Организм и внешняя среда - Биология и естествознание реферат

Организм и внешняя среда - Биология и естествознание реферат




































Главная

Биология и естествознание
Организм и внешняя среда

Организм как биологическая система, его основные структурные единицы. Источники энергии жизнедеятельности, строение белков и их роль в организме. Нуклеиновые кислоты и сущность синтеза белков. Взаимоотношения организма со средой и механизмы теплоотдачи.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1. Организм как биологическая система
Основные структурные единицы организма -- клетки, которые вместе с межклеточным веществом складываются в ткани и органы. Органы объединяются в функциональные системы (пищеварения, дыхания, кровообращения и др.) и образуют организм, вся жизнедеятельность которого у человека и животных (за исключением наиболее примитивных) интегрируется и координируется нервной системой. От внешней среды организм отграничен наружными покровами, внутренней поверхностью дыхательных путей и легких, слизистыми оболочками органов пищеварения и выделения, воспринимающими воздействия внешней среды.
Клетки -- основные «кирпичики», из которых построен организм. Они тоже имеют весьма сложное строение и окружены мембранами, состоящими из белков и жироподобных веществ -- фосфолипидов. Мембраны могут пропускать одни вещества и закрывать вход для проникновения других или осуществлять транспорт веществ только в одну сторону, препятствуя обратному движению.
Поэтому клеточные мембраны называют полупроницаемыми.
Такие же мембраны разделяют клетку на отдельные «отсеки», или компартменты, и окружают различные клеточные органоиды. К числу таких «органов» клетки принадлежит прежде всего ядро, где хранится наследственный фонд клетки, ее генный аппарат, и где происходит начальный этап синтеза белков. Не менее важными органоидами являются митохондрии -- «энергетические станции» клетки, освобождающие энергию из окисляемых веществ и превращающие ее в легкоутилизируемую форму, позволяющую клетке использовать эту энергию в своей жизнедеятельности. Митохондрии представляют собой округлые или слегка вытянутые образования, состоящие из двух мембран: внешней и внутренней. На складках, или гребнях, внутренней мембраны в строго определенном порядке встроены ферменты биологического окисления и компоненты дыхательной цепи.
К органоидам клетки относятся также лизосомы -- маленькие пузырьки, содержащие ферменты, осуществляющие внутриклеточное переваривание и расщепляющие сложные биологические соединения (белки, нуклеиновые кислоты и др.), внутриплазматическая сеть (ретикулум) и пластинчатый комплекс -- мембранные образования, участвующие в ионном транспорте, процессах секреции и многих биологических синтезах. На мембранах митохондрий и других органоидов жестко встроены, а в полужидком внутреннем белковом содержимом клетки (цито-золе) растворены различные ферменты -- белковые биологические катализаторы, при помощи которых в клетке происходят все химические реакции.
Однако жизнь -- в первую очередь не структура, а процесс. Это постоянное обновление всех структур клетки и организма в целом. Все вещества, из которых построен организм и которые он вырабатывает, постоянно обновляются. Так, полупериод жизни некоторых выделяемых железами внутренней секреции гормонов составляет 1 -- 5 мин, сахара в крови -- 19 мин, гликогена в печени -- 20--24 ч, гликогена в мышцах -- 3--4 сут, белка в печени -- 4--10, резервного жира -- 16--20, а сократительных белков мышц -- около 30 сут. Относительно стабильной является лишь хранящая наследственную информацию ДНК.
Обмен веществ -- основное свойство и условие существования живой материи -- заключается в непрерывном поступлении в организм веществ, служащих источниками энергии и пластическим материалом, в усвоении (ассимиляции) этих веществ и в использовании их с последующим выделением из организма продуктов их расщепления. Таким образом, живой организм представляет собой «открытую химическую систему», через которую постоянно проходит поток веществ и энергии.
Все это принципиально отличает живые организмы от любых самых сложных и «умных» машин, которые представляют собой статичные системы с фиксированной конструкцией. Машины можно разобрать на детали, четко отграничив их друг от друга. Машины нуждаются в энергии лишь тогда, когда работают. Живые организмы не разделены на «детали», в них все тесно связано в единую систему, все взаимозависимо. В них нельзя даже четко различить структурные материалы и источники энергии: то, что образует структуру, может быть и источником энергии, а источники энергии могут входить в состав структур. Наконец, живые организмы нуждаются в энергии не только тогда, когда они выполняют внешнюю работу; их структуры могут поддерживаться лишь при непрерывной затрате энергии. Перерыв в снабжении ею приводит к необратимой утрате структуры и к смерти. Живой организм сам себя строит, поддерживает в «рабочем состоянии», ремонтирует, регулирует и воспроизводит.
2. Источники энергии жизнедеятельности
Каким же образом черпает организм необходимую ему энергию? Энергия освобождается в митохондриях клеток при окислении различных органических веществ, но используется не сразу, а накапливается в легкоутилизируемой форме в виде макроэргических (высокоэнергетических) соединений. При их расщеплении без промежуточного образования тепла химическая энергия их внутримолекулярных связей преобразуется в другие формы энергии: механическую, электрическую, световую и т. п.
Основным и главнейшим макроэргом является АТФ, состоящая из азотистого (пуринового) основания -- аденина, пятиуглеродного сахара -- рибозы и трех, последовательно присоединенных к ней молекул фосфорной кислоты. Отщепление от АТФ концевой и второй фосфатных групп приводит к освобождению по 30 кДж энергии на каждый моль: АТФ+Н 2 О->АДФ+Ф+30 кДж; АДФ+ Н 2 О->АМФ+Ф+30 кДж, где Ц -- неорганический фосфат.
АТФ -- источник энергии всех биологических процессов: движения, теплообразования, биоэлектрических явлений, различных биологических синтезов и даже нервной деятельности (схема 1). Расщепление АТФ необратимо: энергия макроэргической связи используется на внешнюю работу и уходит из сферы реакции. А так как потребность организма в АТФ исключительно велика, необходимо постоянное регенерирование этого вещества, образование новых молекул АТФ. Происходит это в процессе аэробного (с участием кислорода) или анаэробного (без него) окисления, сопряженного с фосфорилированием АДФ, а также путем креатинкиназной реакции.
В ходе аэробного и анаэробного (гликолитического) окисления образуются промежуточные макроэргические фосфорные соединения, фосфатная группа которых соответствующими ферментами «пересаживается» со всем запасом энергии на АДФ. Эти так называемые фосфо-трансферазные реакции происходят таким образом, что фермент сближает образовавшийся макроэрг и АДФ настолько, что между ними становятся возможными обмен электронами и возникновение связи фосфата с АДФ при одновременном отщеплении первого от исходного макроэрга (рис. 1).
В принципе так же протекает и креатинкиназная реакция. КФ содержится в клетках как источник макро-эргических фосфатов для регенерации АТФ в экстренных случаях. Реакция эта происходит очень быстро: она не требует ни кислорода, ни расщепления каких-либо органических веществ, так как макроэргическая связь фосфата КФ обладает таким же запасом энергии, как и макроэргические связи в молекуле АТФ: КФ +АДФ креатин + АТФ.
Реакция эта обратима в зависимости от концентраций КФ и АТФ: когда концентрация КФ высока, а АТФ низка, она идет вправо, а при обратных соотношениях -- влево. Таким образом, в ходе этой реакции избыток АТФ создает предпосылки для собственной ее экстренной регенерации. Естественно, что вследствие большого и непрерывного расходования АТФ она чрезвычайно быстро обменивается: полупериод жизни ее менее 1 мин, и за 1 сут каждая молекула ее обновляется (расщепляется и вновь регенерируется) 2400 раз!
Расходование и генерирование АТФ: І -- освобождение энергии, ІІ -- преобразование энергии и совершаемая работа
Реакция перефосфорилирования (фосфотрансферазная)
Итак, жизнь -- постоянное обновление белковых структур организма. Как же происходит этот процесс?
3. Строение белков и их роль в организме
Полное или частичное расщепление белков осуществляется особыми ферментами -- внутриклеточными протеиназами и пептидазами -- путем гидролиза, т. е. расщепления с присоединением воды по месту разрыва связи: AB + HOH -> АН - ВОН. А вот синтез белков намного сложнее.
Основными «кирпичиками» белков служат аминокислоты -- органические соединения, содержащие щелочную аминогруппу (-- NH 2 ) и кислотную -- карбоксил (--СООН), т.е. являющиеся одновременно и основаниями, и кислотами:
В образовании белков участвует до 20 различных аминокислот, соединяющихся в разной последовательности в длинные цепи, называемые полипептидными. Аминокислоты в них связаны друг с другом группами --NH 2 и --COOH так, что к аминогруппе одной аминокислоты присоединяется карбоксил другой и т. д. Такую связь называют пептидной:
Рассмотрим строение белков подробнее. Эти сведения понадобятся нам в дальнейшем, так как основные приспособительные изменения организма на молекулярном уровне прежде всего и главным образом касаются структуры и свойств клеточных белков. Белки -- макромолекулы, в состав которых входит от 100 до нескольких тысяч аминокислотных остатков, что обусловливает их большую ММ, измеряемую десятками и сотнями тысяч атомных единиц массы, диаметром от 5 до 100 нм. Более короткие цепи (от 2 до 10) называют пептидами, а от 10 до 100 аминокислотных остатков -- полипептидами. Пептидная цепь -- лишь первичная структура белка, способная образовывать высшие структуры: свертывание цепи в клубок (глобулярные белки) или принятие ею нитчатой формы (фибриллярные белки). Связи между атомами, составляющими белковую молекулу, могут быть различными и обладать неодинаковой прочностью. Наиболее npo 4 Hbf ковалентные связи, т. е. такие, в которых пара электронов находится во владении двух смежных атомов. В белках такими связями соединены остатки аминокислот и атомы, их составляющие. Иначе говоря, первичная структура белка достаточно прочна, так как пептидная цепь построена с помощью ковалентных связей. Но есть связи и другого типа, например водородные, возникающие между двумя атомами с помощью водорода (чаще всего между атомами кислорода и азота). Дело в том, что у кислорода в местах соединения аминокислот друг с другом (т. е. в пептидной связи) имеется небольшой отрицательный заряд, а у азота -- небольшой положительный, так как у ядер атома кислорода больше сродство с электронами, чем у ядер азота. Вследствие этого ковалентная пара электронов, связывающая водород с азотом, смещается -- и атом водорода оказывается между двумя заряженными центрами:
С помощью этих связей образуется вторичная структура белковой молекулы, например спирализация ее, появляются складчатые и нитчатые структуры. При образовании третичной структуры, т. е. пространственной упаковки спирализованных и неспирализованных участков белковой модекулы (например, в шарообразных, глобулярных белках), большое значение имеет возникновение мостиков за счет двух атомов восстановленной серы (R--S --S-Ri, где R и Ri -- два участка полипептидной цепи). Кроме того, здесь принимают участие и электростатические (ионные) связи, появляющиеся между двумя ионизированными атомами (опять же, как правило, между азотом и кислородом):
Наконец, четвертичная (наиболее сложная) структура -- связь между несколькими одинаковыми или различными белками (называемыми протомерами), объединяющая их в одно целое (олигомер). Такая структура поддерживается ионными или водородными связями. Существуют и другие связи, менее прочные, чем кова-лентные, например взаимодействие свободных групп ОН и СООН, неполярных углеводородных радикалов и др.
Разрыв нековалентных связей приводит к нарушению высших белковых структур, называемому денатурацией белков. При этом белки утрачивают ряд своих функциональных свойств, становятся более доступными действию расщепляющих их ферментов. Денатурация в зависимости от степени ее и условий может быть и обратимой, и необратимой.
4. Нуклеиновые кислоты и синтез белков
Чем же обусловлена строго определенная последовательность аминокислот в белках? Как показали многочисленные исследования, информация об этом закодирована в генном аппарате клеток (геноме), т. е. в ДНК хроматина клеточного ядра. Для каждого синтезируемого в организме белка имеется своя ДНК (или участок цепи ДНК), и синтезированы могут быть только те белки, структура которых закодирована в геноме. ДНК --- сложные макромолекулы (с MM от 10000 до миллионов атомных единиц), представляющие собой цепи соединенных друг с другом нуклеотидов (от 2000 до IO 8 ед.) и образующие двойную спираль.
Каждый нуклеотид состоит из азотистого (пуринового или пиримидинового) основания, пятиуглеродного сахара дезоксирибозы и остатка фосфорной кислоты. Из азотистых оснований в состав ДНК входят аденин, гуанин, цитозин и тимин, 2 причем двойная цепь ДНК построена так, что против аденина одной цепи находится тимин другой, а против гуанина располагается цитозин. Между этими парами (так называемыми комплементарными) и образуются связи между двумя цепями ДНК. Каждой входящей в состав того или иного белка аминокислоте соответствует тройка (триплет, или кодон) последовательно соединенных оснований; порядок же аминокислот в белке определяется соответствующим расположением триплетов.
Синтез белка начинается с образования иРНК. РНК отличаются от ДНК тем, что в них вместо тимина присутствует азотистое основание -- урацил, вместо дезоксирибозы -- рибоза, а также тем, что они одноцепочечные. Синтезируется иРНК в клеточном ядое по образцу соответственной ДНК, как бы считывая часть содержащейся в ней информации, копируя последовательность оснований в ДНК, определяющую структуру синтезируемого белка. Это процесс транскрипции, который можно сравнить с раскроем ткани по выкройке. Затем иРНК покидает ядро и передает полученную информацию в место синтеза -- рибосомы, построенные из особой рРНК, т. е. происходит процесс трансляции. При помощи иРНК рибосомы объединяются в комплексы -- полирибосомы. Одновременно активируются необходимые аминокислоты и при затрате энергии АТФ соединяются с третьим видом РНК -- тРНК, т.е. совершается процесс рекогниции, или узнавания. Активированные аминокислоты транспортируются к рибосомам. Предполагается, что рибосомы движутся вдоль молекулы иРНК и как бы считывают принесенную ею информацию, по мере продвижения синтезируя полипептидную цепь. При этом иРНК расщепляется -- и остатки ее используются для синтеза новых иРНК.
Белки в организме синтезируются практически все время, но далеко не с полным использованием потенциальных возможностей. Некоторые участки генома могут быть на то или иное время репрессированы, т. е. выключены присоединением к ДНК различных веществ (в частности, щелочных белков гистонов). Для того чтобы данный участок опять включился в работу, необходимо отщепление этих веществ, т. е. дерепрессия. Кроме того, для начала синтеза белка должна произойти индукция его, которая также осуществляется присоединением к ДНК различных веществ. При этом дерепрессорами и индукторами могут быть самые различные вещества: гормоны, продукты обмена веществ и др. Природа их до конца еще не изучена.
Состав генома строго стабилен и практически не изменяется под влиянием внешних и внутренних воздействий. Тем не менее в ряде случаев возможно и изменение состава ДНК, замена одного основания другим. Такое явление называют мутацией. В этом случае закодированный на данном участке ДНК белок уже не может синтезироваться с прежней последовательностью аминокислот. Он или совсем перестает образовываться, или создается с измененной структурой. При этом он или теряет свои функциональные свойства, или приобретает новые. Мутации могут наносить вред организму, иногда они приводят его даже к гибели (так называемые летальные мутации). Но они могут и совпадать с интересами организма, сообщая ему новые свойства, способствующие лучшему приспособлению его к условиям среды. В настоящее время мутации осуществляются и искусственно, что открывает широкие перспективы для преобразования живых организмов.
5. Взаимоотношения организма со средой
Ни один живой организм нельзя представить вне окружающей среды и вне взаимодействия с нею. Из среды организм получает питательные вещества и кислород, в нее отдает конечные продукты обмена веществ. Среда воздействует на него рядом своих факторов: лучистой энергией (световой, ультрафиолетовой, радиоактивной), электромагнитными полями, атмосферным и гидростатическим (для ведущих водный образ жизни) давлением, температурой, различными химическими веществами. Она же неизбежно предполагает взаимодействие с другими живыми организмами.
От окружающей среды организм непрерывно получает информацию, на которую реагирует в виде ответных действий: движения, речи (у животных -- издания тех или иных звуков), мимики, поедания пищи и т. п. Таким образом, живой организм непрерывно пропускает через себя не только вещества и энергию, но и поток информации.
Воспринимается информация специальными рецеп-торными аппаратами -- органами чувств, затем передается центральной нервной системе, где происходит «узнавание» сигнала и формирование ответной реакции. Информация проходит по каналам связи либо в виде электрических импульсов по нервным волокнам в ту или другую сторону (нервная связь), либо с помощью химических веществ по кровяному руслу (гуморальная связь). При этом нервная связь четко направлена на определенный участок (центр) нервной системы или орган, а гуморальная связь более генерализованная, т. е. направлена не на одну мишень, а сразу на несколько. Воспринимающая возможность различных рецепторов и пропускная способность каналов связи неодинаковы, поэтому поток информации, получаемый рецептором, передаваемый от него к центру и сохраняющийся в памяти, тоже различен.
Количество информации принято измерять в двоичных знаках -- битах. У человека поток информации через зрительный рецептор равен 10 8 -10 9 бит/с. Нервные пути пропускают 2 · 10 6 бит/с. До сознания доходит около 50 бит/с, а в памяти прочно задерживается только 1 бит/с. Таким образом, за 80 лет жизни память удерживает информацию порядка 10 9 бит. Следовательно, мозгом оценивается не вся, а наиболее важная информация. На пути к нему все несущественное устраняется, отфильтровывается.
Получаемая от среды информация определяет работу функциональных систем организма и поведение человека или животного, регулируя их: усиливая или ослабляя.
Для управления поведением человека и активностью его функциональных систем (т. е. выходной информацией, идущей из мозга) достаточно около 10 7 бит/с при подключении программ, содержащихся в памяти.
Жизнедеятельность организма регулируется прежде всего на субклеточном и молекулярном уровнях. Это химическая авторегуляция реакций обмена веществ. Она решает местные задачи и является основой всех видов регуляции. Осуществляется она путем изменения концентраций метаболитов, повышения или снижения активности и количественного содержания ферментов, т. е. усиления или угнетения их синтеза, структурных изменений их и других функциональных белков. Но регуляция происходит и на более высоких уровнях: клетки в целом, ткани, органа, функциональной системы, организма. Чем на более высокий уровень передаются управляющие выходные сигналы, тем более обобщенный характер они носят. У человека и животных высшим центром, управляющим вегетативными функциями (кровообращением, дыханием, движением, выделением гормонов и т.п.), является гипоталамус, расположенный в нижней части промежуточного мозга, имеющий связи с системой желез внутренней секреции, другими частями мозга и центром сознания -- его корой. Поступающие сигналы могут осознаваться или не осознаваться. Управляющие ответы на неосознанные сигналы среды могут осуществляться гипоталамусом и без участия высшего отдела головного мозга -- его коры.
В обычных, привычных для организма условиях среды он находится в уравновешенном с ней состоянии. Он сохраняет постоянство как уровня активности функциональных систем, так и состава своей внутренней среды. Но условия среды могут изменяться в неблагоприятную для организма сторону. Нередко эти изменения происходят очень быстро, а порой несут тревожную информацию. Но организм далеко не всегда может сразу настроиться так, чтобы без существенного вреда перенести новые условия. Так, оказавшись на высоте, где снижено парциальное давление кислорода и углекислоты, под влиянием получаемой информации организм перестраивает свою функциональную активность на изменившиеся уровни: возрастают частота и минутный объем дыхания, частота сердечных сокращений, увеличивается объем циркулирующей крови, но степень насыщения артериальной крови кислородом все равно снижается.
Влияние пониженного барометрического давления на некоторые функции организма человека
Парциальное давление в альвеолярном воздухе, кПа
Насыщение артериальной крови кислородом,%
Если человек впервые попал в горы и не подготовлен к таким условиям, у него вследствие недостатка кислорода (гипоксии) и повышенной отдачи возбуждающей дыхательный центр углекислоты (гипокапнии) может развиться горная болезнь. Сначала появляются общая слабость и головная боль, нарушается восприятие вкуса и запахов (например, начинает казаться, что колбаса пахнет рыбой, а хлеб горек), угнетается психика, затем присоединяются слуховые и зрительные галлюцинации, и человек теряет сознание. Дыхание то останавливается, то (по мере накопления в крови углекислоты) возобновляется, потом (в связи с удалением СО 2 из крови) снова прекращается и т. д. Если человеку при этом не дать кислородный аппарат или не спустить его на более низкий уровень, он может погибнуть. Так было, например, в прошлом веке с экипажем французского воздушного шара «Зенит», занесенного на большую высоту, в результате чего все три человека, находившиеся в гондоле, умерли. Трагически окончилось и восхождение альпинистов одной зарубежной команды, которые, будучи на высоте 6000 м без кислородных приборов, оказались вследствие неожиданного изменения погоды в условиях барометрического минимума циклона, соответствующего высоте более 10 ООО м.
Значит, к пребыванию на высотах, к условиям гипоксии, организм должен адаптироваться постепенно, так как экстренное приспособление организма, не подготовленного к пребыванию в гипоксичееких условиях, не является полным и при большой силе воздействия среды оказывается недостаточным. В наше время ни один альпинист не пойдет на восхождение без предварительной горной акклиматизации.
Приведем пример действия высоких и низких температур. Жизненные процессы возможны только в строго ограниченных рамках температуры тела, например для обезьян это от 13-14 до 43-45°С. Температуры выше и ниже этих границ несовместимы с жизнью. Но и в пределах допустимого диапазона температуры тела в организме возможен ряд неблагоприятных изменений. От температуры тела зависит кинетическая энергия атомов и молекул организма. Если она будет слишком велика (при высоких температурах) или слишком мала (при температурах низких), это неблагоприятно скажется на обмене веществ, на скорости, с которой протекают жизненные процессы, и на клеточных структурах, от которых зависит жизнь. Дело в том, что все ферменты организма имеют определенный температурный оптимум действия, при котором они проявляют наибольшую активность. Этот оптимум близок к температуре тела. При отклонении температуры от оптимума (и в ту, и в другую сторону) активность ферментов снижается. При сдвигах температуры тела изменяются высшие структуры белков и РНК. Так, низкие температуры приводят к нарушению третичной и четвертичной структур многих белков. Если это белок-фермент, то активность его снижается. Высокие температуры так влияют на тРНК, что они теряют способность присоединять и транспортировать аминокислоты, необходимые для синтеза белка. Под влиянием изменений температуры нарушается и взаимодействие гормонов с рецепторными белками тканей, а следовательно, и гормональная регуляция функций организма и его обмена веществ.
Естественно, что все эти изменения приводят к нарушению ряда функций организма. В процессе обмена веществ во всяком организме происходит образование тепла. Источником его является АТФ (см. схем. 1), если она гидролитически расщепляется без трансформации ее химической энергии в энергию какой-либо физиологической работы (движения, электрофизиологических процессов, осмотической работы и пр.). Но не все организмы могут сохранять это тепло, поддерживая постоянство температуры тела. Этой способностью обладают лишь птицы и млекопитающие (как животные, так, естественно, и человек). Их называют гомойотермными организмами. Температура тела беспозвоночных, рыб, амфибий и рептилий зависит от температуры окружающей среды и практически равна ей. Это пойкилотермные организмы. Поэтому термический оптимум, в котором особь ведет активную жизнь, у гомойотермных значительно шире, чем у пойкилотермных, хотя границы выживаемости в условиях температурного максимум- и минимум-пессимума практически одинаковы (рис. 3).
При низких температурах (но совместимых с жизнью) пойкилотермные животные впадают в спячку или крайне малоактивны. Например, муха цеце при температуре среды 21 0 C активно летает, с 20 до 14 0 C взлетает лишь тогда, когда чем-то обеспокоена, при 10 0 G способна только бегать, а при 8 0 C и ниже неподвижна. Не имея возможности регулировать температуру тела и поддерживать ее на постоянном уровне, пойкилотермные при изменении термических условий стараются активно избегать крайних температур. Например, рыбы, живущие в прибрежной зоне тропических морей, во время отлива, когда вода сильно прогревается, уходят в более глубокие места, где вода прохладнее, а рыбы замерзающих рек зимой тоже уплывают в глубину, где вода теплее, чем в местах соприкосновения ее со льдом. Амфибии и рептилии в прохладное время греются на солнце, а в жаркое время прячутся в тень или укрываются в норах. Наконец, некоторому поддержанию температуры тела у пойкило-термных помогает то, что они близко располагаются между собой. В летнее время пчелы в улье находятся вдали друг от друга и при этом вентилируют пространство взмахами крыльев, что способствует лучшему испарению влаги и охлаждению. Зимой же они собираются вместе, образуя плотную массу, ограничивая тем отдачу своего тепла. По данным японских исследователей, температура в улье поддерживается на уровне 18---22 0 C при внешней температуре от 11 до --7 °С. Все это помогает уклоняться от вредоносного действия термического фактора, но не делает животных менее чувствительными к нему.
Иное дело гомойотермные организмы, у которых наряду с мощными возможностями теплопродукции существует и весьма совершенная система терморегуляции. Образование тепла у них, как и у всех животных, происходит за счет окислительных процессов и расщепления АТФ, а отдача его -- тремя путями: конвекцией, т. е. проведением от более теплого организма к более холодной среде (30%), излучением (45%) и испарением воды, способствующим охлаждению (25%). При этом 82% тепла отдается через кожу, 13% -- через органы дыхания, 1.3% -- с мочой и испражнениями, 3.7% идет на согревание съеденной пищи и выпитой воды. При повышении внешней температуры теплопродукция уменьшается, а теплоотдача увеличивается; при понижении же ее возрастает теплопродукция и падает теплоотдача. Это основное отличие гомойотермных от пойкилотермных: с повышением внешней температуры интенсивность обмена веществ у последних становится больше, а при понижении ее резко уменьшается.
Поддержание постоянства температуры тела у гомойотермных осуществляется как на органном уровне, так и на субклеточном -- молекулярном. Регуляция теплоотдачи проведением и излучением основана на изменении кожного кровообращения. При высоких внешних температурах сосуды внутренних органов суживаются, а кожные расширяются, что усиливает теплоотдачу; при низких температурах -- наоборот, и теплоотдача резко сокращается. Отдача тепла испарением обеспечивается потоотделением, так как испарение пота охлаждает организм. Испарение 1 г пота отнимает у организма около 2.0 кДж тепла. При повышении внешней температуры потоотделение резко увеличивается: до 0.5 -- 1.0 л/ч, т. е. доходит до 24 л/сут. У животных, не имеющих потовых желез (например, у собак), местом испарения влаги является слизистая оболочка языка и полости рта. Всем известно, что во время жары собака раскрывает пасть, высовывает язык и учащенно дышит: вместо испарения пота происходит испарение слюны.
Все эти механизмы теплоотдачи регулируются центральной нервной системой -- тепловым центром, расположенным в гипоталамусе. Если мозг перерезать ниже гипоталамуса, то гомойотермное животное становится пойкилотермным. Тепловой центр состоит из двух центров: теплопродукции и теплоотдачи. Раздражение первого приводит к повышению температуры, увеличению газообмена, сужению кожных сосудов и ознобу, усиливающему теплообразование в мышцах; раздражение второго -- к одышке, потоотделению, расширению кожных сосудов и падению температуры тела. Возбуждение обоих центров происходит и рефлекторно: в результате сигналов от кожных рецепторов -- термочувствительных нервных окончаний, и химическим путем: при транспортировке кровью гормонов и некоторых других химических веществ.
Однако, несмотря на все свойственные гомойотермным механизмы терморегуляции, резкие и значительные изменения температуры среды могут быть гибельными для организма. При высоких температурах резко сокращается отдача тепла конвекцией. Уже при 30 0 C она затруднена, а при температуре выше 37 0 C невозможна. В условиях высокой влажности затрудняется и теплоотдача испарением пота. При одинаковой внешней температуре во влажном климате субтропиков и тропиков организм переносит высокую температуру среды труднее, чем в сухом (например, в Средней Азии или Египте). В парной бане, где влажность доходит до 90--97%, человек еле выдерживает температуру 45--50 °С, а в сауне, где воздух сухой, при 100 и даже 120 0 C испытывает удовольствие. Длительное пребывание в условиях высокой температуры при недостаточной теплоотдаче приводит к перегреванию организма, повышению температуры тела выше 40 °С, нарастанию слабости, нарушению деятельности сердца и центральной нервной системы, сгущению и резкому повышению вязкости крови (из-за большой отдачи воды организмом), потере сознания, судорогам. Если не оказать срочную п
Организм и внешняя среда реферат. Биология и естествознание.
Курсовая работа по теме Акционерное общество в рыночной экономике: создание и управление
Дипломная работа: Применение управленческого консультирования в комплектовании штатов и отборе персонала
Реферат по теме Интернет как социальные медиа
Реферат: Роль стихотворений в романе "доктор Живаго". Скачать бесплатно и без регистрации
Курсовая работа по теме Характер эмоциональной оценки ребенка межличностных отношений в семье
Курсовая работа: Создание базы данных Научные конференции
Контрольная Работа На Тему Разновидности И Принцип Действия Экстракторов
Сущность Адаптивного Обучения Дипломная Работа
Курсовая работа: Корпоративные и государственные облигации
Совершенствование Техники Бега На Короткие Дистанции Реферат
Учебное Пособие На Тему Англійська Граматика В Таблицях
Политика И Культура Реферат
Пособие по теме Методы исследования и симптоматология при заболеваниях сердечнососудистой системы
Дипломная работа по теме Проект разработки запасов месторождения в границах шахтного поля
Пир Платон Эссе
Курсовая Работа На Тему Биоэтические Аспекты Использования Животных В Биомедицине
Реферат: Технические продовольственные культуры мира
Реферат по теме Чернышевский
Лекарственная Помощь Реферат
Курсовая работа по теме Використання сучасних напрямів хореографії на заняттях з ритміки
Видовой состав и экологическая структура карабидокомлексов промышленной территории - Биология и естествознание курсовая работа
Історія розвитку зоології в ХІХ-ХХ в - Биология и естествознание курсовая работа
Психология труда - Безопасность жизнедеятельности и охрана труда презентация


Report Page