочена к платсу Ю1 васюганской свиты. Основные запасы связаны с верхнеюрским пластомЮ 1 3-4 (подугольная часть верхневасюганской подсвиты). В пределах месторождения пробурено 28 поисковых и разведочных скважин, 17 из которых дали притоки нефти. При изучении параметров пористости, эффективной мощности и дебита мы можем наблюдать заметные колебания. Так, дебит скв. 201 (132,4 м 3 /сут) при незначительном превышении средней пористости коллекторов (17 %) по сравнению со скв. 202 (16 %) и меньшей эффективной толщине (10,4 против 13,8 м) в 20 раз превосходит дебит последней (7 м 3 /сут); дебит скв. 190 (60,4 м 3 /сут), несмотря на одинаковую пористость (16 %) и меньшую эффективную толщину (9,8 м) по сравнению со скв. 206 (12,2 м) и скв. 195 (14,4 м), значительно превышает дебиты указанных скважин (7,7 и 11,7 м 3 /сут). Оказалось, что колебания дебитов скважин при установленном несоответствии с емкостными параметрами продуктивной пачки вполне отвечают изменчивости проницаемости коллекторов пласта Ю 1 3 . Так, максимальный дебит в скв. 208 (316 м 3 /сут) обусловлен очень высокими значениями проницаемости пласта Ю 1 3 , достигающими 0,6296-2,2848 мкм 2 (см. скв.208 на рис.1). Несколько меньшие дебиты в скв. 201 (132,4 м 3 /сут) и скв. 203 (59,5 м 3 /сут) соответствуют некоторому уменьшению проницаемости в скв. 201 (до 0,1000-0,4037 мкм 2 ) и более значительному в скв. 203 (до 0,010-0,063 мкм 2 ). Небольшие дебиты в скв. 206 (7,3 м 3 /сут нефти и 0,4 м 3 /сут воды) и скв. 195(11,7 м 3 /сут) отвечают еще более низкому значению проницаемости (до 0,001-0,050 мкм 2 ). Таким образом, очевидно, что именно изменчивость проницаемости пород-коллекторов пласта Ю 1 3 определяет столь широкий диапазон вариаций дебитов нефти и сложный характер распределения продуктивности по скважинам. Именно проницаемость обеспечивает аномально высокие дебиты (60-316 м 3 /сут) ряда скважин, отличающие Крапивинское месторождение от других, причем не только Каймысовского свода, но и всей Западной Сибири.
Рис.1. Геофизическая, петрофизическая и литологическая характеристики песчаных пород-коллекторов разных типов
1-10 - литологические типы пород: 1-7 - песчаники;1 - крупно-среднезернистые; 2- среднезернистые; 3- средне-мелкозернистые; 4-средне-мелкозернистые глинисто-алевритистые и алевритовые; 5- мелкозернистые глинисто-алевритистые; 6- мелкозернистые алевритовые и глинисто-алевритовые; 7- алевритисто-глинистые; 8,9 - алевролиты (8 - песчаные, 9 - песчано-глинистые); 10- аргиллиты; 11- угли; 12-17 - гранулометрические фракции: 12-14 - песчаные (12 - крупнозернистые, 13- среднезернистые, 14- мелкозернистые); 15,16 - алевритовые (15 - крупнозернистые, 16- мелкозернистые); 17- глинистые; 18-21 - петрографический состав обломочной части: 18- кварц; 19- полевые шпаты; 20 - обломки горных пород; 21 - слюда.
Стратиграфия и фациальные особенности формирования Горизонта Ю 1 юго-восточной части Каймысовского свода.
Стратиграфическое расчленение разреза юго-восточной части Каймысовского свода (район Крапивинского нефтяного месторождения) осуществлено по данным глубоких скважин с использованием ископаемых остатков фауны и флоры, стандартного каротажа (ПС -- поляризации собственной, КС -- кажущегося сопротивления) и региональных корреляционных схем.
Объектом изучения является горизонт Ю 1 васюганской свиты келловей-оксфордского ярусов верхней юры (J 3 к-о vs ).
Свита названа по р. Васюган на Западно-Сибирской равнине. Выделена В. Я. Шерихорой в 1961г. и входит в полуденную серию. Мощность свиты от 40 до 110 м. Свита содержит аммониты рода Quenstedticeras, фораминиферы видов Recurvoides scherkalyensis Lev., Recurvoides singularis Lutova, Ammobaculites tobolskensis Levina, Globulina alexandrae Dain; отпечатки мелких раковин брахиопод; отпечатки двустворок и белемнитов; пыльцу Classopollis, двухмешковую пыльцу хвойных растений, пыльцу Eucommiidites, Caytonia (Vitreispotes), споры тропических папоротников Motomisporifes phlebopteroites, Dipteridaceae, редкие остатки Yleichenia и др. (по материалам О. Н. Костеши). Отложения васюганской свиты согласно залегают на отложениях тюменской и вскрыты всеми скважинами описываемой территории. Свита четко выделяется в разрезах изучаемых скважин, хорошо прослеживается по латерали и подразделяется на две подсвиты, сложенные разнофациальными (преимущественно морскими) отложениями, сформировавшимися в процессе двух трансгрессий - келловейской (нижневасюганская подсвита), позднеоксфордской части верхнеюрско-валанжинской (верхневасюганская подсвита) -- и кратковременного периода континентального режима осадконакопления между ними.
Нижневасюганская подсвита сложена относительно глубоководно-морскими глинистыми породами - аргиллитами темно-серыми, буровато-серыми с редкими, тонкими прослойками светло-серых алевролитов. Она хорошо выдержана по простиранию, мощность ее около 35 м. Это время наступления моря на сушу. Судя по литологическому составу и органическим остаткам (отпечатки раковин аммонитов, комплексы фораминифер Recurvoides scherkalyensis, Recurvoides singularis; споро-пыльцевые комплексы хорошей сохранности), проводя аналогию с современными морскими бассейнами, можно сделать предположение, что эта область относительно глубоководного шельфа.
Верхневасюганская подсвита преимущественно песчанистая содержит комплексы фораминифер Ammobaculites tobolskensis, Globulina alexandrae, отпечатки раковин брахиопод, двустворок плохой сохранности, палинокомплексы, видовой состав которых унаследован от келловейской флоры, но с уменьшением их количества и плохой сохранностью. Эти данные свидетельствует о существовании в то время мелководного морского бассейна. Подсвита представляет собой региональный нефтегазоносный горизонт Ю 1 , являющийся основным продуктивным объектом практически на всех месторождениях Томской области. В объеме горизонта на территории исследования выделяются пласты Ю 1 1 , Ю 1 2 , Ю 1 М и Ю 1 3 , каждый из которых продуктивен в той или иной скважине. Мощность подсвиты составляет около 65-70 м.
Пласт Ю 1 3 образовался при слабой регрессии морского бассейна в прибрежно-морских условиях (по аналогии с современными морскими бассейнами, это область мелководного шельфа) -- крупный палеодельтовый комплекс. Об этом свидетельствуют остатки растительного детрита, которые вероятно были снесены речными потоками с близлежащей суши, зерна хлорита, остатки морской фауны плохой сохранности и форма кривой ПС (скв. 10P, 26Р, 25Р, 30Р Двуреченского и скв. 216Р, 214Р, 102 Крапивинского месторождений). Пласт Ю 1 3 имеет в целом нехарактерны для юрских коллекторов Томской области аномально высокие фильтрационно-емкостные характеристики, по которым разделяется на две пачки: низкопроницаемую пачку Б, представляющую собой собственно дельтовые отложения и высокопроницаемую пачку А -- отложения баров. Пачка Б образовалась при спокойном гидродинамическом режиме и быстром процессе седиментации, при котором шла слабая проработка обломочного материала; отсюда и ухудшение коллекторных свойств. Об этом свидетельствуют неполная углефикация и хорошая сохранность растительных остатков, высокое содержание глинистого цемента в песчаниках. Пачка А, наоборот, образовалась при интенсивной проработке материала вследствие высокой гидродинамической активности среды седиментации; отсюда и повышенные фильтрационно-емкостные характеристики.
Выше по разрезу залегает межугольная ритмотолща (пласт Ю 1 М ), которая сверху и снизу ограничена угольными пластами (углистыми аргиллитами). Отложения пласта сформировались в период континентального режима региона.
Верхнюю часть горизонта Ю1 составляет надугольная толща (пласты Ю 1 2 , Ю 1 1 ), сформировавшаяся в период трансгрессии моря и представленная морскими фациями. Об этом свидетельствует литологический состав (породы, представленные переслаиваемыми аргиллитами темно-серыми, плитчатыми с редкими включениями пирита и песчаниками серыми мелкозернистыми неслоистыми глинистыми; алевролитами серыми с голубоватым оттенком, участками известковистыми с глауконитом), остатки морской фауны (отпечатки белемнитов) и форма кривой ПС.
Принимая во внимания эти данные, можно сделать вывод, что келловейская трансгрессия оказалась более мощной, чем верхнеюрско-валанжинская и, следовательно, верхневасюганская подсвита образовалась в более мелководных условиях.
Физические свойства горных пород и петрофизические характеристики Мыльджинского месторождения. Геологическая интерпретация геофизических данных. Физико-геологические основы и спектрометрическая аппаратура литолого-плотностного гамма-гамма-каротажа. дипломная работа [4,0 M], добавлен 22.03.2014
Характеристика ядернофизических и плотностных свойств горных пород и насыщающих их флюидов. Методы радиометрии при выявлении и оценке характера насыщения коллекторов и их применение при выделении газонасыщенных пород и изучении строения залежей. курсовая работа [857,3 K], добавлен 28.06.2009
Физико-географические характеристики Восточно-Мессояхского месторождения. Нефтегазоностность месторождения. Районирование Западно-Сибирской нефтегазоносной провинции. Характеристика фильтрационно-емкостных свойств пород и критериев выделения коллекторов. дипломная работа [5,0 M], добавлен 21.06.2015
Геолого-геофизическая характеристика Булатовского месторождения. Литолого-стратиграфическое расчленение разреза скважины. Методы исследования шлама и газа, описание используемого оборудования. Анализ фильтрационно-емкостных свойств пластов-коллекторов. курсовая работа [3,4 M], добавлен 07.03.2013
Петрофизическое обеспечение комплексной интерпретации материалов геоинформационной системы. Статистические связи между петрофизическими параметрами горных пород. Последовательность формирования модификатора. Петроакустическая модель пористости коллектора. презентация [3,5 M], добавлен 15.10.2013
Обработка и комплексная интерпретация данных сейсморазведки. Оценка перспектив освоения объектов, содержащих трудноизвлекаемые запасы нефти. Изучение физических свойств горных пород и петрофизических комплексов. Тектоника, геологическое строение района. отчет по практике [1,9 M], добавлен 22.10.2015
Выделение коллекторов по качественным признакам и количественным критериям, по структуре порового пространства. Оценка фильтрационно-емкостных параметров тонкослоистых и трещинных коллекторов методами ГИС. Определение коэффициента пористости в пласте. курсовая работа [3,2 M], добавлен 12.06.2012
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Петрофизические модели горизонта Ю1 месторождений Томской области курсовая работа. Геология, гидрология и геодезия.
Контрольная работа: Древний Рим
Контрольная работа: Проблема воображения в контексте функционально-системного подхода
Курсовая работа по теме Захист прав дитини в міжнародних та національних правових актах
Реферат Современные Проблемы
Реферат по теме Разработка и внедрение технологического процесса по изготовлению женской одежды пальтово-костюмного ассортимента
Эссе Егэ Французский Язык
Реферат: Втрачені об`єкти архітектурної спадщини Києва і України
Военное Дело Реферат
Реферат: Вальдорфская педагогика
Сочинение по теме Отражение эпохи в произведениях Максима Горького
Доклад по теме Основы здорового образа жизни студента, физическая культура в обеспечении здоровья
Сочинение Про Домашних Животных 5 Класс
Реферат Производственная Эстетика
Курсовая работа по теме Трудовые ресурсы предприятия. Производительность труда и заработная плата
Реферат: Алкоголизм и наркомания как объекты психогенетических исследований
Технология Общественного Питания Курсовой
Реферат: Варикоцеле
Реферат: Авторитет руководителя
Контрольная работа по теме Расчет величин прибавок на толщину пакета одежды исходя из ее теплозащитной способности
Дипломная работа: Анализ финансового состояния предприятия и пути его улучшения 2 Оценка и
Геопатогенные зоны - География и экономическая география презентация
Биогенез мембран - Биология и естествознание курсовая работа
Учет совместной деятельности в соответствии с российскими и международными стандартами - Бухгалтерский учет и аудит дипломная работа


Report Page