Особенности строения нервной системы - Биология и естествознание лекция

Особенности строения нервной системы - Биология и естествознание лекция




































Главная

Биология и естествознание
Особенности строения нервной системы

Структура нервной системы, ее основные составные части и порядок их взаимодействия, назначение и функции в организме. Виды нервной системы и процессы, на которые они влияют. Биохимические основы нейрологической памяти и обучения, заболевания мозга.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Особенности строения нервной системы
Нервная система регулирует деятельность всех органов и систем, обусловливая их функциональное единство, и обеспечивает связь организма как целого с внешней средой.
Структурной единицей нервной системы является нервная клетка с отростками - нейрон. Вся нервная система представляет собой совокупность нейронов, которые контактируют друг с другом при помощи специальных аппаратов - синапсов. По структуре и функции различают три типа нейронов:
· вставочные, замыкательные (кондукторные);
· эффекторные, двигательные нейроны, от которых импульс направляется к рабочим органам (мышцам, железам).
Нервная система условно подразделяется на два больших отдела - соматическую, или анимальную, нервную систему и вегетативную, или автономную, нервную систему. Соматическая нервная система осуществляет преимущественно функции связи организма с внешней средой, обеспечивая чувствительность и движение вызывая сокращение скелетной мускулатуры. Так как функции движения и чувствования свойственны животным и отличают их от растений, эта часть нервной системы получила название анимальной (животной).
Вегетативная нервная система оказывает влияние на процессы так называемой растительной жизни, общие для животных и растений (обмен веществ, дыхание, выделение и др.), отчего и происходит ее название (вегетативная - растительная). Обе системы тесно связаны между собой, однако вегетативная нервная система обладает некоторой долей самостоятельности и не зависит от нашей воли, вследствие чего ее также называют автономной нервной системой. Ее делят на две части симпатическую и парасимпатичесакую.
В нервной системе выделяют центральную часть - головной и спинной мозг - центральная нервная система и переферическую, представленную отходящими от головного и спинного мозга нервами, - переферическая нервная система. На разрезе мозга видно, что он состоит из серого и белого вещества.
Серое вещество образуется скоплениями нервных клеток (с начальными отделами отходящих от их тел отростков). Отдельные ограниченные скопления серого вещества носят названия ядер.
Белое вещество образуют нервные волокна, покрытые миелиновой оболочкой (отростки нервных клеток, образующих серое вещество). Нервные волокна в головном и спинном мозге образуют проводящие пути.
Переферические нервы в зависимости от того, из каких волокон (чувствительных либо двигательных) они состоят, подразделяются на чувствительные, двигательные и смешанные. Тела нейронов, отростки которых состовляют чувствительные нервы, лежат в нервных узлах вне мозга. Тела двигательных нейронов лежат в передних рогах спинного мозга или двигательных ядрах головного мозга.
И.П.  Павлов показал, что центральная нервная система может оказывать три рода воздействий на органы:
· 1) пусковое, вызывающее либо прекращающее функцию органа (сокращение мышцы, секрецию железы);
· 2) сосудодвигательное, изменяющее ширину просвета сосудов и тем самым регулирующее приток к органу крови;
· 3) трофическое, повышающее или понижающее обмен веществ и, следовательно потребление питательных веществ и кислорода. Благодаря этому постоянно согласуется функциональное состояние ргана и его потребность в питательных веществах и кислороде. Когда к работающей скелетной мышце по двигательным волокнам направляются импульсы, вызывающие ее сокращение, то одновременно по вегетативным нервным волокнам поступают импульсы, расширяющие сосуды и у силивающие обмен веществ. Тем самым обеспечивается энергетическая возможность выполнения мышечной работы.
Центральная нервная система воспринимает афферентную (чувствительную) информацию, возникающую при раздражении спецефических рецепторов и в ответ на это формирует соответствующие эфферентные импульсы, вызывающие изменения в деятельности определнных органов и систем организма.
Спинной мозг лежит в позвоночном канале и представляет собой тяж длиной 41 - 45 см (у взрослого), несколько сплющенный спереди назад.
Вверху он непосредственно переходит в головной мозг, а внизу заканчивается заострением - мозговым конусом - на уровне II поясничного позвонка. От мозгового конуса вниз отходит терминальная нить, представляющая собой атрофированную нижнюю часть спинного мозга. Вначале, на II месяце внутриутробной жизни, спинной мозг занимает весь позвоночный канал, а затем вследствие более быстрого роста позвоночника отстает в росте и перемещается вверх.
Спинной мозг имеет два утолщения: шейное и поясничное, соответствующие местам выхода из него нервов, идущих к верхней и нижней конечностям. Передней срединной щелью и задней срединной бороздкой спинной мозг делится на две симметричные половины, каждая в свою очередь имеет по две слабовыраженные продольные борозды, из которых выходят передние и задние корешки - спинномозговые нервы. Эти борозды разделяют каждую половину на три продольных тяжа - канатика: передний, боковой и задний. В поясничном отделе корешки идут параллельно концевой нити и образуют пучок, носящий название конского хвоста.
Внутреннее строение спинного мозга. Спинной мозг состоит из серого и белого вещества. Серое вещество заложено внутри и со всех сторон окружено белым. В каждой из половин спинного мозга оно образует два неправильной формы вертикальных тяжа с передними и задними выступами - столбами, соединенных перемычкой - центральным промежуточным веществом, в середине которого заложен центральный канал, проходящий вдоль спинного мозга и содержащий спинномозговую жидкость. В грудном и верхнем поясничном отделах имеются также боковые выступы серого вещества.
Таким образом, в спинном мозге различают три парных столба серого вещества: передний, боковой и задний, которые на поперечном разрезе спинного мозга носят название переднего, бокового и заднего рогов. Передний рог имеет округлую или четырехугольную форму и содержит клетки, дающие начало передним (двигательным) корешкам спинного мозга. Задний рог уже и длиннее и включает клетки, к которым подходят чувствительные волокна задних корешков. Боковой рог образует небольшой треугольной формы выступ, состоящий из клеток, относящихся к вегетативной части нервной системы.
Белое вещество спинного мозга составляет передний, боковой и задний канатики и образовано преимущественно продольно идущими нервными волокнами, объединенными в пучки - проводящие пути. Среди них выделяют три основных вида:
· волокна, соединяющие участки спинного мозга на различных уровнях;
· двигательные (нисходящие) волокна, идущие из головного мозга в спинной на соединение с клетками, дающими начало передним двигательным корешкам;
· чувствительные (восходящие) волокна, которые частично являются продолжением волокон задних корешков, частично отростками клеток спинного мозга и восходят кверху к головному мозгу.
От спинного мозга, образуясь из передних и задних корешков, отходит 31 пара смешанных спинномозговых нервов: 8 пар шейных, 12 пар грудных, 5 пар поясничных, 5 пар крестцовых и 1 пара копчиковых. Участок спинного мозга, соответствующий отхождению пары спинномозговых нерввов, называют сегментом спинного мозга. В спинном мозге выделяют 31 сегмент.
Липиды центральной и периферической нервной системы
Фосфолипиды, фосфатиды, сложные липиды, отличительным признаком которых является присутствие в молекулах остатка фосфорной кислоты. В состав Ф. входят также глицерин (или аминоспирт сфингозин) , жирные кислоты, альдегиды и азотистые соединения (холин, этаноламин, серин). Важнейшие представители Ф. - глицерофосфатиды [фосфатидилхолин (лецитин) , фосфатидилэтаноламин (устаревшее название - кефалин) , фосфатидилсерин, фосфатидилинозит, кардиолипин] и фосфосфинголипиды - сфингомиелины. Каждый класс Ф. объединяет множество однотипных молекул, содержащих различные жирные кислоты или альдегиды. При этом ненасыщенные жирные кислоты преимущественно находятся при 2_м углеродном атоме молекулы глицерина (формулы см. в ст. Липиды) .
Ф. широко распространены в природе. В качестве основных структурных компонентов они входят в состав клеточных мембран животных, растений и микроорганизмов, определяя их строение и проницаемость, а также активность ряда локализованных в мембранах ферментов. С белками Ф. образуют липопротеиновые комплексы. Различным биологическим мембранам присущ определённый состав Ф. Так, кардиолипин - специфический митохондриальный Ф.; сфингомиелин присутствует в основном в плазматических мембранах. В мембранах микроорганизмов всегда содержится фосфатидилглицерин и редко лецитин (в отличие от клеток животных).
Состав  Ф. некоторых органов изменяется при старении и ряде патологических состояний организма (атеросклероз, злокачественные новообразования).
Для разделения и установления строения Ф. используют различные виды хроматографии, химический и ферментативный (с помощью фосфолипаз) гидролиз, физические методы исследования (масс-спектрометрия, ИК-спектрометрия, ядерный магнитный резонанс и др.).
Помимо  Ф., известны также фосфонолипиды, в которых атом фосфора связан с азотистым основанием (холином и этаноламином) ковалентной Р-С-связью. Эти соединения обнаружены у ряда моллюсков и бактерий.
Миелин и его роль в нервной системе
Миелин - сложная смесь белков и фосфолипидов, образующая внутреннюю часть оболочки некоторых типов нервных волокон
А-Д - последовательные стадии миэлинирования периферических нервных волокон или аксонов нейрилемной или Шванновской клеткой. Аксон сначала образует вмятину на клетка (А), а затем Шванновская клетка начинает окружать аксон, в то время как мезаксон (место инвагинации) удлинняется (Б). Затем Шванновская клетка начинает обвивать аксон (В-Г). Цитоплазма между слоями клеточных мембран постепенно конденсируется, Сохраняется цитоплазма вне слдоев миэлина и аксона (Д). Е-З - последовательные стадии миэлинирования нервных волокон в центральной нервной системе с помощью олигодендроцитов. Отросток нейроглиальной клетки обвивается вокруг аксона (Е), а добавляющиеся слои цитоплазмы движутся по направлению к телу клетки (Ж и З) 1 - аксон, 2 - нейрилемная (Шванновская клетка), 3 - мезаксон, 4 - олигодендроцит
Нуклеиновые кислоты - репликация ДНК в нейронах отсутствует, работает система репарации ДНК, в мозге экспрессируется несколько десятков тысяч уникальных генов, из которых не менее половины экспрессируется только в головном мозге - это говорит о высокой скорости транскрипции РНК, широко распространен альтернативный сплайсинг и интенсивное образование белка. Синтеза пиримидиновых нуклеотидов не происходит, т. к. нет карбамоилфосфатсинтетазы, для синтеза пуринов все есть. Содержание циклических нуклеотидов очень высокое, т. к. они участвуют в синаптической передаче нервного импульса.
Углеводы и их обмен в нервной системе
Спецификой углеводного обмена нервной системы является исключительная роль глюкозы для мозга. Глюкоза является основным источником энергии, так как клетки мозга не содержат ферментов для метаболизма липидов и других источников энергии.
Некоторая часть нейроглии способна запасать небольшое количество гликогена. Нейроны этой способностью не обладают.
Важной особенностью является повышенная доля обмена ди- и трикарбоновых кислот между матриксом митохондрий и цитозолем. Трикарбоновые кислоты с этом случае включаются в синтез нейромедиаторов.
Особая роль аэробных превращений глюкозы в энергетике мозга. Доля и роль гликолиза. Дополнительные источники энергии мозга. Основные системы, потребляющие энергию в мозгу (поддержание потенциала клеточных мембран, синтез белков, в особенности тубулярных, и др.).
Особенности обмена в нервной ткани:
1) много липидов, мало углеводов, нет их резерва
2) высокий обмен дикарбоновых кислот
3) глюкоза - основной источник энергии
4) мало гликогена, поэтому мозг зависит от поступления глюкозы с кровью
6) кислород используется постоянно и уровень не меняется
7) обменные процессы носят обособленный характер благодаря гематоэнцефалическому барьеру, высокая чувствительность к гипоксии и гипогликемии.
Известно, что гипоксические, нейродегенеративные и возрастные нарушения в мозге характеризуются одними и теми же особенностями, в частности, накоплением активных форм кислорода (АФК). Выяснены тонкие молекулярные механизмы окислительного стресса в мозге и показана защитная функция природных антиоксидантов против апоптоза нейрональных клеток. Обнаружено, что Na/K _АТФаза нейрональных мембран является мишенью для окислительного стресса. Установлен молекулярный механизм повреждения Na_насоса, заключающийся в окислении сульфгидрильных групп и нарушении межсубъединичных взаимодействий в олигомерном комплексе фермента. Прослежена взаимосвязь между экзайтотоксическим действием глутамата и его агонистов на нейроны коры головного мозга и изменением активности Na/K_АТФазы.
Систематические исследования антиоксидантной активности природного нейропептида карнозина показали его высокую эффективность по защите нейронов как в условиях in vitro (индивидуальные реакции повреждения макромолекул, суспензии изолированных нейронов или срезов мозга в условиях свободнорадикальной атаки), так и in vivo - на различных моделях экспериментальной ишемии мозга и сердца, гипобарической гипоксии, и т.д.
Установлено, что карнозин является важным природным фактором системы антиоксидантной защиты мозга в условиях окислительного стресса. Профессору А.А. Болдыреву и его ученикам принадлежит приоритет на практическое использование природного дипептида карнозина в качестве профилактического и терапевтического средства (имеются авторские свидетельства и патенты).
S _100 является специфическим белком астроцитарной глии, способным связывать кальций. Свое название белок получил благодаря свойству оставаться в растворенном состоянии в насыщенном растворе сульфата аммония. Семейство белков S_100 состоит из 17 тканеспецифичных мономеров, два из которых: ? и ? образуют гомо- и гетеродимеры, присутствующие в высокой концентрации в клетках нервной системы. S_100 (??) присутствует в высоких концентрациях в глиальных и шванновских клетках, гетеродимер S_100 (??) находится в глиальных клетках, гомодимер S_100 (??) - в поперечнополосатых мышцах, печени и почках. Белок метаболизируется почками, его время полураспада составляет 2 часа. Астроглиальные клетки - это наиболее многочисленные клетки в мозговой ткани. Они образуют трехмерную сеть, которая является опорным каркасом для нейронов. Увеличение концентрации S_100 (??) и S_100 (??) в СМЖ и плазме является маркером повреждения головного мозга. При раннем определении содержания S_100 у пациентов с повреждениями мозга концентрация белка отражает степень повреждения мозга. Исследования S_100 полезны как для мониторинга, так и для определения прогноза течения заболевания.
Субарахноидальное кровоизлияние ведет к значительному увеличению уровня S_100 в СМЖ. Следует отметить, что при этом концентрация белка в плазме остается низкой. Концентрация S_100 значительно повышается в плазме у пациентов, оперированных в условиях искусственного кровообращения. Пик концентрации приходится на окончание экстракорпоральной циркуляции и затем уменьшается в неосложненных случаях. Замедление снижения концентрации S_100 у пациента в послеоперационный период говорит о наличии осложнений, о повреждении клеток мозга. Раннее определение и контроль уровня S_100, а также одновременные исследования S_100 и NSE позволяют выявить и подтвердить наличие повреждений мозга на ранней стадии, когда возможно успешное лечение. Тест S_100 также можно использовать для прогноза неврологических осложнений при обследовании пациентов с остановкой сердца.
Повышение белка S _100 в сыворотке крови и СМЖ при нарушениях мозгового кровообращения обусловлено активацией микроглии. Было показано, что в ранней фазе церебрального инфаркта микроглиальные клетки в периинфарктной зоне экспрессируют белки семейства S_100 и активно пролиферируют, причем белки экспрессируются не более трех дней после инфаркта. Это говорит о том, что активация постоянной популяции микроглии является ранним ответом мозговой ткани на ишемию и может быть использована как ранний маркер повреждения.
Свободные аминокислоты нервной системы
Аминокислоты являются для нервной ткани источником синтеза большого числа биологически важных соединений, таких как специфические белки, пептиды, нейромедиаторы, гормоны, витамины, биологически активные амины и др. Существенна также их энергетическая значимость, поскольку аминокислоты глутаминовой группы связаны с циклом трикарбоновых кислот.
Состав пула свободных аминокислот при нормальных физиологических условиях достаточно стабилен и характерен для мозга. Аминокислотный фонд мозга человека составляет в среднем 34 мкмоль на 1 г ткани, что превышает их содержание, как в плазме крови, так и в спинномозговой жидкости. Высокая концентрация - 75% фонда всех свободных аминокислот - приходится на дикарбоновые кислоты и их производные: глутаминовую кислоту, глутамин, аспарагиновую, N_ацетиласпарагиновую и ?-аминомасляную (ГАМК) кислоты, причем ГАМК и N_ацетиласпарагиновая кислоты локализованы почти исключительно в нервной ткани [2].
Постоянство качественного и количественного состава аминокислот в метаболических фондах мозга обеспечивается такими взаимосвязанными процессами, как поступление аминокислот из циркулирующей крови, отток их из мозга в кровь и участие в реакциях внутриклеточного метаболизма. В организме все эти процессы сбалансированы слаженным функционированием гомеостатических механизмов гематоэнцефалического барьера и мембранным транспортом аминокислот [3].
Системы активного транспорта аминокислот в мозг и из него энергозависимы. Изучение конкурентных отношений в транспорте аминокислот выявило наличие восьми типов транспортных систем, которые существуют для аминокислот с родственной структурой и зависят от ионного заряда и размеров их молекул.
Для мембранного транспорта аминокислот характерен ряд особенностей:
- перенос аминокислот часто происходит против высоких концентрационных градиентов;
- на него влияют температура и рН среды;
- он ингибируется анаэробным состоянием клеток;
- перенос аминокислот связан с активным мембранным транспортом ионов, например он Na + -зависим;
- обнаружено конкурентное торможение мембранного транспорта одних аминокислот другими [3, 6].
Особенно велика специфичность и мощность транспортных систем для аминокислот, выполняющих роль медиаторов (глицин, ГАМК, таурин, глутаминовая кислота и др.). Эти системы не только обеспечивают пластические и энергетические нужды клетки, но и служат также для специфического быстрого снижения концентрации тормозных нейромедиаторов (глицин, ГАМК) в зоне синаптической щели.
Понятие о функциональном континууме
Речь идет о химических соединениях пептидной природы, выполняющих в организме роль регуляторов разнообразных физиологических функций. Каких функций? Они логично и последовательно связаны между собой. Первая - организация коммуникации между разными клетками посредством специализированного химического сигнала. Вторая - обеспечение «настроя» клетки, которая реагирует на воздействия того или иного рода. Это так называемая модуляция функции нервной или другой клетки организма. Третья - участие в реализации отдельной физиологической реакции или сложного акта.
Сегодня мы можем говорить о классе универсальных химических регуляторов, значимость которых простирается от влияния на функции отдельных групп клеток до управления работой целых систем и органов, включая сложные акты поведения. Так, в суммарной сводке, где выбраны сведения только для семи нейропептидов с наибольшим «индексом цитируемости» в современной научной литературе, видно, что различные по своему химическому строению вещества связаны между собой множественными функциональными отношениями: как регуляторы, они причастны к большому спектру различных физиологических проявлений и как следствие - к заболеваниям различной природы и тяжести.
Попытаемся показать причины постулируемой «универсальности» нейропептидов, которые находятся сегодня в центре внимания широкого круга специалистов - от химиков и зоологов до клиницистов различного профиля.
Второй постулат: пептиды построены как комбинации аминокислот - основных «кирпичиков» биологического мира.
Начнем с базовых определений биологии. Их три: Структура. Энергитическое обеспечение. Регуляция.
В природе существуют такие структуры, которые оказались на редкость удачными в организации систем любой сложности. Одна из них - аминокислота. Это минимально сложное органическое соединение, одновременно и кислота, и основание, потому что в него с двух концов вмонтированы амидная и карбоксильная группы. Они помогают аминокислотам соединяться друг с другом, образуя относительно прочные и в то же время лабильные структуры. Известно около 150 аминокислот. Живая природа использует только 20 из них. Однако представьте, какое количество комбинаций можно сделать лишь из 20 исходных единиц! Из них созданы все белки, которые составляют основу любого организма - структурные, каталитические (ферменты), регуляторные. В результате серии последовательных химических реакций, осуществляемых с помощью специальных ферментов (пептидаз), в клетках образуются олигопептиды, которые обладают высокой биологической активностью и которые были классифицированы как регуляторы разнообразных физиологических процессов.
Таких физиологически значимых пептидов было открыто несколько сотен. Но основной «костяк» - не более 40-50, остальные - их комбинации, дополнения. Как правило, регуляторные пептиды - это молекулы с различным набором аминокислот: большинство из них - до 30, больше не надо. Есть какой-то энтропийный уровень, оптимальный для выполнения регуляторной миссии. Однако все более углубленное исследование соотношения структуры и функции показывает, что части целой пептидной молекулы, ее фрагменты, также могут обладать физиологической активностью, подчас еще большей или качественно инвертированной.
Третий постулат: нейропептиды синтезируются в мозге (впрочем, в других органах тоже).
Существует сложный биохимический процесс биосинтеза пептидов в клетке: экспрессия («возбуждение») соответствующих генов, образование особой рибонуклеиновой кислоты, считывание, как с конвейера, ленты аминокислотных «кирпичиков», образующих белковую молекулу, далее разрезание этих белков на блоки определенной структуры.
Все это - точно прослеженные биохимические процессы, изученные для большинства физиологически значимых пептидов. Более того, тонкая генно - биохимическая «кухня» работает в строгой приуроченности к функции органа и к определенному ритму его деятельности. Вот здесь - в «привязке» к работе органа, в соответствии его функциональной «ритмике» - главное содержание регуляторной роли нейропептидов.
Понятие «нейропептиды» появилось 30 лет назад, когда в мозге открыли вещества, влияющие на центральные функции высших организмов. Они были названы эндорфинами и энкефалинами и дали начало изучению большой и значимой группы опиоидов, список которых пополняется и поныне. Нейропептиды оказались как бы над группами других, «периферических», пептидов, регулирующих работу сердца, почек, кишечника. Выяснилась также причастность к работе мозга ранее известных пептидных гормонов и их фрагментов - АКТГ, соматостатина, окситоцина. Со временем в мозге открывались новые и новые нейропептиды, влияющие на все многообразие его функций.
Обмен нейропептидов. Роль ферментов обмена нейропептидов
Уровень нейропептидов определяется соотношением скоростей их синтеза и деградации.
Нейропептиды синтезируются в организме на рибосомах гранулярного эндоплазматического ретикулума в виде высокомолекулярных неактивных предшественников (препропептидов. В состав последних могут входить аминокислотная последовательность как одного, так и нескольких нейропептидов. Известно много белков, содержащих в своей структуре последовательности нейропептидов: предшественник гонадотропин-рилизинг-фактора, проопиомеланокортин, препроэнкефалин А, продинорфин (препроэнкефалин В) и другие.
Все препропептиды содержат на N_конце сигнальную последовательность из 15 - 20 остатков гидрофобных аминокислот. Нейропептиды, входящие в состав предшественника, как правило, ограничены с C- и N_концов парами остатков основных аминокислот - аргинина и лизина.
Сигнальная последовательность препропептидов необходима для взаимодействия с рецепторами эндоплазматического ретикулума и переноса предшественника нейропептида в просвет ретикулума. В цистернах эндоплазматического ретикулума под действием сигнальной эндопептидазы происходит отщепление сигнальной последовательности, а также N_гликозилирование и формирование характерной для полипептида третичной структуры, которая препятствует обратному выходу белка в цитоплазму. Посттрансляционная модификация, включающая гликозилирование, амидирование, ацетилирование или сульфирование, предотвращает нарушение процессинга и образование нетипичных пептидов.
Для получения активных форм, полипептиды подвергаются посттрансляционному процессингу, одним из основных механизмов которого является ограниченный протеолиз.
Процессинг биологически активных пептидов осуществляется при передвижении молекул пропептидов по гранулярному эндоплазматическому ретикулуму, комплексу Гольджи и в секреторных везикулах. Секреторные везикулы содержат полный набор ферментов, необходимых для процессинга и специальные системы поддержания pH внутри везикул.
Процессинг нейропептидов внутри секреторных везикул включает в себя эндо- и экзопротеолитические реакции. Эндопротеолиз осуществляется при действии трипсиноподобных протеиназ (проопиомеланокортин-превращающего фермента, продинорфин-превращающего фермента, тиоловой прогормонконвертазы, субтилизиновых эндопептидаз семейства фурина, PC1, PC2, PC3 и PC4). В результате происходит расщепление пропептидов по парам остатков основных аминокислот.
Продукт, образовавшийся после действия эндопептидаз, далее подвергается экзопротеолизу с участием аминопептидазо-В- и / или карбоксипептидазо-В-подобных ферментов. В результате происходит удаление «лишних» N- и / или С-концевых остатков основных аминокислот.
Известно, что в различных тканях из одного белкового предшественника образуются различные нейропептиды. Так из проопиомеланокортина в аденогипофизе образуются преимущественно АКТГ, ?-липотропин и ?-эндорфин. В промежуточной доле гипофиза они подвергаются дальнейшему расщеплению с образованием ?-меланоцитстимулирующего гормона и фрагментов ?-эндорфина. Тканевая специфичность, по-видимому, может быть связана с различным набором ферментов в разных тканях и / или с различными способами регуляции их активности. Поэтому представляет интерес изучение ферментов процессинга со сходной (но не идентичной) субстратной специфичностью. Такие исследования интересны не только для выяснения вопросов, связанных с функционированием данных ферментов, но и для понимания механизмов образования различных нейропептидов из одних и тех же предшественников в разных тканях.
Синаптическая передача - основные положения
Синaпс - специализированный контакт между нервными клетками (или нервными и другими возбудимыми клетками), обеспечивающий передачу возбуждения с сохранением его информационной значимости. С помощью синапсов нервные клетки объединяются в нервные сети, которые осуществляют обработку информации. Взаимосвязь между нервной системой и периферическими органами и тканями также осуществляется при помощи синапсов.
По морфологическому принципу синапсы подразделяют на:
* нейро-мышечные (аксон нейрона контактирует с мышечной клеткой);
* нейро-секреторные (аксон нейрона контактирует с секреторной клеткой);
* нейро-нейрональные (аксон нейрона контактирует с другим нейроном):
* аксо-соматические (с телом другого нейрона), * аксо-аксональные (с аксоном другого нейрона), * аксо-дендритические (с дендритом другого нейрон).
По способу передачи возбуждения синапсы подразделяют на:
* электрические (возбуждение передается при помощи электрического тока);
* химические (возбуждение передается при помощи химического вещества):
* адренергические (возбуждение передается при помощи норадреналина), * холинергические (возбуждение передается при помощи ацетилхолина), * пептидергические, NO - ергические, пуринергические и т.п.
По физиологическому эффекту синапсы подразделяют на:
* возбуждающие (деполяризуют постсинаптическую мембрану и вызывают возбуждение постсинаптической клетки);
* тормозные (гиперполяризуют постсинаптическую мембрану и вызывают торможение постсинаптической клетки).
Все синапсы имеют общий план строения Конечная часть аксона ( синаптическое окончание ), подходя к иннервируемой клетке, теряет миелиновую оболочку и образует на конце небольшое утолщение ( синаптическую бляшку ). Ту часть мембраны аксона, которая контактирует с иннервируемой клеткой, называют пресинаптической мембраной . Синаптическая щель - узкое пространство между пресинаптической мембраной и мембраной иннервируемой клетки, которое является непосредственным продолжением межклеточного пространства. Постсинаптическая мембрана - участок мембраны иннервируемой клетки, контактирующий с пресинаптической мембраной через синаптическую щель.
Особенности ультраструктуры электрического синапса
* узкая (около 5 нм) синаптическая щель; * наличие поперечных канальцев, соединяющих пресинаптическую и постсинаптическую мембрану.
Особенности ультраструктуры химического синапса
* широкая (20-50 нм) синаптическая щель; * наличие в синаптической бляшке синаптических пузырьков ( везикул ), заполненных химическим веществом, при помощи которого передается возбуждение; * в постсинаптической мембране имеются многочисленные хемочувствительные каналы (в возбуждающем синапсе - для Nа+, в тормозном - для Cl - и К +), но отсутствуют потенциалчувствительные каналы.
Медиаторы: 1) возбуждения - ацетилхолин, адреналин, норадреналин (все они их тирозина), серотонин (из триптофана). 2) тормозные - ГАМК, глицин, ацетилхолин из АцКоА и холина. Основные возбуждающие медиаторы в мозге - глутамат и аспартат. При освобождении в синапс они через ионотропные рецепторы открывают Na _каналы, происходит быстрый вход Na в постсинаптическую мембрану.
Особенности строения нервной системы лекция. Биология и естествознание.
Реферат: Арабское завоевание Египта
Реферат по теме Закон сохранения момента количества движения в физике магнитных явлений
Реферат: Культура Древнего Египта 24
Курсовая Работа На Тему Использование Игровых Приемов При Обучении Дошкольников Счету
Математика 3 Класс Контрольные Работы 2 Часть
Курсовая Работа На Тему Болезни Ликвидаторов Аварии На Чаэс
Реферат: Изучение Торы и добывание средств к существованию - две противоречивые обязанности
Эссе Как Открыть Свое Дело
Сочинение По Дубровскому 7 Класс
Реферат: Базы данных Asses
Курсовая работа по теме Деятельность И.С. Соколова-Микитова
Сочинение На Тему Заря 4 Класс
Скачать Гост Оформление Реферата
Дипломная Работа На Тему Качественное Исследование В Целом Двумерной Квадратичной Стационарной Системы С Двумя Частными Интегралами В Виде Кривых Второго Порядка
Доклад по теме Общие особенности антибактериальных препаратов
Сочинение Решетников Мальчишки 7 Класс
Консульские должностные лица. Их привилегии и иммунитеты
Педагогическая Культура Учителя Реферат
Смешное Сочинение Лето
Дипломная Работа На Тему Выявление Экономических Закономерностей В Условиях Ооо "Мясная Традиция"
Дейтеромицеты (Deuteromycota) - несовершенные грибы - Биология и естествознание презентация
Вегетативное размножение - Биология и естествознание реферат
Жизнь - Биология и естествознание лабораторная работа


Report Page