Оптоволоконные системы в телекоммуникациях - Коммуникации, связь, цифровые приборы и радиоэлектроника курс лекций

Оптоволоконные системы в телекоммуникациях - Коммуникации, связь, цифровые приборы и радиоэлектроника курс лекций



































Конструкция волоконно-оптического кабеля. Распространение различных мод по оптоволокну. Лучевой подход распределения света по оптическому волокну. Затухание световых сигналов. Мультиплексирование с разделением по длине волны. Подводные кабельные системы.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Лекция 1. Введение. Передача сигнала по оптическому волокну
Оптическое волокно -- среда передачи, используемая в современных наземных сетях связи. Оно позволяет передавать огромное количество информации. Если сопоставить его полосу пропускания и емкость канала связи, считая что 1 бит/с соответствует 1 герцу полосы, то можно прийти к выводу, емкость такого канала близка к бесконечности. Фактически, весь используемый радиочастотный спектр (считаем, что он укладывается в полосу 3 кГц - 200 ГГц) может быть передан по одному волокну.
Оптическое волокно хорошо вписывается в схему цифровой передачи. Например, передача по коаксиальному кабелю и паре проводов требует значительно больше повторителей (регенераторов) на условную единицу длины, чем если бы она велась по оптическому волокну. Это соотношение колеблется от 20:1 до 100:1. В результате, накопленный джиттер (дрожание фазы фронтов импульсов) при передаче по оптоволокну значительно меньше, чем при передаче по медным проводам. Это происходит потому, что накопленный систематический джиттер является функцией числа последовательно включенных повторителей.
При современной технологии емкость волокна (эквивалентная битовой скорости) может достигать 10 Гбит/с в расчете на один битовый поток. Используя при этом технологию волнового мультиплексирования можно пропить по одному волокну не менее 80 таких потоков. Простое умножение дает нам цифру эквивалентной емкости 800 Гбит/с. Значит то же умножение 80, но на 40, дает нам цифру эквивалентной емкости 3,2 Тбит/с на одно волокно. Предположим, что волоконно-оптический кабель (ВОК) имеет 24 волокна, из которых 4 резервных. Тогда оставшиеся 20, позволяют организовать 10 симметричных полнодуплексных (двунаправленных) канала. Таким образом, при емкости 3,2 Тбит/с на волокно, получаем общую емкость ВОК в 32 Тбит/с. Эта емкость могла бы удовлетворить на некоторое время предъявляемые в настоящее время требования по емкости канала связи.
При самой сложной технике кодирования (упаковки) и использовании 18 ГГц несущей в полосе 40 МГц можно передать в настоящее время поток в 655 Мбит/с. Если допустить передачу по 10 таких несущих в одну и в другую стороны, то общая транспортная емкость такой системы будет равна 6 Гбит/ с, что составит всего 1/500 емкости, передаваемой по одному ВОК. При этом, конечно, волоконно-оптическая система передачи (ВОСП), использующая современные методы, не использует аналогичную технику упаковки бит.
В таблице 1 приведено сравнение аналогичных рисунку 2 блоков. В ней приведены блоки, последовательно формирующие указанную выше модель. Это сравнение показывает, что во многих отношениях ВОСП не так уж существенно отличается от проводной (медно-жильной) системы или радиосистемы передачи.
Операции в блоках могут быть аналоговыми или цифровыми. Многие кабельные телевизионные системы используют аналоговый формат, со временем, однако, он все больше меняется на цифровой. Другая форму аналоговых приложений - передача радиосигналов в их естественной форме без использования частотной модуляции.
Возвращаясь к рисунку 2, опишем кратко функцию каждого блока на блок-схеме, двигаясь слева направо. Электрооптический преобразователь (ЭОП) преобразует цифровой электрический сигнал в оптический NRZ- или RZ-сигнал или сигнал, использующий манчестерский код. Он также устанавливает требуемый уровень постоянного смещения входных импульсов.
Таблица 1 - Сравнение по методу аналогий
Радио/беспроводная/ проводная линия связи
Волоконно-оптическая среда передачи
Схема формирования выходного сигнала
Модулятор или формирователь сигнала
Источник сигнала (передатчик или модем)
Передача радиосигнала через атмосферу или радио/аудио сигнала по медным проводам
Выход приемника или модема и формирователь сигнала
Все три случая требуют како-го-то преобразования формы сигнала, напр., AMI b NRZ
Выход источника сигнала, как правило низкого уровня
Порог срабатывания приемника во всех 3 случаях определяет показатели ошибок
В некоторых местах по ходу изложения этот источник назван передатчиком. Существуют два различных источника света, широко используемых сегодня на практике: светоизлучающий диод -- СИД (LED) и лазерный диод -- ЛД (LD). Оба источника относятся к устройствам со сравнительно низким уровнем выхода, лежащим в диапазоне от -10 дБм до +6 дБм. Они используют модуляцию по интенсивности, которую мы, при первом знакомстве, будем называть модуляцией типа включено-выключено.
Этот источник соединяется с детектором светового сигнала на удаленном конце через одно из оптических волокон в ВОК (другие волокна используются для других целей, в том числе и для резервирования). Оптические волокна внутри кабеля могут быть как одномодовыми, так и многомодовыми. Физические размеры волокна (диаметр его сердцевины) определяют какого оно типа. Существуют как экономические, так и эксплуатационные соображения, которые могут определять, какой тип волокна нужно использовать для конкретного проекта.
2) До скольки может достич эквивалентная битовая скорость волокна?
3) Перспективность волоконно-оптических линии передачи.
Разработка световодных систем и их опытная эксплуатации на железнодорожном транспорте началась в начале 80-х годов. В этих системах связи сигналы, несущие информацию, передают по оптическим световодам. Последние представляют собой тонкие нити специальной конструкции, изготовленные из диэлектрического материала, прозрачного для применяемого излучения (кварцевое или многокомпонентное стекло, полимер, некоторые галоидные соединения). Волоконные световоды из особо чистого кварцевого стекла (ОСЧ-кварцевого стекла) называются оптическими волокнами и составляют основу оптических кабелей.
Перспективность волоконно-оптических линий передачи (ВОЛП) обусловлена большой пропускной способностью волокна, защищенностью от внешних электромагнитных полей, вследствие чего не требуется применять специальные меры по защите от опасных напряжений линий электропередачи и электрифицированных железных дорог; возможность прокладки кабеля между точками с большой разностью потенциалов; высокой помехозащищенностью цифровых линейных трактов; малой металлоемкостью и отсутствием дефицитных цветных металлов (медь, свинец) в кабеле; малым значением коэффициента затухания в широкой полосе частот, что обеспечивает большие длины регенерационных участков по сравнению с электрическими кабелями (10--150 км вместо 2--6 км); небольшими размерами кабеля.
Структурная схема ВОЛП показана на рисунке 1. Для работы одной многоканальной системы связи требуются два оптических волокна (ОВ): по одному передаются сигналы в направлении от А к Б, по другому -- в обратном. В оконечных пунктах передающий оптоэлектронный модуль (ПОМ) предназначен для преобразования электрических сигналов в оптические. Приемный оптоэлектронный модуль (ПРОМ) предназначен для преобразования оптических сигналов в электрические.
Основными элементами приемопередающих модулей являются источник излучения с длиной волны, соответствующей одному из минимумов полных потерь в оптическом волокне, и приемник излучения. Оба модуля содержат электронные схемы для преобразования электрических сигналов и стабилизации режимов работы и разъемные соединители. Линейный тракт содержит оптический кабель (ОК), в который через примерно равные промежутки включены линейные регенераторы, а в случае использования волнового уплотнения оптических волокон -- оптические усилители.
Дальность непосредственной связи по ВОЛП, так же, как и длина регенерационного участка, зависит от параметров оптических волокон и энергетических характеристик приемопередающих устройств.
Источник оптического излучения. Основным элементом передающего оптоэлектронного модуля является источник оптического излучения. Работа различных источников оптического излучения основана на инверсной заселенности энергетических уровней. Создание инверсной заселенности уровней называется накачкой.
При переходе атома с более высокого энергетического уровня (Е2) на более низкий (Е1) происходит излучение на частоте щ = (Е2 - E1)·h, где h = 1,05 10-34 Дж·с -- постоянная Планка. Переходы с верхнего уровня на нижний могут быть спонтанными (самопроизвольными), что характерно для обычных светоизлучающих диодов (светодиодов), а также спонтанными и вынужденными (суперлюминесцентные светоизлучающие диоды) и только вынужденными (лазеры).
Излучение обычных светодиодов является некогерентным и слабонаправленным, ширина спектра излучения составляет (20--40) нм. Суперлюминесцентные светодиоды имеют более высокую яркость и малую излучающую поверхность по сравнению с обычными светодиодами. Длина волны светового излучения зависит от состава полупроводникового материала.
В качестве направленных источников излучения наибольшее применение получили полупроводниковые инжекционные лазеры. Они легко позволяют осуществить внутреннюю модуляцию оптического излучения по интенсивности. Ширина спектра излучения полупроводникового лазера менее 2 нм.
Выбор источника излучения определяется областью применения системы передачи. Светодиоды используют в системах, предназначенных для работы на сравнительно небольшую дальность (примерно 10 км) и скорость передачи до 200 Мбит/ с. Светодиоды обладают лучшей линейностью характеристик, большим сроком службы, более слабой температурной зависимостью излучаемой мощности, чем лазеры. К недостаткам светодиодов следует отнести малую мощность излучения и невысокий к.п.д. согласования с оптическим волокном.
Лазерные источники излучения применяют преимущественно в системах передачи с большой дальностью и высокой скоростью передачи. Они обеспечивают высокий к.п.д. согласования с оптическим волокном.
Приемник оптических сигналов. Основным элементом приемного оптоэлектронного модуля является приемник оптических сигналов. В качестве приемника используют pin-фотодиоды и лавинные фотодиоды. Известно, что в р-п переходе, на который подано обратное смещение, существует зона, в которой нет свободных носителей заряда (обедненная зона). Поглощение фотона в этой зоне сопровождается возникновением пары носителей зарядов -- электрона и дырки, которые под действием постоянного электрического поля, созданного внешним источником напряжения смещения, перемещаются к противоположным зажимам фотоприемника, образуя ток во внешней цепи. Этот ток и является сигналом на выходе фотодиода, его значение пропорционально мощности принимаемого светового излучения.
Когда световая мощность очень мала (нановатты), фототоки также малы (наноамперы), и в этом случае для уменьшения влияния шума (тепловые шумы, квантовые шумы) используют внутреннее усиление в фотоприемнике (лавинный фотодиод) за счет эффекта лавинного умножения носителей заряда. Лавинные фотодиоды усиливают первичный фототок прежде, чем на полезный сигнал накладываются шумы. Однако они требуют более высокого напряжения питания и его стабильности.
Модель волоконно-оптической системы передачи
Рисунок 2 представляет простую модель ВОСП. Не нужно большого воображения, чтобы увидеть, что ВОСП аналогична некой радиосистеме или беспроводной системе передач.
ВОК поставляется на катушках (или барабанах), представляющих одну кабельную секцию, которая имеет длину 1, 2, 5 и 10 км. Соединительные оптические разъемы (или коннекторы) используются на концах кабелей (с обоих сторон) для соединения кабеля с указанными источником и детектором. Для длинных линий (ВОСП) может потребоваться несколько таких катушек. Строительные длины соединяются друг с другом путем сращивания. В связи с этим, обычно, рассматриваются два наиболее важных параметра: вносимые потери и возвратные потери. Вносимые потери, вызванные наличием сростка, должны быть меньше 0,1 дБ, тогда как аналогичные потери, вызванные наличием оптического разъема, должны быть меньше 1 дБ. Возвратные потери (или потери на отражение), определяющие уровень согласования импедансов между сростком и кабелем, должны быть не менее 30 дБ.
Приемник, или детектор светового излучения на удаленном конце волоконно-оптической линии, является, по сути, счетчиком фотонов. Большинство ВОСП в настоящее время используют два типа приемников: РIN-диод и лавинный фотодиод (ЛФД). PIN-диод, в целом, проще и менее чувствителен к изменению окружающей среды, так как не имеет внутреннего усиления. ЛФД - более сложен и более чувствителен к изменению окружающей среды, но может обеспечить 10-20 дБ дополнительного усиления. Проектировщик ВОСП выбирает порог приемника, руководствуясь заданным уровнем коэффициента ошибок по битам -- BER.
Порог приемника -- уровень входной мощности, выраженный отрицательной величиной дБм и зависящий от ряда факторов: типа приемника, в какой-то мере, его конструкции, скорости передачи и, конечно, уровня BER. При проектировании системы нужно стараться, чтобы уровень сигнала на входе приемника не был избыточным. На коротких секциях часто требуется использовать оптический аттенюатор последовательно с приемником, чтобы сместить уровень входного сигнала в желаемый диапазон.
Основной недостаток ВОСП -- их незащищенность. Потери при дожде. Широкая полоса используемых частот в радиосистемах и беспроводных системах достигается на частотах выше 10 ГГц, что приводит к уменьшению длины линии передачи, вызванному потерями на поглощение сигнала при дожде; чем выше частота, тем больше ограничений на время доступности (т.е. надежного распространения). Конечно, для проводных систем и ВОСП время доступности от этого не страдает. ЭМС. Этот показатель имеет два аспекта: чувствительность к излучению и генерация излучения. Генерация излучения означает, что система может быть источником электромагнитных помех (RFI). Чувствительность к излучению ясно говорит о незащищенности от электромагнитных помех. Для радиосистем имеет место, как генерация излучения, так и чувствительность к излучению, часто оба явления приводят к проблемам. Проводные системы также чувствительны к электромагнитному излучению. ВОСП -- напротив, не излучают и нечувствительны к электромагнитным помехам.
3) Ширина спектра излучения полупроводникового лазера.
Лекция 3. Конструкция волоконно-оптического кабеля
Конструкция и классификация оптических волокон
Сердцевина и отражающая оболочка. Оптическое волокно (ОВ) представляет собой нить, состоящую из сердцевины и отражающей оболочки изготовленных из ОСЧ-кварцевого стекла. Еще в процессе вытяжки на него наносится первичное защитное покрытие.
Сердцевина -- это область в центре волокна, показатель преломления которой больше, чем у оболочки, и в которой распространяется большая часть энергии светового сигнала.
Оболочка -- это область волокна вокруг сердцевины, которая чаще всего изготавливается с постоянным и всегда более низким, чем у сердцевины, показателем преломления. Граница двух областей с более высоким и низким показателями преломления создает световодную структуру, удерживающую большую часть света в зоне сердцевины.
Световодом может быть и более простая конструкция, например, сердцевина из стекла и отражающая оболочка из окружающего воздуха. Подобный световод используется при подсветке струй фонтана, где сердцевиной служит струя воды, а отражающей оболочкой -- воздух. Однако световод такой конструкции не может быть использован для передачи сигналов. В нем будут большие потери вследствие загрязнения поверхности стекла пылью и водяным конденсатом, а также световод будет обладать малой пропускной способностью из-за большой величины дисперсии.
Наличие кварцевой отражающей оболочки, имеющей показатель преломления чуть меньше (не более нескольких процентов), чем у сердцевины, приводит к трем последствиям, два из которых положительны:
уменьшает дисперсию (уменьшает уширение передаваемых импульсов), и одно отрицательно:
уменьшает долю энергии, захватываемой сердцевиной от светоизлучающих диодов.
Конструкция оптического волокна показана на рисунке 3. С точки зрения передачи сигналов ОВ представляет собой диэлектрический волновод, работающий в оптическом диапазоне волн. Канализация распространения света создается путем скачкообразного или плавного изменения показателя преломления (диэлектрической проницаемости) кварцевого стекла в поперечном сечении волновода. В оптическом диапазоне частот принято употреблять понятие показателя преломления (n) вместо диэлектрической проницаемости, которые количественно связаны между собой соотношением
где еr -- относительная диэлектрическая проницаемость. Здесь и далее через п обозначается абсолютный (фазовый, в отличие от группового) показатель преломления равный отношению:
Рисунок 3 - Конструкция оптического волокна
Условия распространения светового импульса по оптическим волокнам определяются законом изменения показателя преломления в поперечном сечении сердцевины, величиной разности показателей преломления в центре сердцевины и отражающей оболочки, а также диаметром сердцевины и толщиной отражающей оболочки.
Для сохранения параметров передачи ОВ при их упаковке в кабель, а также в процессе прокладки и эксплуатации кабеля, оптические волокна необходимо защитить от механических воздействий. Для этого, кроме первичного защитного покрытия, используются также защитные оболочки.
Первичное защитное покрытие и защитные оболочки оптических волокон. Первичное покрытие обычно изготавливается двухслойным. Внутренний мягкий слой демпфирует механическую нагрузку, действующую на волокно, и облегчает снятие первичного покрытия. Наружный твердый слой устойчив к абразивным воздействиям. Показатель преломления материала первичного покрытия берется большим, чем у отражающей оболочки для поглощения в ней нежелательных световых волн, распространяющихся по отражающей оболочке.
В оптическом кабеле волокна требуют дополнительных мер защиты от механических воздействий. Это достигается за счет применения защитных оболочек, скрутки оптических волокон и использования в конструкции кабеля специальных упрочняющих элементов.
Волокна с первичным защитным покрытием могут иметь дополнительные защитные оболочки в виде полимерной модульной трубки, в которой волокна лежат свободно (рисунок 4), модульной ленты (рисунок 5) или защитная оболочка наносится непосредственно на первичное покрытие, так называемая оболочка типа плотный (рисунок 4) или усиленный буфер (рисунок 5).
Модульную трубку, заполненную гелем, с одним оптическим волокном называют одноволоконным оптическим модулем (рисунок 3), а с несколькими волокнами - многоволоконным оптическим модулем. Каждое волокно в модуле и сам модуль имеют цветной код для идентификации.
Вариантом усовершенствования одноволоконного модуля с точки зрения плотности упаковки волокон является ленточная конструкция. Ленточная конструкция позволяет производить одновременную сварку нескольких волокон, что убыстряет процесс монтажа в случае большого числа волокон в ОКС. При ленточной конструкции два или более волоконных световода объединяются в одной плоскости параллельно друг другу с одинаковым шагом в единый многосветоводный модуль. Эти ленточные модули могут быть объединены в стопку с прямоугольным профилем или заключены в пазы профильного сердечника оптического кабеля.
Защитные оболочки типа полимерная модульная трубка или лента применяются в кабелях для наружной прокладки, а типа плотный или усиленный буфер для прокладки внутри помещений.
1) Классификация оптических волоконн.
2) Чем определяются условия распространения светового импульса по оптическим волокнам;
3) Первичное защитное покрытие и защитные оболочки оптических волоконн.
Лекция 4. Классификация волоконно-оптического кабеля
Существуют три основных типа оптического волокна (ОВ), отличающихся числом мод и своими физическими свойствами:
многомодовое волокно со ступенчатым профилем показателя преломления;
многомодовое волокно с градиентным профилем показателя преломления.
Обратим внимание на то, что внешний диаметр обоих типов волокон (одномодового и многомодового) одинаков и составляет номинально 125 мкм. Однако существует огромная разница в диаметрах сердцевины: 50 мкм для многомодового волокна и 8,6 - 9,5 мкм для одномодового волокна. На практике существуют и другие значения диаметров многомодового волокна, наиболее используемым из них является 62,5 мкм.
На рисунке 6 показана конструкция и профили показателей преломления: ступенчатый (рисунок 6(a)) и градиентный (рисунок 6(б)) для многомодового волокна. Ступенчатый профиль показателя преломления характеризуется резким (в виде ступеньки) изменением показателя преломления (от n1 к n2) на границе раздела, тогда как градиентный -- плавным изменением.
Многомодовое волокно со ступенчатым профилем показателя пpeломления является более экономичным по сравнению с градиентным волокном. Для многомодового волокна со ступенчатым профилем показателя преломления коэффициент широкополосности, характеристика, рассмотренная выше, имеет порядок 10--100 МГц·км, при условии, что повторители расположены на расстоянии 10 км, можно передать полосу частот шириной от 1-10 Мгц.
Градиентный профиль показателя преломления делает многомодовое волокно существенно дороже, чем при ступенчатом профиле, однако дает возможность улучшить коэффициент широкополосности. Так, если в качестве источника света используется лазерный диод, то можно довести коэффициент широкополосности до 400-1000 МГц · км. Если же в качестве источника используется СИД, имеющий существенно более широкий спектр излучения, то с тем же градиентным волокном можно рассчитывать на коэффициент широкополосности порядка 300 МГц · км или выше. Принципиальным ограничивающим фактором в этом случае является материальная дисперсия.
Рисунок 6 - Конструкция и профили показателей преломления: ступенчатый (а) и градиентный (б) для многомодового волокна
Профили показателя преломления и характер распространения мод для указанных трех типов ОВ на основе кварцевого стекла.
Одномодовое волокно проектируется так, что в нем может распространяться только одна мода. Благодаря этому V < 2,405. В таком волокне нет модовой дисперсии просто потому, что распространяется только одна мода. Типично, мы можем встретить волокно с показателями преломления n1 = 1,48 и п2 = 1,46. Если бы длина волны оптического источника света была 820 нм, то для осуществления одномодовых режимов работы потребовалось бы волокно 2,6 мкм, что, конечно мало для современных систем.
Распространение различных мод по оптоволокну
Многомодовое волокно, с его относительно большой сердцевиной, допускает распространение по волокну нескольких или многих мод. Некоторые из этих мод могут распространяться в волокне на небольшие расстояния и потом исчезать; другие -- могут распространяться на всю длину волокна. Основная проблема возникает тогда, когда эти моды достигают удаленного приемника. Рассмотрим импульс, прошедший по волокну некоторое расстояние. Этот импульс несет в себе световую энергию нескольких мод. Мода самого низкого порядка достигнет приемника быстрее всего. Остальные моды за счет задержки вносят свой вклад позднее. Прибывший импульс, составленный компонентов, распространяющихся дольше, приводит к уширению прибывшего вначале импульса, составленного из моды самого низкого порядка.
Суть проблемы в том, что каждый из этих импульсов, или его отсутствие, представляет двоичные 1 и 0. Пусть наличие импульса соответствует 1, а его отсутствие -- 0. И пусть мы передаем последовательность вида 10. Расшитый за счет дисперсии импульс двоичной 1 займет и соседнюю битовую позицию, которая исходно должна быть двоичным 0. Возникает типичная битовая ошибка. Это упрощенное описание показывает вредное влияние дисперсии, взывающей межсимвольную интерференцию.
Характеристики оптического волокна
Оптические характеристики. Как отмечалось ранее, в одномодовом волокне распространяется только одна мода на рабочей длине волны. В этой категории оптического волокна мы имеем следующие типы: стандартное одномодовое волокно, волокно со сдвигом нулевой дисперсии и волокно с малой ненулевой дисперсией. Они зависят от конструкции волокна. При тестировании этих типов волокон, нужно помнить, что источник света (лазерный диод или СИД) не является строго монохроматичным, а его выходное излучение покрывает определенную полосу длин волн. В результате того, что время распространения спектральных компонент различно, происходит уширение импульсов. Степень такого уширения пропорциональна спектральной ширине используемого источника. Близкие к монохроматическим (использующие одну продольную моду) лазерные источники (SLM-лазеры), как правило, это лазеры с распределенной обратной связью, допускают нормальную работу с одномодовым волокном на длинах волн, которые отстоят от длины волны нулевой дисперсии дальше, чем это позволяют делать лазеры, использующие несколько продольных мод (MLM-лазеры).
Механические характеристики. Одним из основных свойств оптического волокна является его прочность. Однако, в процессе изготовления на поверхности волокна появляются микроскопические изъяны, которые заметно ухудшают базовую прочность. Благодаря процессу производства кабеля и укладке волокна в кабель, происходит дальнейшее ухудшение прочности волокна. Ухудшение прочности и обрыв волокна в результате роста изъянов (трещин) на поверхности можно объяснить тремя причинами: динамической усталостью, статической усталостью и старением в отсутствие нагрузки. Многие монтажники ВОК работали раньше на монтаже медных кабелей, которые имеют совершенно отличные механические характеристики. Динамическая усталость возникает при кратковременном приложении значительных растягивающих усилий. Это соответствует типичному сценарию, когда ВОК затягивается на место через кабелепровод или протягивается вдоль направляющих труб/лотков. Статическая усталость, наоборот, приобретается тогда, когда кабель длительное время находится под постоянной нагрузкой. Старение в отсутствие нагрузки относится к такому типу ухудшения прочности, который происходит в условиях отсутствия нагрузки на кабель, но под действием высокой окружающей температуры и влажности.
1)Одноловолоконный оптический модуль.
Лекция 5. Распределение света по оптическому волокну
Два подхода к объяснению процесса распространения света в оптических волокнах. Исходя из двойственной природы света, процесс распространения светового излучения в световодах можно изучать, используя методы геометрической оптики (лучевой подход) или волновые уравнения электромагнитного поля (электромагнитный подход). Для расчета электромагнитных процессов в световодах используют ряд математических моделей, отличающихся друг от друга сложностью математического аппарата и наглядностью. Лучевой подход основан на представлении источника излучения и светового луча соответственно в виде точки и линии. Лучевой подход наглядно показывает процессы распространения света по световодам, однако им можно пользоваться только при соблюдении условия малости длины волны по сравнению с радиусом сердцевины волокна. Поэтому лучевой моделью можно пользоваться при изучении распространения света в многомодовых волокнах, где указанное условие соблюдается.
В случае одномодовых волокон требуется электромагнитный подход, т.е. решение волновых уравнений при заданных граничных условиях.
При лучевом подходе распространение света по волокну трактуется как различные траектории лучей. При электромагнитном подходе этим лучам соответствуют различные типы волн (моды). Термин мода представляет собой физическое и математическое понятие, связанное с определенным типом электромагнитной волны. Мода оптического волокна, как физическое понятие характеризует тип волны оптического излучения, распространяющегося по ОВ и характеризующегося определенной структурой поля в его поперечном сечении и определенной фазовой скоростью. С математической точки зрения мода -- каждое из решений волновых уравнений. В зависимости от размеров и физических характеристик световода в нем возможно распространение нескольких мод или только одной моды. Электромагнитный подход, как более общий, дает ответы на вопросы, которые невозможно получить в рамках лучевого подхода, например, объяснение природы волноводной дисперсии.
Как фактически распространяется свет по ОВ лучше всего объяснить, используя закономерности геометрической оптики и закон Снеллиуса. Упрощенно можно сказать, что когда свет переходит из среды с большим показателем преломления в среду с меньшим показателем преломления, преломленный луч отклоняется от нормального. Это, например, происходит тогда, когда луч из воды выходит в воздух, отклоняясь от нормального луча на границе раздела между двумя средами. Чем больше становится угол падения на границу раздела, тем больше отклоняется преломленный луч от нормального луча, до тех пор пока преломленный луч не достигает угла в 90°, по отношению к нормальному, и начинает скользить по поверхности раздела. Рисунок 7 демонстрирует картину при различных углах падения. Рисунок 7(a) показывает такой угол падения, при котором преломленный луч полностью уходит в свободное пространство. Рисунок 7(б) показывает такой угол падения, который называется критическим, когда преломленный луч начинает скользить по границе раздела. Рисунок 7(b) демонстрирует случай полного внутреннего отражения (ПВО). Это происходит тогда, когда угол падения превышает критический. Стеклянное ОВ, используемое для целей передачи света, требует использования полного внутреннего отражения.
Другое свойство ОВ, характерное для определенной длины волны, нормализованная частота V:
где а -- радиус сердцевины, п2 для ОВ без оболочки = 1, Д = (п1 - п2)/пr
Рисунок 7- Путь лучей для нескольких углов падения, п1 > п2, где п1 и п2 - показатели преломления двух различных сред
Член в уравнении называется числовой апертурой (NA). В сущности, числовая апертура используется для того, чтобы описать светособирающую способность волокна. Фактически, количество оптической мощности, воспринимаемой ОВ изменяется пропорционально квадрату NА. Интересно заметить, что числовая апертура ОВ не зависит от его физических размеров.
1) Какие два подхода существуют в процессе распространения света в оптических волокнах?
3) Отражение от зеркальной поверхности.
Лекция 6. Лучевой подход распределения света по оптическому волокну
Основная его идея заключается в том, что в оптическом диапазоне частот с достаточно большой точностью распространение волн можно представить как движени
Оптоволоконные системы в телекоммуникациях курс лекций. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Дипломная работа по теме Разработка модели системы мониторинга пользовательских запросов в крупной социальной сети Рунета — ООО 'В Контакте'
Подсказки Для Сочинения 9.3
Проверить Сочинение На Уникальность Онлайн
Дипломная работа по теме Игрушка как средство развития восприятия детей старшего дошкольного возраста
Краткое Эссе Сколько Слов
Организация работы администрации
Реферат по теме Формы организации физического воспитания школьников
Дипломная работа: Финансовые методы управления затратами на предприятии
Конкурс Сочинений На Тему Вов 2022
Реферат: Политический режим и его типы. Скачать бесплатно и без регистрации
Контрольная работа по теме Толпяк
Сочинение Про Поэта
Реферат: Операция Тайфун
Контрольная Работа По Итогам 2 Класса
Дополнительное Профессиональное Образование Дипломная Работа
Математика 3 Класс Контрольная Работа Ситникова
Реферат по теме Мозаичное мощение в храмовых интерьерах Ливана: античное христианство.
Химия Практическая Работа 4 Класс
Реферат: Перспективы сближения регионов по величине валового регионального продукта на душу населения
Дипломная работа по теме Управление процессом реализации продукции на предприятии (на примере КУП 'УКС-комплектация')
Проектирование и строительство двух воздушных линии электропередачи (500 кВ) - Геология, гидрология и геодезия дипломная работа
Методы переноса генетического материала в клетки млекопитающих - Биология и естествознание учебное пособие
Портреты российских самодержцев в творчестве В.О. Ключевского - История и исторические личности курсовая работа


Report Page