Основные виды моделирования
Основные виды моделированияСкачать файл - Основные виды моделирования
Классификация видов моделирования может быть проведена по разным основаниям. Один из вариантов классификации приведен на рисунке. В соответствии с классификационным признаком полноты моделирование делится на: В основе приближенного моделирования лежит подобие, при котором некоторые стороны реального объекта не моделируются совсем. Теория подобия утверждает, что абсолютное подобие возможно лишь при замене одного объекта другим точно таким же. Поэтому при моделировании абсолютное подобие не имеет места. Исследователи стремятся к тому, чтобы модель хорошо отображала только исследуемый аспект системы. Например, для оценки помехоустойчивости дискретных каналов передачи информации функциональная и информационная модели системы могут не разрабатываться. Для достижения цели моделирования вполне достаточна событийная модель, описываемая матрицей условных вероятностей переходов i-го символа алфавита в j-й. В зависимости от типа носителя и сигнатуры модели различаются следующие виды моделирования: Детерминированное моделирование отображает процессы, в которых предполагается отсутствие случайных воздействий. При этом оперируют аналоговыми непрерывными , дискретными и смешанными моделями. В зависимости от формы реализации носителя и сигнатуры моделирование классифицируется на мысленное и реальное. Мысленное моделирование применяется тогда, когда модели не реализуемы в заданном интервале времени либо отсутствуют условия для их физического создания например, ситуация микромира. Мысленное моделирование реальных систем реализуется в виде наглядного, символического и математического. Для представления функциональных, информационных и событийных моделей этого вида моделирования разработано значительное количество средств и методов. При наглядном моделировании на базе представлений человека о реальных объектах создаются наглядные модели, отображающие явления и процессы, протекающие в объекте. Примером таких моделей являются учебные плакаты, рисунки, схемы, диаграммы. В основу гипотетического моделирования закладывается гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Этот вид моделирования используется, когда знаний об объекте недостаточно для построения формальных моделей. Аналоговое моделирование основывается на применении аналогий различных уровней. Для достаточно простых объектов наивысшим уровнем является полная аналогия. С усложнением системы используются аналогии последующих уровней, когда аналоговая модель отображает несколько или только одну сторон функционирования объекта. Макетирование применяется, когда протекающие в реальном объекте процессы не поддаются физическому моделированию или могут предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает его основные свойства с помощью определенной системы знаков и символов. В основе языкового моделирования лежит некоторый тезаурус, который образуется из набора понятий исследуемой предметной области, причем этот набор должен быть фиксированным. Под тезаурусом понимается словарь, отражающий связи между словами или иными элементами данного языка, предназначенный для поиска слов по их смыслу. Традиционный тезаурус состоит из двух частей: Между тезаурусом и обычным словарем имеются принципиальные различия. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта. В принципе, для исследования характеристик любой системы математическими методами, включая и машинные, должна быть обязательно проведена формализация этого процесса, то есть построена математическая модель. Вид математической модели зависит как от природы реального объекта, так и от задач исследования объекта, от требуемой достоверности и точности решения задачи. Любая математическая модель, как и всякая другая, описывает реальный объект с некоторой степенью приближения. Для представления математических моделей могут использоваться различные формы записи. Основными являются инвариантная, аналитическая, алгоритмическая и схемная графическая. В этом случае модель может быть представлена как совокупность входов, выходов, переменных состояния и глобальных уравнений системы. Обычно модели в аналитической форме представляют собой явные выражения выходных параметров как функций входов и переменных состояния. Для аналитического моделирования характерно то, что в основном моделируется только функциональный аспект системы. При этом глобальные уравнения системы, описывающие закон алгоритм ее функционирования, записываются в виде некоторых аналитических соотношений алгебраических, интегродифференциальных, конечноразностных и т. Аналитическая модель исследуется несколькими методами:. В настоящее время распространены компьютерные методы исследования характеристик процесса функционирования сложных систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм. Среди алгоритмических моделей важный класс составляют имитационные модели, предназначенные для имитации физических или информационных процессов при различных внешних воздействиях. Собственно имитацию названных процессов называют имитационным моделированием. Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и другие, которые часто создают трудности при аналитических исследованиях. В имитационном моделировании различают метод статистических испытаний Монте-Карло и метод статистического моделирования. Состоит в многократном воспроизведении процессов, являющихся реализациями случайных величин и функций, с последующей обработкой информации методами математической статистики. Если этот прием применяется для машинной имитации в целях исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, то такой метод называется методом статистического моделирования. Метод имитационного моделирования применяется для оценки вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено в основу структурного, алгоритмического и параметрического синтеза систем, когда требуется создать систему с заданными характеристиками при определенных ограничениях. Комбинированное аналитико-имитационное моделирование позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей производится предварительная декомпозиция процесса Функционирования объекта на составляющие подпроцессы, и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели. Такой подход дает возможность охватить качественно новые классы систем, которые не могут быть исследованы с использованием аналитического или имитационного моделирования в отдельности. Информационное кибернетическое моделирование связано с исследованием моделей, в которых отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. Таким образом, в основе информационных кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести данную функцию на имитационной модели, причем на совершенно другом математическом языке и, естественно, иной физической реализации процесса. Так, например, экспертные системы являются моделями ЛПР. Структурное моделирование системного анализа базируется на некоторых специфических особенностях структур определенного вида, которые используются как средство исследования систем или служат для разработки на их основе специфических подходов к моделированию с применением других методов формализованного представления систем теоретико-множественных, лингвистических, кибернетических и т. Развитием структурного моделирования является объектно-ориентированное моделирование. Соответствующие структуры называются функциональными и морфологическими. Объектно-ориентированное моделирование объединяет структуры обоих типов в иерархию классов, включающих как элементы, так и функции. В структурном моделировании за последнее десятилетие сформировалась новая технология CASE. Аббревиатура CASE имеет двоякое толкование, соответствующее двум направлениям использования CASE-систем. Такие CASE-системы часто называют системами BPR Business Process Reengineering. В целом CASE-технология представляет собой совокупность методологий анализа, проектирования, разработки и сопровождения сложных автоматизированных систем, поддерживаемую комплексом взаимосвязанных средств автоматизации. Ситуационное моделирование опирается на модельную теорию мышления, в рамках которой можно описать основные механизмы регулирования процессов принятия решений. В центре модельной теории мышления лежит представление о формировании в структурах мозга информационной модели объекта и внешнего мира. Эта информация воспринимается человеком на базе уже имеющихся у него знаний и опыта. Целесообразное поведение человека строится путем формирования целевой ситуации и мысленного преобразования исходной ситуации в целевую. Основой построения модели является описание объекта в виде совокупности элементов, связанных между собой определенными отношениями, отображающими семантику предметной области. Модель объекта имеет многоуровневую структуру и представляет собой тот информационный контекст, на фоне которого протекают процессы управления. Чем богаче информационная модель объекта и выше возможности манипулирования ею, тем лучше и многообразнее качество принимаемых решений при управлении. При реальном моделировании используется возможность исследования характеристик либо на реальном объекте целиком, либо на его части. Такие исследования проводятся как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик при других значениях переменных и параметров, в другом масштабе времени и т. Реальное моделирование является наиболее адекватным, но его возможности ограничены. Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. Натурное моделирование подразделяется на научный эксперимент, комплексные испытания и производственный эксперимент. Научный эксперимент характеризуется широким использованием средств автоматизации, применением весьма разнообразных средств обработки информации, возможностью вмешательства человека в процесс проведения эксперимента. В этом случае моделирование осуществляется путем обработки и обобщения сведений о группе однородных явлений. Наряду со специально организованными испытаниями возможна реализация натурного моделирования путем обобщения опыта, накопленного в ходе производственного процесса, то есть можно говорить о производственном эксперименте. Здесь на базе теории подобия обрабатывают статистический материал по производственному процессу и получают его обобщенные характеристики. Необходимо помнить про отличие эксперимента от реального протекания процесса. Оно заключается в том, что в эксперименте могут появиться отдельные критические ситуации и определиться границы устойчивости процесса. В ходе эксперимента вводятся новые факторы возмущающие воздействия в процесс функционирования объекта. Другим видом реального моделирования является физическое , отличающееся от натурного тем, что исследование проводится а установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и модельном псевдореальном масштабах времени или рассматриваться без учета времени. Математическое моделирование многие считают скорее искусством, чем стройной и законченной теорией. Здесь очень велика роль опыта, интуиции и других интеллектуальных качеств человека. Поэтому невозможно написать достаточно формализованную инструкцию, определяющую, как должна строиться модель той или иной системы. Тем не менее отсутствие точных правил не мешает опытным специалистам строить удачные модели. К настоящему времени уже накоплен значительный опыт, дающий основание сформулировать некоторые принципы и подходы к построению моделей. При рассмотрении порознь каждый из них может показаться довольно очевидным. Но совокупность взятых вместе принципов и подходов далеко не тривиальна. Многие ошибки и неудачи в практике моделирования являются прямым следствием нарушения этой методологии. Принципы определяют те общие требования, которым должна удовлетворять правильно построенная модель. Этот принцип предусматривает соответствие модели целям исследования по уровню сложности и организации, а также соответствие реальной системе относительно выбранного множества свойств. До тех пор, пока не решен вопрос правильно ли отображает модель исследуемую систему, ценность модели незначительна. Соответствие модели решаемой задаче. Модель должна строиться для решения определенного класса задач или конкретной задачи исследования системы. Попытки создания универсальной модели, нацеленной на решение большого числа разнообразных задач, приводят к такому усложнению, что она оказывается практически непригодной. Опыт показывает, что при решении каждой конкретной задачи нужно иметь свою модель, отражающую те аспекты системы, которые являются наиболее важными в данной задаче. Этот принцип связан с принципом адекватности. Упрощение при сохранении существенных свойств системы. Чем сложнее рассматриваемая система, тем по возможности более упрощенным должно быть ее описание, умышленно утрирующее типичные и игнорирующее менее существенные свойства. Этот принцип может быть назван принципом абстрагирования от второстепенных деталей. Соответствие между требуемой точностью результатов моделирования и сложностью модели. Модели по своей природе всегда носят приближенный характер. Возникает вопрос, каким должно быть это приближение. С одной стороны, чтобы отразить все сколько-нибудь существенные свойства, модель необходимо детализировать. С другой стороны, строить модель, приближающуюся по сложности к реальной системе, очевидно, не имеет смысла. Она не должна быть настолько сложной, чтобы нахождение решения оказалось слишком затруднительным. Компромисс между этими двумя требованиями достигается нередко путем проб и ошибок. Практическими рекомендациями по уменьшению сложности моделей являются:. Баланс погрешностей различных видов. В соответствии с принципом баланса необходимо добиваться, например, баланса систематической погрешности моделирования за счет отклонения модели от оригинала и погрешности исходных данных, точности отдельных элементов модели, систематической погрешности моделирования и случайной погрешности при интерпретации и осреднении результатов. Многовариантность реализаций элементов модели. При соблюдении принципа блочного строения облегчается разработка сложных моделей и появляется возможность использования накопленного опыта и готовых блоков с минимальными связями между ними. Выделение блоков производится с учетом разделения модели по этапам и режимам функционирования системы. К примеру, при построении модели Для системы радиоразведки можно выделить модель работы излучателей, модель обнаружения излучателей, модель пеленгования и т. Имеется целый ряд систем, которые допускают проведение непосредственных исследований по выявлению существенных параметров и отношений между ними. Затем либо применяются известные математические модели, либо они модифицируются либо предлагается новая модель. Таким образом, например, можно вести разработку модели для направления связи в условиях мирного времени. При проведении эксперимента выявляется значительная часть существенных параметров и их влияние на эффективность системы. Такую цель преследуют, например, все командно-штабные игры и большинство учений. Если метод построения модели системы не ясен, но ее структура очевидна, то можно воспользоваться сходством с более простой системой, модель для которой существует. К построению модели можно приступить на основе анализа исходных данных, которые уже известны или могут быть получены. Анализ позволяет сформулировать гипотезу о структуре системы, которая затем апробируется. Так появляются первые модели нового образца иностранной техники при наличии предварительных данных об их технических параметрах. Разработчики моделей находятся под действием двух взаимно противоречивых тенденций: Достижение компромисса ведется обычно по пути построения серии моделей, начинающихся с предельно простых и восходящих до высокой сложности существует известное правило: Простые модели помогают глубже понять исследуемую проблему. Усложненные модели используются для анализа влияния различных факторов на результаты моделирования. Такой анализ позволяет исключать некоторые факторы из рассмотрения. Сложные системы требуют разработки целой иерархии моделей, различающихся уровнем отображаемых операций. Выделяют такие уровни, как вся система, подсистемы, управляющие объекты и др. Эта упрощенная модель развития экономики страны предложена английским экономистом Р. Два условия принимаются для характеристики внутренних экономических процессов. Капитальные вложения в год t могут рассматриваться как прирост производственных фондов или производная от функции производственные фонды принимается как капитальные годовые вложения:. Национальный доход в каждый год принимается как отдача производственных фондов с соответствующим нормативным коэффициентом фондоотдачи:. Несмотря на упрощенный вид математической модели, ее результат может быть использован для укрупненного анализа национальной экономики. Параметры а и b могут стать параметрами управления при выборе плановой стратегии развития в целях максимального приближения к предпочтительной траектории изменения национального дохода или для выбора минимального интервала времени достижения заданного уровня национального дохода. Сущность построения математической модели состоит в том, что реальная система упрощается, схематизируется и описывается с помощью того или иного математического аппарата. Можно выделить следующие основные этапы построения моделей. Содержательное описание моделируемого объекта. Объекты моделирования описываются с позиций системного подхода. Исходя из цели исследования устанавливаются совокупность элементов, взаимосвязи между элементами, возможные состояния каждого элемента, существенные характеристики состояний и отношения между ними. Вопросы, связанные с полнотой и единственностью выбора характеристик, не рассматриваются. Естественно, в таком словесном описании возможны логические противоречия, неопределенности. Это исходная естественно-научная концепция исследуемого объекта. Такое предварительное, приближенное представление системы называют концептуальной моделью. Для того чтобы содержательное описание служило хорошей основой для последующей формализации, требуется обстоятельно изучить моделируемый объект. Нередко естественное стремление ускорить разработку модели уводит исследователя от данного этапа непосредственно к решению формальных вопросов. В результате построенная без достаточного содержательного базиса модель оказывается непригодной к использованию. На этом этапе моделирования широко применяются качественные методы описания систем, знаковые и языковые модели. Формализация сводится в общих чертах к следующему. На основе содержательного описания определяется исходное множество характеристик системы. Для выделения существенных характеристик необходим хотя бы приближенный анализ каждой из них. При проведении анализа опираются на постановку задачи и понимание природы исследуемой системы. После исключения несущественных характеристик выделяют управляемые и неуправляемые параметры и производят символизацию. Затем определяется система ограничений на значения управляемых параметров. Если ограничения не носят принципиальный характер, то ими пренебрегают. Дальнейшие действия связаны с формированием целевой функции модели. В соответствии с известными положениями выбираются показатели исхода операции и определяется примерный вид функции полезности на исходах. Если функция полезности близка к пороговой или монотонной , то оценка эффективности решений возможна непосредственно по показателям исхода операции. В этом случае необходимо выбрать способ свертки показателей способ перехода от множества показателей к одному обобщенному показателю и произвести саму свертку. По свертке показателей формируются критерий эффективности и целевая функция. Если при качественном анализе вида функции полезности окажется, что ее нельзя считать пороговой монотонной , прямая оценка эффективности решений через показатели исхода операции неправомочна. Необходимо определять функцию полезности и уже на ее основе вести формирование критерия эффективности и целевой функции. Требование адекватности находится в противоречии с требованием простоты, и это нужно учитывать при проверке модели на адекватность. Исходный вариант модели предварительно проверяется по следующим основным аспектам:. Для проверки рекомендуется привлекать специалистов, которые не принимали участия в разработке модели. Они могут более объективно рассмотреть модель и заметить ее слабые стороны, чем ее разработчики. Такая предварительная проверка модели позволяет выявить грубые ошибки. После этого приступают к реализации модели и проведению исследований. Полученные результаты моделирования подвергаются анализу на соответствие известным свойствам исследуемого объекта. Для установления соответствия создаваемой модели оригиналу используются следующие пути:. Главным путем проверки адекватности модели исследуемому объекту выступает практика. Однако она требует накопления статистики, которая далеко не всегда бывает достаточной для получения надежных данных. Для многих моделей первые два приемлемы в меньшей степени. В этом случае остается один путь: Такие заключения не носят формального характера, поскольку основываются на опыте и интуиции исследователя. По результатам проверки модели на адекватность принимается решение о возможности ее практического использования или о проведении корректировки. При корректировке модели могут уточняться существенные параметры, ограничения на значения управляемых параметров, показатели исхода операции, связи показателей исхода операции с существенными параметрами, критерий эффективности. После внесения изменений в модель вновь выполняется оценка адекватности. Сущность оптимизации моделей состоит в их упрощении при заданном уровне адекватности. Основными показателями, по которым возможна оптимизация модели, выступают время и затраты средств для проведения исследований на ней. В основе оптимизации лежит возможность преобразования моделей из одной формы в другую. Преобразование может выполняться либо с использованием математических методов, либо эвристическим путем. Классификация видов моделирования систем Классификация видов моделирования может быть проведена по разным основаниям. При полном моделировании модели идентичны объекту во времени и пространстве. Для неполного моделирования эта идентичность не сохраняется. Стохастическое моделирование учитывает вероятностные процессы и события. Аналитическая модель исследуется несколькими методами: Структурное моделирование системного анализа включает: Принципы и подходы к построению математических моделей Математическое моделирование многие считают скорее искусством, чем стройной и законченной теорией. Практическими рекомендациями по уменьшению сложности моделей являются: Процесс преобразования модели в модель с меньшим числом переменных и ограничений называют агрегированием. Так, условия распространения радиоволн в модели радиоканала для простоты можно принять постоянными; изменение функциональной зависимости между переменными. Варьируя ограничениями можно найти возможные граничные значения эффективности. Такой прием часто используется для нахождения предварительных оценок эффективности решений на этапе постановки задач; ограничение точности модели. Точность результатов модели не может быть выше точности исходных данных. В зависимости от конкретной ситуации возможны следующие подходы к построению моделей: Для математической постановки задачи введем следующие обозначения: Будем предполагать, что функционирование экономики происходит при выполнении следующих условий: Капитальные вложения в год t могут рассматриваться как прирост производственных фондов или производная от функции производственные фонды принимается как капитальные годовые вложения: Этапы построения математической модели Сущность построения математической модели состоит в том, что реальная система упрощается, схематизируется и описывается с помощью того или иного математического аппарата. Исходный вариант модели предварительно проверяется по следующим основным аспектам: Все ли существенные параметры включены в модель? Нет ли в модели несущественных параметров? Правильно ли отражены функциональные связи между параметрами? Правильно ли определены ограничения на значения параметров? Для установления соответствия создаваемой модели оригиналу используются следующие пути:
Вы точно человек?
Классифицировать можно, опираясь на разные основания: Из этого следует, какой бы классификация ни была, она будет неполной, особенно если учесть, что не существует каких-то стандартных правил, в соответствии с которыми должна выстраиваться терминология, как правило она опирается на языковые, научные и практические традиции, а еще чаще определяется условиями и задачами в каждом конкретном случае. Самой распространенной можно назвать классификацию основывающуюся на характере моделей. В соответствии с ней выделяют пять видов моделирования \[17\]: Предметное моделирование, при котором в модели отражаются геометрические, физические, динамические или функциональные характеристики объекта. К примеру, модель здания или корпуса автомобиля. Аналоговое моделирование, при котором модель и оригинал описываются единым математическим соотношением. В пример можно привести электрические модели, которые используются для изучения гидродинамических и механических явлений. Знаковое моделирование, при котором моделью являются формулы, чертежи, схемы. Знаковые модели стали чаще использоваться в связи с развитием ЭВМ. Со знаковым неразрывно связано мысленное моделирование, при котором модели приобретают мысленно наглядный характер. Примером может в данном случае служить модель атома, предложенная в свое время Бором. Также есть особый вид моделирования, при котором в эксперименте участвует не сам объект, а его модель, в результате чего последний приобретает характер модельного эксперимента. Данный вид моделирования демонстрирует отсутствие четкой грани между методами теоретического и эмпирического познания. Предметным называется моделирование, в процессе которого исследование проводится на модели, воспроизводящей главные геометрические, физические, динамические и функциональные характеристики реального объекта или процесса. На этих моделях исследуются процессы, происходящие в оригинале — изучаемом объекте или разработке исследование параметров строительных конструкций, различных механизмов, транспортных средств и т. В случае, если моделируемый объект и объект одной физической природы, то здесь имеет место физическое моделирование. Явление процесс, система также может изучаться опытным путём исследования какого-либо явления другой физической природы, но при условии, что оно характеризуется теми же математическими зависимостями, что и моделируемое явление. Например, напряженное состояние при пластической и упругой деформации описывается идентичными дифференциальными уравнениями. Так, электрическое моделирование позволяет изучать на электрических моделях механические, гидродинамические, акустические и другие явления. Электрическое моделирование лежит в основе аналоговых вычислительных машин сейчас, правда, редко использующихся. При знаковом моделировании в качестве моделей используются знаковые образования какого-либо вида: Одним из наиболее важных видов знакового моделирования является математическое логико-математическое моделирование, реализуемое средствами языка математики и логики. Знаковые образования и их элементы всегда рассматриваются вместе с определенными преобразованиями, операциями над ними, выполняемые человеком или машиной преобразования математических, химических, логических формул, преобразования состояний элементов цифровой машины, соответствующих знакам машинного языка, и др. В работе, в поисках пути, В сердечной смуте, До сущности протекших дней, До их причины. До оснований, до корней, До сердцевины. Категории диалектики Находящемуся в постоянном движении и развитии миру соответствует столь же динамичное мышление о нем. Философия марксизма Философия марксизма — одно из важнейших направлений, вызывающее в современную эпоху неоднозначную оценку, представлена в различных вариантах: GreatPhilosophy Главная Новое Популярное Карта сайта Поиск Контакты RSS Feed Искать: Интересные публикации Анализ философских идей Фридриха Ницше Американский прагматизм Духовная жизнь общества Развитие и формирование сознания. Актуально о философии Анализ произведений А. Камю Возникновение и развитие неопозитивизма Начало философии Нового времени Проблема познания мира в философии.
Виды моделирования
Расписание автобусов новоуткинск первоуральск
ТСиСА. Вопрос №18
Выборг хельсинки расписание поездов