Определение коэффициента восстановления при ударе твердых тел - Физика и энергетика лабораторная работа

Главная
Физика и энергетика
Определение коэффициента восстановления при ударе твердых тел
Теоретические сведения о физических явлениях, возникающих при столкновении твердых тел. Проверка законов сохранения импульса и энергии для случаев прямого и косого центральных ударов тел. Определение для заданных случаев коэффициента восстановления.
посмотреть текст работы
скачать работу можно здесь
полная информация о работе
весь список подобных работ
Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВОССТАНОВЛЕНИЯ ПРИ УДАРЕ ТВЕРДЫХ ТЕЛ
Цель : исследовать центральное соударение тел, проверить выполнение законов сохранения импульса и энергии, определить коэффициент восстановления.
Оборудование : планшет с координатной сеткой, ударный механизм, набор шайб, весы.
Удар твердых тел - совокупность явлений, возникающих при столкновении двигающихся твердых тел, а также при некоторых видах взаимодействия твердого тела с жидкостью или газом. Под столкновением здесь следует понимать самые разнообразные процессы взаимодействия между телами при условии, что на бесконечно большом расстоянии друг от друга тела являются свободными. Если линия удара проходит через центры масс обоих тел, то удар называется центральным . Если оба тела двигались по линии удара, удар называется прямым , в противном случае - косым .
Физические явления при столкновении тел довольно сложны и практически единственным средством теоретического изучения столкновений тел является применение законов сохранения энергии и импульса, которые не управляют процессами при столкновениях, а лишь соблюдаются при их осуществлении. Рассмотрим предельный случай абсолютно упругого удара , на примере прямого центрального удара упругих шаров (шайб). При таком столкновении тел механическая энергия к концу удара восстанавливается полностью и в результате удара их внутренняя энергия не изменяется.
удар тело восстановление импульс энергия
Если известны массы шаров и , их скорости перед ударом и (см. рис. 1), то, поскольку система замкнута и консервативна, скорости шаров после столкновения и легко найти из законов сохранения импульса и энергии
Наблюдения показывают, что относительная скорость после удара не достигает своей прежней численной величины . При соударении тела деформируются, возникают упругие силы и силы трения. Все это приводит к тому, что при ударах реальных тел механическая энергия к концу удара восстанавливается лишь частично. Для учета этих потерь вводится коэффициент восстановления
По данным опытов, при соударении тел из алюминия = 0,23, бронзы - 0,4, дерева - 0,5, чугуна - 0,6, стали различных марок - от 0,55 до 0,7, из слоновой кости - 0,89, из стекла - 0,94.
Для случая косого соударения шайб, изготовленных из материала с коэффициентом восстановления , можно получить выражения для скоростей тел поле удара, аналогичные (1). Представим вектор скорости каждого шара в виде суммы двух взаимно перпендикулярных векторов - нормальной составляющей к поверхности соударяющихся тел и - составляющей, касательной к этой поверхности (рис. 2):
В приведенных формулах значение = 1 соответствует абсолютно упругому, а = 0 - абсолютно неупругому удару. На практике мы никогда не имеем дела с идеально упругими телами и идеально гладкими поверхностями. В случае соударения шаров из реальных материалов значение будет лежать в пределах от 0 до 1 и механическая энергия системы сохраняться не будет. Изменение механической энергии расходуется на возникновение упругих возмущений, излучение звуковых волн, а также внутреннее трение, внутреннее движение и остаточные деформации. Для оценки потери энергии вводят величину, называемую коэффициентом восстановления энергии , которую определяют как отношение суммарной кинетической энергии системы после удара к энергии до удара
Поскольку массы соударяющихся тел известны (указаны или получены взвешиванием), то определение импульсов и кинетической энергии тел сводится к определению их скоростей.
Будем оценивать скорость тела по длине пути , пройденному телом по горизонтальной поверхности до полной остановки, считая коэффициент трения независящим от скорости скольжения. Пусть в некоторой точке скорость тела равна (рис. 3), тогда, по теореме об изменении кинетической энергии, работа силы трения равна изменению кинетической энергии тела
откуда можно выразить скорость тела через расстояние до точки остановки
Пусть перед соударением второе тело покоится, тогда для прямого центрального удара тел из формул (3) получаем
где , - расстояния, проходимые телами 1 и 2 после соударения, - расстояние, которое прошло бы тело 1 до остановки без соударения с телом 2 .
Поскольку в эксперименте величины и можно измерять с меньшей относительной погрешностью, то выразим коэффициент восстановления через них
Коэффициент восстановления энергии (5) может быть рассчитан как
Установка состоит из рабочего поля 3 (рис. 4) с нанесенной координатной сеткой, по которому перемещаются соударяющиеся тела 1 и 2 . Начальную скорость телу 1 в направлении оси сообщает ударный пружинный механизм 4 . Перед выстрелом тело 1 фиксируется между направляющими 6 . Регулировочный винт 5 позволяет изменять начальный импульс тела 1 .
Задание 1. Прямой центральный удар тел.
1. Выбрать два тела примерно равной массы. Значения масс и , а также систематическую погрешность взвешивания записать в таблицу 1.
2. Поместить первое тело и второе тело на оси так, чтобы поверхности 1 -го и 2 -го тела соприкасались (положение 1 -го тела отмечено на планшете окружностью). Начальные координаты тел (рис. 5) занести в таблицу. Оценить систематическую погрешность измерения координаты .
3. Взвести пружинный механизм, зафиксировав его в первом пазу. Поместить шайбу 1 в направляющие. Произвести выстрел и занести в таблицу координаты крайних точек шайб и после соударения.
4. Поместить шайбу 2 в исходное положение.
5. Повторить опыт (п. 3 и п. 4) еще 6 раз при тех же условиях.
6. Определить скорость тела 1 при свободном движении. Для этого необходимо убрать с поля шайбу 2 . Поместить в направляющие шайбу 1 и произвести выстрел. Записать в таблицу координату точки остановки шайбы. Повторить опыт еще 5 раз, записывая результаты в таблицу.
7. Рассчитать средние значения конечных координат , и . Рассчитать средние расстояния, проходимые шайбами после удара и , а также среднюю длину пути свободного движения . Результаты занести в табл. 1.
8. Вычислить значения коэффициентов и записать в табл. 2.
9. Оценить погрешность измерения величин. Поскольку систематическая погрешность измерения координаты в проводимых экспериментах намного меньше случайного отклонения от среднего значения, то ей можно пренебречь. Полагая, что измерения длин пробега проведены в одинаковых условиях, оценить погрешность определения этой величины только для случая свободного движения
где - координаты точки остановки тела при свободном движении (см. табл. 1).
Используя полученное значение, вычислить абсолютные погрешности коэффициентов восстановления и занести их в табл. 2.
10. По средним значениям коэффициентов восстановления импульса, кинетической энергии и относительной скорости сделать вывод о справедливости законов сохранения импульса и энергии, для данного случая. Если коэффициент, характеризующий потери энергии отличен от нуля, то в выводе укажите основные причины изменения механической энергии рассматриваемой системы.
Задание 2. Косой центральный удар тел.
10. Взять для опыта шайбы, используемые при эксперименте с прямым ударом. Значения масс и записать в табл. 3.
11. Установить тела 1 и 2 в исходные положения, которые обозначены на поле окружностями. Записать начальные координаты крайних точек тел (см. рис. 6) в табл. 3.
12. Взвести пружинный механизм, зафиксировав его в первом пазу. Шайбу 1 вставить в направляющие до упора и произвести выстрел. Занести в таблицу 3 координаты крайних точек тел , , , после остановки.
13. Поместить шайбу 2 в исходное положение с координатами и .
14. Повторяя действия пунктов 12 и 13, повторить опыт еще 6 раз.
15. Определить скорость тела 1 при свободном движении. Для этого необходимо убрать с поля шайбу 2 . Поместить в направляющие шайбу 1 и произвести выстрел. Записать в таблицу координату точки остановки шайбы. Повторить опыт еще 5 раз, записывая результаты в табл. 3.
16. Рассчитать средние значения конечных координат , , , и . Вычислить средние расстояния, проходимые шайбами после удара и , а также среднюю длину пути свободного движения по формулам
17. Вычислить значение коэффициента восстановления энергии при косом центральном ударе
18. Сделать вывод по проделанной работе. По значениям коэффициентов восстановления классифицировать удар (упругий, неупругий). Высказать предположения о причинах диссипации энергии в конкретном случае. Объяснить различие (или равенство) экспериментальных значений коэффициента восстановления при прямом и косом центральном ударе.
Изучение законов сохранения импульса и механической энергии на примере ударного взаимодействия двух шаров. Определение средней силы удара, коэффициента восстановления скорости и энергии деформации шаров. Абсолютно упругий, неупругий удар, элементы теории. контрольная работа [69,4 K], добавлен 18.11.2010
Исследование механизма упругих и неупругих столкновений, изучение законов сохранения импульса и энергии. Расчет кинетической энергии при абсолютно неупругом ударе и описание механизма её превращения во внутреннюю энергию, параметры сохранения импульса. лабораторная работа [129,6 K], добавлен 20.05.2013
Сущность понятия "удар"; измерение параметров ударного взаимодействия тел. Применение законов сохранения механической энергии и импульса при столкновении; изменение ударных сил с течением времени. Последовательность механических явлений при ударе. презентация [26,4 K], добавлен 04.08.2014
Законы сохранения в механике. Проверка закона сохранения механической энергии с помощью машины Атвуда. Применение закона сохранения энергии для определения коэффициента трения. Законы сохранения импульса и энергии. творческая работа [74,1 K], добавлен 25.07.2007
Коэффициент восстановления. Кинематическое предположение Ньютона. Соударение точки с гладкой поверхностью. Постановка общей задачи о соударении. Нахождение ударного импульса. Изменение кинетической энергии. Абсолютно упругий и абсолютно неупругий удары. презентация [399,7 K], добавлен 30.07.2013
Закон сохранения энергии. Равноускоренное движение и свободное падение муфты, дальность ее полета. Измерение коэффициента трения скольжения за счет потенциальной энергии. Неточности измерительных приборов и погрешности, возникающие из-за этого. лабораторная работа [75,2 K], добавлен 25.10.2012
Измерение силы тока, проходящего через резистор. Закон сохранения импульса. Трение в природе и технике. Закон сохранения механической энергии. Модели строения газов, жидкостей и твердых тел. Связь температуры со скоростью хаотического движения частиц. шпаргалка [126,6 K], добавлен 06.06.2010
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .
© 2000 — 2021
Определение коэффициента восстановления при ударе твердых тел лабораторная работа. Физика и энергетика.
Реферат На Тему United Kingdom Of Great Britain
Реферат На Тему Неравномерность Экономического Развития Как Глобальная Проблема Современности
Курсовая работа по теме Комплексный экономический анализ хозяйственной деятельности предприятия ООО 'Ирбис'
Курсовая работа по теме Проектирование автотранспортного предприятия на 350 грузовых автомобилей ЗИЛ ММЗ–544
Курсовая Работа На Тему Деньги Как Капитал. Капитал И Прибавочная Стоимость
Структурные Части Реферата
Что Такое Религиозное Мировоззрение Эссе
Реферат: Блочно-временной алгоритм фильтрации геолокационных данных
Контрольная Работа На Тему Судебные Штрафы. Рассмотрение Дел О Фактах, Имеющих Юридическое Значение
Курсовая Работа На Тему Особенности Методики Расследования Заказных Убийств
Значение Эволюции В Селекции Организмов Эссе
Реферат: Блюм, Леон
Дипломная работа по теме Специфика копинг-стратегий женщин, прибегающих к услугам косметолога
Этапы Процесса Планирования Эссе
Курсовая работа: Расчет насадочного адсорбера
День Сочинение 4 Класс
Курсовая работа по теме Аудит финансовых вложений (на примере ООО 'Виктория')
Лесная пирология
Курсовая Работа На Тему На Уроках Технологии
Эссе Озмун Барои Синфи 5 Ва 6
Международная конкуренция металлургической отрасли - Международные отношения и мировая экономика курсовая работа
Основные этапы становления исторических теоретических систем - История и исторические личности контрольная работа
Методика активизации самостоятельности у учеников младших классов коррекционной школы в процессе трудового обучения - Педагогика курсовая работа