Периодическая система химических веществ

Периодическая система химических веществ

Периодическая система химических веществ

Периодическая система химических элементов Д. И. Менделеева. Группы



=== Скачать файл ===




















Менделеевым в году при сопоставлении свойств известных в то время химических элементов и их величин атомных масс. С развитием атомной физики и квантовой химии Периодический закон получил строгое теоретическое обоснование. Благодаря классическим работам Й. Ридберга , А. Ван-ден-Брука , Г. Мозли был раскрыт физический смысл порядкового атомного номера элемента. Позднее была создана квантово-механическая модель периодического изменения электронного строения атомов химических элементов по мере возрастания зарядов их ядер Н. В настоящее время Периодический закон Д. Менделеева имеет следующую формулировку:. Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Периодический закон универсален для Вселенной: Графическим табличным выражением закона является разработанная Менделеевым периодическая система химических элементов. Поиски основы естественной классификации и систематизации химических элементов начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми работали в этой области, были вызваны недостаточностью экспериментальных данных: Он заметил, что некоторые сходные по своим свойствам элементы можно объединить по три в группы, которые он назвал триадами:. Сущность предложенного закона триад Дёберейнера состояла в том, что атомная масса среднего элемента триады была близка к полусумме среднему арифметическому атомных масс двух крайних элементов триады. Несмотря на то, что триады Дёберейнера в какой-то мере являются прообразами менделеевских групп, эти представления в целом ещё слишком несовершенны. Отсутствие магния в едином семействе кальция , стронция и бария или кислорода в семействе серы , селена и теллура является результатом искусственного ограничения совокупностей сходных элементов лишь тройственными союзами. Очень показательна в этом смысле неудача Дёберейнера выделить триаду из четырёх близких по своим свойствам элементов: Дёберейнер отчётливо видел глубокие аналогии в химических свойствах фосфора и мышьяка, сурьмы и висмута, но, заранее ограничив себя поисками триад, он не смог найти верного решения. Спустя полвека Лотар Майер скажет, что если бы Дёберейнер хоть ненадолго отвлекся от своих триад, то он сразу же увидел бы сходство всех этих четырёх элементов одновременно. Хотя разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в соответствии с их атомными массами. Идеи Дёберейнера были развиты другим немецким химиком Леопольдом Гмелином , который показал, что взаимосвязь между свойствами элементов и их атомными массами значительно сложнее, нежели триады. Элементы составляли триады, а также тетрады и пентады группы из четырёх и пяти элементов , причём электроотрицательность элементов в таблице плавно изменялась сверху вниз. В начале х годов XIX века появилось сразу несколько работ, которые непосредственно предшествовали Периодическому закону. При развертывании поверхности цилиндра оказывалось, что на вертикальных линиях, параллельных оси цилиндра, находились химические элементы со сходными свойствами. Недостатком спирали де Шанкуртуа было то обстоятельство, что на одной линии с близкими по своей химической природе элементами оказывались при этом и элементы совсем иного химического поведения. Вскоре после спирали де Шанкуртуа английский учёный Джон Ньюлендс сделал попытку сопоставить химические свойства элементов с их атомными массами \\\\\\\\\\\\[5\\\\\\\\\\\\]. Расположив элементы в порядке возрастания их атомных масс, Ньюлендс заметил, что сходство в свойствах проявляется между каждым восьмым элементом. Найденную закономерность Ньюлендс назвал законом октав по аналогии с семью интервалами музыкальной гаммы. В своей таблице он располагал химические элементы в вертикальные группы по семь элементов в каждой и при этом обнаружил, что при небольшом изменении порядка некоторых элементов сходные по химическим свойствам элементы оказываются на одной горизонтальной линии. Джон Ньюлендс, безусловно, первым дал ряд элементов, расположенных в порядке возрастания атомных масс, присвоил химическим элементам соответствующий порядковый номер и заметил систематическое соотношение между этим порядком и физико-химическими свойствами элементов. Он писал, что в такой последовательности повторяются свойства элементов, эквивалентные веса массы которых отличаются на 7 единиц, или на значение, кратное 7, то есть как будто бы восьмой по порядку элемент повторяет свойства первого, как в музыке восьмая нота повторяет первую. Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное аналогичное триадам Дёберейнера изменение атомной массы в рядах сходных элементов. Сходные элементы располагались в горизонтальных рядах таблицы; некоторые ячейки Мейер оставил незаполненными. Тогда же Менделеев придал своей периодической таблице вид, ставший классическим т. В отличие от своих предшественников, Менделеев не только составил таблицу и указал на наличие несомненных закономерностей в численных величинах атомных масс, но и решился назвать эти закономерности общим законом природы. На основании предположения, что атомная масса предопределяет свойства элемента, он взял на себя смелость изменить принятые атомные веса некоторых элементов и подробно описать свойства не открытых ещё элементов. Для предсказания свойств простых веществ и соединений Менделеев исходил из того, что свойства каждого элемента являются промежуточными между соответствующими свойствами двух соседних элементов в группе периодической таблицы то есть сверху и снизу и одновременно двух соседних элементов в периоде слева и справа т. Менделеев на протяжении многих лет боролся за признание Периодического закона; его идеи получили признание только после того, как были открыты предсказанные Менделеевым элементы: С середины х годов Периодический закон был окончательно признан в качестве одной из теоретических основ химии. Рамзай пришли к выводу о необходимости образования в таблице нулевой группы элементов, в которую вошли инертные газы \\\\\\\\\\\\[9\\\\\\\\\\\\]. Инертные газы явились, таким образом, элементами, переходными между галогенами и щелочными металлами. Дальнейшее развитие Периодического закона было связано с успехами физики: Для химии серьёзную проблему составляла необходимость размещения в Периодической таблице многочисленных продуктов радиоактивного распада, имеющих близкие атомные массы, но значительно отличающихся периодами полураспада. Содди предложил размещать химически неразличимые элементы, имеющие различные атомные массы изотопы в одной ячейке таблицы. Закон Мозли дал возможность экспериментально определить положение элементов в Периодической таблице. Атомный номер, совпадающий, как предположил в году голландский физик А. Ван ден Брук , с величиной положительного заряда ядра атома , стал основой классификации химических элементов. Чедвик экспериментально подтвердил гипотезу Ван ден Брука; тем самым был раскрыт физический смысл порядкового номера элемента в Периодической системе. Периодический закон получил современную формулировку: Бор заложил основы формальной теории Периодической системы. Причина периодичности свойств элементов, как показал Бор, заключалась в периодическом повторении строения внешнего электронного уровня атома. Были разработаны полудлинный см. В середине XX века В. Клечковский эмпирически установил и теоретически обосновал правило , описывающее последовательность заполнения электронных орбиталей атомов по мере роста заряда ядра. В отличие от предыдущих подходов, это правило учитывает взаимодействие между электронами в атоме. В принципе, свойства химического элемента объединяют все без исключения его характеристики в состоянии свободных атомов или ионов, гидратированных или сольватированных, в состоянии простого вещества, а также формы и свойства образуемых им многочисленных соединений. Но обычно под свойствами химического элемента подразумевают, во-первых, свойства его свободных атомов и, во-вторых, свойства простого вещества. Большинство этих свойств проявляет явную периодическую зависимость от атомных номеров химических элементов \\\\\\\\\\\\[10\\\\\\\\\\\\]. Среди этих свойств наиболее важными, имеющими особое значение при объяснении или предсказании химического поведения элементов и образуемых ими соединений являются:. Зависимость энергии ионизации атома от порядкового номера элемента рис. Поэтому периодичность изменения энергии ионизации атомов характеризуется минимумами, отвечающими щелочным металлам, и максимумами, приходящимися на благородные газы. Наряду с этими резко выраженными минимумами и максимумами на кривой энергии ионизации атомов наблюдаются слабо выраженные минимумы и максимумы, которые по-прежнему нетрудно объяснить с учётом упомянутых эффектов экранирования и проникновения, эффектов межэлектронных взаимодействий и т. Периодичность значений энергий сродства атомов к электрону объясняется, естественно, теми же самыми факторами, которые уже были отмечены при обсуждении ионизационных потенциалов см. Наибольшим сродством к электрону обладают p -элементы VII группы. Наименьшее сродство к электрону у атомов с конфигурацией s 2 Be , Mg , Zn и s 2 p 6 Ne , Ar или с наполовину заполненными p - орбиталями N , P , As \\\\\\\\\\\\[12\\\\\\\\\\\\]:. Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов , составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселенности, то есть от того, занята атомная орбиталь неподелённой электронной парой , однократно заселена неспаренным электроном или является вакантной. Периодичность атомной электроотрицательности является важной составной частью периодического закона и легко может быть объяснена, исходя из непреложной, хотя и не совсем однозначной, зависимости значений электроотрицательности от соответствующих значений энергий ионизации и сродства к электрону \\\\\\\\\\\\[13\\\\\\\\\\\\]. Периодический характер изменения размеров атомов и ионов известен давно. Сложность здесь состоит в том, что из-за волновой природы электронного движения атомы не имеют строго определенных размеров. Так как непосредственное определение абсолютных размеров радиусов изолированных атомов невозможно, в данном случае часто используют их эмпирические значения. При таком разделении учитывают различные факторы, включая природу химической связи, степени окисления двух связанных атомов, характер координации каждого из них и т. Таким способом получают так называемые металлические, ковалентные, ионные и ван-дер-ваальсовы радиусы. Ван-дер-ваальсовы радиусы следует рассматривать как радиусы несвязанных атомов; их находят по межъядерным расстояниям в твердых или жидких веществах, где атомы находятся в непосредственной близости друг от друга например, атомы Ar в твердом аргоне или атомы N из двух соседних молекул N 2 в твердом азоте , но не связаны между собой какой-либо химической связью. Но, очевидно, лучшим описанием эффективных размеров изолированного атома является теоретически рассчитанное положение расстояние от ядра главного максимума зарядовой плотности его наружных электронов. Это так называемый орбитальный радиус атома. Периодичность в изменении значений орбитальных атомных радиусов в зависимости от порядкового номера элемента проявляется довольно отчетливо см. Уменьшение значений орбитальных атомных радиусов при переходе от щелочного металла к соответствующему ближайшему благородному газу носит, за исключением ряда Li — Ne , немонотонный характер, особенно при появлении между щелочным металлом и благородным газом семейств переходных элементов металлов и лантаноидов или актиноидов. В больших периодах в семействах d- и f- элементов наблюдается менее резкое уменьшение радиусов, так как заполнение орбиталей электронами происходит в пред-предвнешнем слое. В подгруппах элементов радиусы атомов и однотипных ионов в общем увеличиваются. Энергия атомизации простых веществ является характеристикой, которая во многом определяет их реакционную способность \\\\\\\\\\\\[15\\\\\\\\\\\\]. Зависимость энергии атомизации простых веществ от порядкового номера элемента имеет периодический характер. Основные моменты такой периодической зависимости состоят в следующем: Положение максимума энергии атомизации в ряду элементов от щелочного металла до соответствующего ближайшего благородного газа зависит от многих факторов, выходящих за рамки настоящего изложения. Неравномерное изменение энергии атомизации в пределах одного ряда элементов от щелочного металла до благородного газа оказывается довольно сложным, особенно если этот ряд включает семейство переходных металлов. Одним из основных понятий в химии было и остается понятие степени окисления степень окисления, состояние окисления, окислительное состояние. Несмотря на то что степень окисления представляется во многом формальной и более искусственной относительно других традиционных химических понятий, она до сих пор остается широко распространенной и сохраняет свою значимость для обобщения и более глубокого понимания основных принципов образования химических соединений \\\\\\\\\\\\[16\\\\\\\\\\\\]. Следует подчеркнуть, что степень окисления элемента, будучи формальной характеристикой, не дает представления ни об эффективных зарядах атомов этого элемента в соединении, ни о валентности атомов, хотя степень окисления часто называют формальной валентностью. Многие элементы способны проявлять не одну, а несколько различных степеней окисления. Высшие значения степени окисления изменяются в зависимости от порядкового номера элемента периодически, но эта периодичность имеет сложный характер. В общем случае возрастание высшей степени окисления в ряду элементов от щелочного металла до галогена или до благородного газа происходит отнюдь не монотонно, главным образом по причине проявления высоких степеней окисления переходными металлами. Одной из очень важных характеристик простого вещества является его окислительный потенциал , отражающий принципиальную способность простого вещества к взаимодействию с водными растворами, а также проявляемые им окислительно-восстановительные свойства \\\\\\\\\\\\[17\\\\\\\\\\\\]. Изменение окислительных потенциалов простых веществ в зависимости от порядкового номера элемента также носит периодический характер. Но при этом следует иметь в виду, что на окислительный потенциал простого вещества оказывают влияние различные факторы, которые иногда нужно рассматривать индивидуально. Поэтому периодичность в изменении окислительных потенциалов следует интерпретировать очень осторожно. Можно обнаружить некоторые определенные последовательности в изменении окислительных потенциалов простых веществ. Это легко объясняется увеличением энергии ионизации атомов с увеличением числа удаляемых валентных электронов. Поэтому на кривой зависимости окислительных потенциалов простых веществ от порядкового номера элемента имеются максимумы, отвечающие щелочным металлам. Но это не единственная причина изменения окислительных потенциалов простых веществ. Выше рассмотрены общие тенденции в характере изменения значений энергии ионизации атомов , энергии сродства атомов к электрону , электроотрицательности , атомных и ионных радиусов, энергии атомизации простых веществ, степени окисления , окислительных потенциалов простых веществ от атомного номера элемента. При более глубоком изучении этих тенденций можно обнаружить, что закономерности в изменении свойств элементов в периодах и группах значительно сложнее. Бироном в году. Так, при переходе от s-элемента I группы к р -элементу VIII группы на кривой энергии ионизации атомов и кривой изменения их радиусов имеются внутренние максимумы и минимумы \\\\\\\\\\\\[18\\\\\\\\\\\\] см. Это свидетельствует о внутреннепериодическом характере изменения этих свойств по периоду. Объяснение отмеченных закономерностей можно дать с помощью представления об экранировании ядра. Эффект экранирования ядра обусловлен электронами внутренних слоев, которые, заслоняя ядро, ослабляют притяжение к нему внешнего электрона. Так, при переходе от бериллия 4 Be к бору 5 B , несмотря на увеличение заряда ядра, энергия ионизации атомов уменьшается:. Это объясняется тем, что притяжение к ядру 2р -электрона атома бора ослаблено за счет экранирующего действия 2s -электронов. Понятно, что экранирование ядра возрастает с увеличением числа внутренних электронных слоев. Поэтому в подгруппах s - и р -элементов наблюдается тенденция к уменьшению энергии ионизации атомов \\\\\\\\\\\\[19\\\\\\\\\\\\] см. Уменьшение энергии ионизации от азота 7 N к кислороду 8 О см. Эффектом экранирования и взаимного отталкивания электронов одной орбитали объясняется также внутреннепериодический характер изменения по периоду атомных радиусов см. В характере изменения свойств s - и р -элементов в подгруппах отчетливо наблюдается вторичная периодичность рис. Для её объяснения привлекается представление о проникновении электронов к ядру. Как показано на рисунке 9, электрон любой орбитали определенное время находится в области, близкой к ядру. Иными словами, внешние электроны проникают к ядру через слои внутренних электронов. Как видно из рисунка 9, внешний 3 s -электрон атома натрия обладает весьма значительной вероятностью находиться вблизи ядра в области внутренних К - и L -электронных слоев. Понятно, что эффект проникновения увеличивает прочность связи внешних электронов с ядром. Пользуясь представлением о проникновении электронов к ядру, рассмотрим характер изменения радиуса атомов элементов в подгруппе углерода. В ряду C — Si — Ge — Sn — Pb проявляется общая тенденция увеличения радиуса атома см. Однако это увеличение имеет немонотонный характер. При переходе от Si к Ge внешние р -электроны проникают через экран из десяти 3 d -электро-нов и тем самым упрочняют связь с ядром и сжимают электронную оболочку атома. Уменьшение размера 6 p -орбитали Pb по сравнению с 5 р -орбиталью Sn обусловлено проникновением 6 p -электронов под двойной экран десяти 5 d -электронов и четырнадцати 4 f -электронов. Этим же объясняется немонотонность в изменении энергии ионизации атомов в ряду C—Pb и большее значение её для Pb по сравнению с атомом Sn см. Во внешнем слое у атомов d -элементов за исключением Pd находятся 1—2 электрона ns -состояние. Остальные валентные электроны расположены в n—1 d -состоянии, то есть в предвнешнем слое. Подобное строение электронных оболочек атомов определяет некоторые общие свойства d -элементов \\\\\\\\\\\\[20\\\\\\\\\\\\]. Так, их атомы характеризуются сравнительно невысокими значениями первой энергии ионизации. Как видно на рисунке 1, при этом характер изменения энергии ионизации атомов по периоду в ряду d -элементов более плавный, чем в ряду s - и p -элементов. При переходе от d -элемента III группы к d -элементу II группы значения энергии ионизации изменяются немонотонно. Так, на участке кривой рис. Заполнение 3 d -орбиталей по одному электрону заканчивается у Mn 3d 5 4s 2 , что отмечается некоторым повышением относительной устойчивости 4s 2 -конфигурации за счет проникновения 4s 2 -электронов под экран 3d 5 -конфигурации. Наибольшее значение энергии ионизации имеет Zn 3d 10 4s 2 , что находится в соответствии с полным завершением З d -подслоя и стабилизацией электронной пары за счет проникновения под экран 3 d 10 -конфигурации. В подгруппах d -элементов значения энергии ионизации атомов в общем увеличиваются. Это можно объяснить эффектом проникновения электронов к ядру. Так, если у d -элементов 4-го периода внешние 4 s -электроны проникают под экран 3 d -электронов, то у элементов 6-го периода внешние 6 s -электроны проникают уже под двойной экран 5 d - и 4 f -электронов. Поэтому у d -элементов 6-го периода внешние б s -электроны связаны с ядром более прочно и, следовательно, энергия ионизации атомов больше, чем у d -элементов 4-го периода. Размеры атомов d -элементов являются промежуточными между размерами атомов s - и p -элементов данного периода. Изменение радиусов их атомов по периоду более плавное, чем для s - и p -элементов. В подгруппах d -элементов радиусы атомов в общем увеличиваются. Важно отметить следующую особенность: Соответствующие же радиусы атомов d -элементов 5-го и 6-го периодов данной подгруппы примерно одинаковы. Это объясняется тем, что увеличение радиусов за счет возрастания числа электронных слоев при переходе от 5-го к 6-му периоду компенсируется f -сжатием, вызванным заполнением электронами 4 f -подслоя у f -элементов 6-го периода. В этом случае f -сжатие называется лантаноидным. При аналогичных электронных конфигурациях внешних слоев и примерно одинаковых размерах атомов и ионов для d -элементов 5-го и 6-го периодов данной подгруппы характерна особая близость свойств. Отмеченным закономерностям не подчиняются элементы подгруппы скандия. Для этой подгруппы типичны закономерности, характерные для соседних подгрупп s -элементов. Материал из Википедии — свободной энциклопедии. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 23 июня ; проверки требует 1 правка. У этого термина существуют и другие значения, см. Этот раздел статьи ещё не написан. Согласно замыслу одного из участников Википедии, на этом месте должен располагаться специальный раздел. Вы можете помочь проекту, написав этот раздел. Эта отметка установлена 31 января года. Изд-во АН СССР, , с. Законы и теории химии. Дмитрий Менделеев Периодическая система Химические законы и уравнения. Статьи c ненаписанными разделами с января года Страницы, использующие волшебные ссылки ISBN. Навигация Персональные инструменты Вы не представились системе Обсуждение Вклад Создать учётную запись Войти. Пространства имён Статья Обсуждение. Просмотры Читать Текущая версия Править Править вики-текст История. Эта страница последний раз была отредактирована 15 июля в Текст доступен по лицензии Creative Commons Attribution-ShareAlike ; в отдельных случаях могут действовать дополнительные условия. Свяжитесь с нами Политика конфиденциальности Описание Википедии Отказ от ответственности Разработчики Соглашение о cookie Мобильная версия. Свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса \\\\\\\\\\\\[1\\\\\\\\\\\\]. Свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов.

Выполняем все виды строительных работ

Карты восточной пруссии в формате map

Отчет п 4 инструкция по заполнению 2017

Odeon av 100 схема

Тестирование по истории

Перевод текста с файла jpg

Сонник украли машину во сне для женщины

Заявление на исполнительный лист образец

Инструкция дп 5а

Report Page