Особенности практического применения способов кодирования. Способы декодирования с обнаружением ошибок - Коммуникации, связь, цифровые приборы и радиоэлектроника реферат

Особенности практического применения способов кодирования. Способы декодирования с обнаружением ошибок - Коммуникации, связь, цифровые приборы и радиоэлектроника реферат




































Главная

Коммуникации, связь, цифровые приборы и радиоэлектроника
Особенности практического применения способов кодирования. Способы декодирования с обнаружением ошибок

Декодирование циклического кода с обнаружением ошибок. Способы декодирования с исправлением ошибок и схемная реализация декодирующих устройств. Коды Рида-Соломона являются недвоичными циклическими кодами. Синдром образцов ошибок с ненулевым коэффициентом.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
«Особенности практического применения способов кодиров а ния. Способы декодирования с обнаружением ошибок»
Задача кодирования заключается в формировании по информационным словам a(x) кодовых слов (x) циклического (n,k)-кода, который по своей структуре может быть несистематическим и систематическим.
Формирование кодовых слов несистематического кода заключается в умножении многочлена a(x), отображающего информационную последовательность длины k, на порождающий многочлен, т.е. (x)=a(x)(g(x). Формирование кодовых слов систематического кода заключается в преобразовании информационной последовательности a(x) в соответствии с выражением (x)=a(x)?x r +r(x).
Проверочная последовательность r(x) определяется двумя способами: при использовании "классического" способа кодирования ; при использовании способа кодирования, рекомендованного МККТТ , где x(1) r-1 - единичный многочлен степени (r-1).
Указанные выше математические операции выполняют кодеры несистематического и систематического кодов.
Способы декодирования с обнаружением ошибок
Процедура декодирования циклического кода с обнаружением ошибок, по аналогии с процессом кодирования, использует два способа: - при кодировании "классическим" способом декодирование основано на использовании свойства делимости без остатка кодового многочлена (x) циклического (n,k)-кода на порождающий многочлен g(x). Поэтому алгоритм декодирования включает в себя деление принятого кодового слова, описываемого многочленом на g(x), вычисление и анализ остатка r(x). Если r(x)=0, то принятое кодовое слово считается неискаженным. Если r(x)?0, то принятое кодовое слово стирается и формируется сигнал "ошибка". - при кодировании способом МККТТ декодирование основано на свойстве получения определенного контрольного остатка R 0 (x) при делении принятого кодового многочлена (x) на порождающий многочлен. Поэтому, если полученный при делении остаток , то принятое кодовое слово считается неискаженным. Если остаток , то принятое кодовое слово стирается и формируется сигнал "ошибка". Значение контрольного остатка определяется из выражения .
Способы декодирования с исправлением ошибок и схемная ре а лизация декодирующих устройств
Декодирование циклического кода в режиме исправления ошибок можно осуществлять различными способами. Ниже излагаются два способа, являющиеся наиболее простыми.
В основу первого способа положено использование таблицы синдромов (декодирования), в которой каждому многочлену или образцу ошибок e i (x), соответствует определенный синдром S i (x), представляющий остаток от деления принятого кодового слова и соответствующего ему e i (x) на g(x). Процедура декодирования следующая. Принятое кодовое слово делится на g(x), определяется S i (x) и соответствующий ему многочлен e i (x), а затем суммируется с e i (x). В результате получаем исправленное кодовое слово, т.е. .
В состав декодера входят: вычислитель синдрома (ВС), два регистра сдвига RG1 и RG2, постоянное запоминающее устройство (ПЗУ), которое содержит слова длины n, соответствующие многочленам ошибок e i (x). Принятое кодовое слово поступает на вход вычислителя синдрома, где осуществляется деление его на g(x) и формирование S i (x), и одновременно - на вход RG2, где накапливается. Синдром S i (x) используется в качестве адреса, по которому из ПЗУ в регистр RG1 записывается e i (x), соответствующий синдрому S i (x). Перечисленные операции завершаются за n тактов. В течение последующих n тактов происходит поэлементное суммирование содержимого RG2 и RG1, т.е. операция , и исправление. ошибок.
В основе второго способа исправления ошибок, позволяющего значительно сократить объем используемых табличных синдромов и существенно упростить схему декодера, лежат следующие положения:
1. Синдром S i (x), соответствующий принятому кодовому слову равен остатку от деления на g(x), а также остатку от деления соответствующего многочлена ошибок ei(x) на g(x), т.е. .
2. Если S i (x) соответствует и e i (x), то x( S i (x) является синдромом, который соответствует и или .
3. При исправлении ошибок используются синдромы образцов ошибок только с ненулевым коэффициентом в старшем разряде.
Поэтому при реализации этого способа множество всех образцов ошибок разбивается на классы эквивалентности. Каждый класс представляет циклический сдвиг одного образца ошибок, а синдром этого класса соответствует образцу ошибок с ненулевым старшим разрядом. Если вычисленный синдром принадлежит одному из классов эквивалентности образцов исправляемых ошибок, то старший символ кодового слова исправляется. Затем принятое слово и синдром циклически сдвигается, а процесс нахождения в предыдущей по старшинству позиции повторяется.
Для исправления ошибок, принадлежащих данному классу эквивалентности, нужно произвести n циклических сдвигов.
Простейшим является декодер Меггитта. В состав декодера входят: вычислитель синдрома, осуществляющий деление кодового слова на g(x) и формирование соответствующего синдрома; блок декодеров (ДК), который настроен на синдромы всех образцов исправляемых ошибок с ненулевыми старшими разрядами; регистр сдвига RG.
При поступлении на вход схемы кодового слова его символы заполняют регистр RG, а в вычислителе формируется соответствующий синдром S i (x). Вычисленный синдром сравнивается со всеми табличными синдромами, заложенными в схему блока ДК, и в случае совпадения с одним из них на его выходе формируется сигнал, который исправляет ошибочный символ, находящийся в старшем разряде регистра. После этого содержимое вычислителя и RG циклически сдвигается на один шаг. Этот сдвиг реализует операции и . Если новый синдром совпадает с одним из табличных синдромов, то это означает, что произошла ошибка во втором по старшинству символе кодового слова, который, перейдя в старший разряд RG, исправляется. Затем производится новый циклический сдвиг на одну позицию и новая проверка на совпадение синдромов. После повторения этого процесса n раз в RG будет сформировано исправленное кодовое слово. Введение обратной связи для RG не обязательно, так как в процессе исправления ошибок символы кодового слова поступают на выход декодера.
Пример. Рассмотрим схему и работу декодера Меггитта циклического (15,7)-кода, обеспечивающего исправление одиночных и двойных ошибок, с g(x)=x 8 + x 7 + x 6 + x 4 +1 (см. рисунок 1).
Блок декодеров настраивается на 15 синдромов, которые представлены в таблице 1 и соответствуют классам эквивалентности с образцами ошибок в старшем разряде.
Допустим, что ошибки в 3 и 5 разрядах, т.е. им соответствует многочлен ошибки e(x)=x 12 +x 10 .
При поступлении на вход декодера искаженного кодового слова он заполняет регистр и в вычислителе формируется синдром .
Блок декодеров не реагирует на этот синдром.
Затем происходит сдвиг кодового слова в RG, а в BC формируется новый синдром .
Блок декодеров и в этом случае не срабатывает.
При следующем сдвиге кодового слова в RG первый искаженный разряд занимает старшую позицию в RG, а в BC формируется синдром , от которого срабатывает БДК. В результате исправляется первая ошибка.
Следующим сдвиг приводит к формированию синдрома .
Этот синдром соответствует многочлену ошибки e(x)=x 13 +x 0 , т.к. первый искаженный разряд по обратной связи должен занять младшую позицию RG.
На синдром S (13,0) блок декодеров не реагирует.
При следующем сдвиге кодового слова в RG второй искаженный разряд занимает старшую позицию в RG, а в BC формируется синдром , от которого срабатывает БДК. В результате исправляется вторая ошибка в кодовом слове.
Коды РС являются недвоичными циклическими кодами, символы кодовых слов которых берутся из конечного поля GF(q). Здесь q степень некоторого простого числа, например q=2 m .
Допустим, что РС-код построен над GF(8), которое является расширением поля GF(2) по модулю примитивного многочлена f(z)=z 3 +z+1. В этом случае символы кодовых слов кода будут иметь значения, представленные в таблице 2.
Кодовые слова РС-кода отображаются в виде многочленов , где N - длина кода; V i - q-ичные коэффициенты (символы кодовых слов), которые могут принимать любое значение из GF(q).
Эти коэффициенты как это следует из таблицы, также отображаются многочленами с двоичными коэффициентами . Коды РС являются максимальными, т.к. при длине кода N и информационной последовательности k они обладают наибольшим кодовым расстоянием d=N-k+1.
Порождающим многочленом g(x) РС-кода является делитель двучлена x N +1 степени меньшей N с коэффициентами из GF(q) при условии, что элементы этого поля являются корнями g(x). Здесь - примитивный элемент GF(q).
На основе этого определения, а также теоремы Безу, выражение для порождающего многочлена РС-кода будет иметь вид .
В РС-кодах принадлежность кодовых слов данному коду определяется выполнением d-1 уравнений в соответствии с выражением (*), где V i - символы-коэффициенты из GF(q); z 0 , z 1 ... z N-1 - ненулевые элементы GF(q).
Элементы z 0 , z 1 ... z N-1 называются локаторами, т.е. указывающими на номер позиции символа кодового слова.
Например, указателем i - позиции является локатор zi или элемент ? i GF(q).
Так как все локаторы должны быть различны и причем ненулевыми, то их число в GF(q) равно q-1. Следовательно, такое количество символов должно быть в кодовых словах кода.Поэтому обычно длина РС-кода определяется из выражения N=q-1.
Пример. Допустим, что длина РС-кода равна N, кодовое расстояние d=3, то в соответствии с (*) проверочными уравнениями будут
1. Циклический сдвиг кодовых слов, символы которых принимают значение из GF(q), порождает новые кодовые слова этого же кода.
2. Сумма по mod2 двух и более кодовых слов дает кодовое слово, принадлежащее этому же коду.
3. Кодовое расстояние РС-кода определяется не по двоичным элементам, а по q-ичным символам.
4. В РС-коде, исправляющем t u ошибок порождающий многочлен определяется из выражения . Обычно m 0 принимают равным 1. Однако, с помощью разумного выбора значения m 0 , иногда можно упростить схему кодера.
5. Корректирующие способности РС-кода определяются его кодовым расстоянием. где T 0 и T u - длина пакетов, в которых обнаруживаются и исправляются ошибки.
Обнаружение ошибок в кодовых словах состоит в проверке условий ((), т.е. определении синдрома , элементы которого определяются из выражения .
Пример. Требуется сформировать кодовое слово РС-кода над GF(2 3 ), соответствующее двоичной информационной последовательности a(1,0)=000000011100101.
Так как m=3, то каждый q-ичный символ кода состоит из трех двоичных элементов. Поэтому с учетом таблицы 6 a(x)=? 3 x 2 + ? 2 x+? 6 .
Определяем параметры кода. N=q-1=7; k=5; R=2; d=N-k+1=3; .
Кодовое слово формируется в соответствии с выражением. , где .
В результате или в двоичной форме V(1,0)=000.000.011.100.101.101.101.
Лидовский В.И. Теория информации. - М., «Высшая школа», 2002г. - 120с.
Метрология и радиоизмерения в телекоммуникационных системах. Учебник для ВУЗов. / В.И.Нефедов, В.И.Халкин, Е.В.Федоров и др. - М.: Высшая школа, 2001 г. - 383с.
Цапенко М.П. Измерительные информационные системы. - . - М.: Энергоатом издат, 2005. - 440с.
Зюко А.Г. , Кловский Д.Д., Назаров М.В., Финк Л.М. Теория передачи сигналов. М: Радио и связь, 2001 г. -368 с.
Б. Скляр. Цифровая связь. Теоретические основы и практическое применение. Изд. 2-е, испр.: Пер. с англ. - М.: Издательский дом «Вильямс», 2003 г. - 1104 с.
Методы декодирования, используемые при избыточном кодировании. Правило декодирования с обнаружением ошибок. Обнаруживающая способность кода. Показатели эффективности помехоустойчивого кода. Передача сообщений по двоичному симметричному каналу без памяти. курсовая работа [155,6 K], добавлен 20.11.2012
Представление информационной части кодовой комбинации виде полинома. Разрешенные кодовые комбинации циклического кода. Обнаружение ошибок при циклическом кодировании. Основные функциональные узлы кодирующих устройств. Выполнение операций декодирования. лабораторная работа [511,6 K], добавлен 15.12.2013
Применение кодирования с исправлением ошибок для восстановления данных, потерянных при их передаче и хранения. Использование кодов Рида-Соломона с недвоичными символами. Деление полиномов как важный момент при кодировании и декодировании кодов компьютера. реферат [43,4 K], добавлен 25.02.2014
Методы помехоустойчивого кодирования и декодирования информации с помощью линейных групповых кодов. Принципы построения и функционирования кодирующих и декодирующих устройств этих кодов. Способы их декодирования с учетом помех различной кратности. лабораторная работа [39,2 K], добавлен 26.09.2012
Длина циклического кода. Свойство кодовых слов циклического кода - это их делимость без остатка на некоторый многочлен g(x), называемый порождающим. Декодирование циклических кодов. Синдромный многочлен, используемый при декодировании циклического кода. реферат [195,1 K], добавлен 11.02.2009
Помехоустойчивые коды и их классификация. Формирование каскадного кода. Линейные коды. Замкнутость кодового множества. Схемы кодирования, применяемые на практике. Основные классы кодов. Блоковый код мощности. Сферы декодирования. Неполный декодер. реферат [83,4 K], добавлен 11.02.2009
Способы задания линейных кодов. Проверочная матрица в систематическом виде. Основные свойства линейных кодов. Стандартное расположение группового кода. Коды Хэмминга. Корректирующая способность кода Хэмминга. Процедура исправления одиночных ошибок. реферат [87,9 K], добавлен 11.02.2009
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Особенности практического применения способов кодирования. Способы декодирования с обнаружением ошибок реферат. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Курсовая работа по теме Экономический рост России
Курсовая работа: Силовая подготовка борца
Курсовая работа по теме Развитие угольной промышленности Кемеровской области в советский и постсоветский период
Курсовая работа по теме Анализ маркетинговой деятельности ОАО 'Тульский оружейный завод'
Сахарный Диабет Курсовая Работа
Современная Россия Курсовая
Курсовая работа: Сегментарная (внутренняя) отчётность предприятия
Дипломная работа: Изготовление фужера 150 мл методом литья под давлением
Контрольная Работа На Тему Деньги И Их Функции
Доклад: Система фортификационных сооружений
Реферат по теме С.Л. Франк
Курсовая работа по теме Банковский маркетинг (на примере Германии)
Реферат: Президент Российской Федерации - глава государства
Реферат по теме Отечественная война 1812
Контрольная работа: Древнерусская культура
Курсовая работа по теме Разработка программы рисования замкнутых многоугольников на языке С++, с использованием библиотеки VCL
Реферат по теме Гос-управление в сфере образования, науки и здравоохранения
Курсовая Работа На Тему Ссудные Операции Коммерческого Банка
Профессиональная Этика Рефераты
Дипломная работа по теме Анализ управления оборотным капиталом
Курская битва - История и исторические личности презентация
Анализ состава преступления, совершенного в состоянии аффекта - Государство и право курсовая работа
Археологические памятники Мустьерской эпохи - История и исторические личности контрольная работа


Report Page