Параметрические и непараметрические методы
Параметрические и непараметрические методыПАРАМЕТРИЧЕСКИЕ И НЕПАРАМЕТРИЧЕСКИЕ МЕТОДЫ. КАКОЙ ВЫБРАТЬ?
=== Скачать файл ===
Математическая модель, которая используется при построении дисперсионного анализа, предполагает нормальное распределение. Вспомним жителей маленького городка, которых мучили диетами, якобы влияющими на сердечный выброс гл. Поэтому критические значения F и t, которые мы нашли в этих главах, дадут правильное представление о статистической значимости различий только в случае, если выборки извлечены именно из такой совокупности. Параметрические методы, как видно уже из их названия, оперируют параметрами распределения. В частности, дисперсионный анализ и его частный случай, критерий Стьюдента, основаны на сравнении средних и дисперсий. Но эти параметры правильно описывают только нормально распределенную совокупность. Если распределение далеко от нормального, среднее и дисперсия дадут о нем неверное представление. Столь же неверными окажутся и критерии, основанные на этих параметрах. Средний рост составил 37,6см, а стандартное отклонение 4,5см. Оно мало похоже на распределение, наблюдаемое в действительности. Если бы распределение роста юпи- териан было нормальным, рост большинства из них оказался бы в пределах 37—38 см и рост практически всех — в интервале от 26 до 49 см. Рост большинства юпитериан группируется вокруг 35 см, то есть ниже среднего. При этом интервал, охватывающий все значения роста от 31 до 52 см , смещен вправо, то есть распределение асимметрично. Непараметрические методы, которые мы рассмотрим в этой главе, заменяют реальные значения признака рангами. При этом мы сохраняем большую часть информации о распределении, но избавляемся от необходимости знать, что это за распределение. Нас не интересуют более параметры распределения, отпадает и необходимость равенства дисперсий. Остается в силе только предположение, что тип распределения во всех случаях одинаков\\\\\\\\\\\\[67\\\\\\\\\\\\]. Если выполняется условие нормальности распределения, параметрические критерии обеспечивают наибольшую чувствительность. Если же это условие не выполняется хотя бы приблизительно, их чувствительность существенно снижается и непараметрические критерии дают больше шансов выявить реально существующие различия. Что будет, если применить непараметрический критерий при нормальном распределении? Как выяснить, согласуются ли данные с предположением о нормальности распределения? Простейший способ состоит в том, чтобы нанести их на график, подобный тем, которые мы рисовали, изучая рост инопланетян в гл. Нарисовав график, прикиньте, похож ли он на нормальное распределение. Та ли у него форма, достаточно ли он симметричен относительно среднего, покрывает ли интервал, равный плюс-минус двум стандартным отклонениям от среднего, практически все наблюдения? Сравните графики для разных групп. Близок ли разброс значений? Ответив на все вопросы утвердительно, воспользуйтесь параметрическим критерием. В противном случае следует использовать непараметрический критерий. Изложенный нехитрый прием почти наверняка поможет правильно выбрать тип критерия. Для тех, кто не привык полагаться на зрительные впечатления, укажем еще два способа, иногда более точные и всегда более трудоемкие. Первый основан на использовании нормальной вероятностной бумаги. Вы легко поймете, о чем идет речь, если когда-нибудь видели логарифмическую бумагу. Вся разница в том, что на логарифмической бумаге вертикальная ось програ- дуиро-вана так, чтобы графиком экспоненты была прямая, а на нормальной вероятностной бумаге прямой окажется функция нормального распределения. На такую бумагу определенным образом наносят имеющиеся значения. Если они расположатся почти на одной прямой, можно применять параметрические методы. Он позволяет сравнить реальные данные с теми, которые дало бы нормальное распределение, имеющее то же среднее и дисперсию. Мы не будем останавливаться на этих процедурах\\\\\\\\\\\\[68\\\\\\\\\\\\], поскольку их выводы наверняка совпадут с теми, что даст простая прикидка. Как правило, основная трудность состоит не в том, какой из перечисленных способов выбрать, а в том, что объем выборки слишком мал, чтобы применить любой из них. Убедительные свидетельства в пользу гипотезы нормальности или против нее встречаются редко. Гораздо чаще все решают интуиция, привычка и вкус исследователя. Существуют две точки зрения на то, как следует поступать в таких случаях. Согласно одной, в отсутствие очевидных противоречий между данными и гипотезой их нормального распределения следует применить параметрический метод. Согласно другой, если нет явного подтверждения гипотезы нормальности распределения, лучше воспользоваться непараметрическим методом. Сторонники первой точки зрения упирают на то, что параметрические методы более чувствительны и более известны. Приверженцы второй резонно замечают, что исследователь не должен исходить из предположений, которые нельзя проверить, и что, применяя непараметрические критерии, мы почти ничем не рискуем — ведь даже в случае нормального распределения их чувствительность не намного ниже чувствительности параметрических. Ни одна из сторон пока не одержала верх, и похоже, этого не произойдет никогда. В какой период лучше пройти практику? Основные параклинические методы, используемые в системе медицинского обследования спортсменов.
Изменение фамилии директора приказ
Непараметрические методы сравнения двух выборок
Сколько воды для гречки в кастрюле
Параметрические и непараметрические методы оценивания
Списки домов идущих под снос в москве
Растаможка из англии сколько стоит
История терапевтической стоматологии
Сколько стоит йошкар терьер на авито
Параметрические и непараметрические методы
Синдром раздраженного кишечника симптомы причины лечение