Океаны как структурный элемент высшего порядка - Геология, гидрология и геодезия контрольная работа

Океаны как структурный элемент высшего порядка - Геология, гидрология и геодезия контрольная работа




































Главная

Геология, гидрология и геодезия
Океаны как структурный элемент высшего порядка

Происхождение океанов, представление об их возрасте. Срединно-океанические поднятия (хребты), их строение. Рифтовые зоны и магматизм. Океанские плиты, их структуры. Понятие о микроконтинентах. Глубоководный желоб, островные дуги, окраинные моря.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
на тему: «Океаны как структурный элемент высшего порядка»
1. Происхождение океанов, представление об их возрасте.
2. Срединно-океанические поднятия (хребты), их строение.
8. Пассивные окраины и активные окраины, их строение.
9. Глубоководный желоб, островные дуги, окраинные моря, сейсмофокальная зона, аккреционная призма осадков.
Происхождение океанов, представление об их возрасте
Следует упомянуть о трех гипотезах теллурического происхождения воды. Согласно первой из них, основная масса ее выделилась преимущественно в виде гравитационной воды на первых стадиях развития земной планеты, образовав первичные скопления водных масс в виде мелководного океана. Одним из сторонников этой гипотезы был Э. Зюсс, по мнению которого, земная планета в начальной стадии развития была покрыта водой, т. е. имела место «панталасса». Однако Э. Зюсс признавал возможность изменения массы воды на земной поверхности.
Близкие, но не тождественные взгляды развивал В. И. Вернадский (1954), который поддерживал вывод Дэна об относительном постоянстве и устойчивости материков, а следовательно, и океанов в геологической истории. По этой концепции, соотношение размеров площадей океанов и материков не является случайным. Оно объясняется необходимостью поддержания в земной коре весового равновесия между двумя наибольшими структурами земной коры -- океанами и материками. Эта идея, которую разделял и А. Вегенер (1925), допускает пространственные перемещения обоих мегаструктур земной коры, но не переход одной в другую. Идея относительного постоянства океанов и материков в геологической истории планеты неизбежно предполагает древнее происхождение океанов, что в наше время энергично отстаивает Б. Личков (1960). По его мнению, единственно правильной является точка зрения, поддерживающая идею о древности океанов и вытекающее из этого признание океана и суши геологически неизменными массами.
В общих чертах все эти положения близки взглядам, господствовавшим во второй половине XIX века, когда пользовалась широким признанием теория перманентности океанов и материков, согласно которой те и другие всегда находились там, где они находятся в современный период без существенных изменений их объема и массы. В этой концепции не находит признания всеобщая идея развития, идея эволюции всего неорганического и органического, идея количественного и качественного изменения океанов как основных вместилищ природных вод. Теория перманентности океанов и материков в ее первоначальном виде отражает космогонические представления о первично расплавленном состоянии Земли, охлаждение которой сопровождалось выделением больших масс воды.
Согласно второй гипотезе, развитие природы Земли исключало постоянство соотношения масс океанов и материков. В геологической истории, согласно этой гипотезе, происходили и происходят непрерывные изменения в распределении вещества Земли между океанами и материками. Следовательно, в земной коре поддерживается не статическое, а динамическое равновесие, конкретным доказательством которого служат многочисленные трансгрессии и регрессии морей и океанов, изменяющие соотношение площадей и масс океанов и материков.
Одним из последовательных противников гипотезы постоянства океанических впадин выступил Д. Панов (1949), по мнению которого, современные океаны являются результатом длительной истории развития Земли, выражением определенной стадии развития рельефа и структуры земного шара. При этом из сравнительно неглубоких водоемов в архее океаны в более поздние геологические эпохи превратились в глубоководные впадины.
Ряд авторов (А. Н. Мазарович, Г. Штилле, П. Н. Кропоткин), разделяя идею развития океанов, считают необходимым делить океаны на первичные (древние) и вторичные (молодые). В частности, П. Н. Кропоткин (1956), исходя из признания теории эволюции геосинклинальных областей в платформы, считает, что океанические плиты являются остатками первичной земной коры и что они никогда не подвергались интенсивной складчатости. «По-видимому, эти области, занятые глубокими частями океанов, были покрыты водой с самых ранних геологических времен и не испытывали ни горообразования, ни поднятия, связанного со складчатостью. Палеогеографические данные говорят о том, что в Тихом океане и в северной половине Атлантического океана морские бассейны существовали с древнейших времен» (Кропоткин, 1956, стр. 40). Из этой цитаты можно заключить, что автор ее является сторонником гипотезы древнего происхождения Тихого и северной части Атлантического океанов. О времени возникновения других океанов Кропоткин не дает никаких указаний. Полемизируя с В. В. Белоусовым, П. Н. Кропоткин отрицает возможность образования впадин Атлантического и Индийского океанов за счет погружения материковых платформ. Он (Кропоткин, 1956, стр. 41) указывает, что «гидросфера и атмосфера представляют собой такие же продукты длительного развития Земли, как и литосфера». Это высказывание не оставляет сомнений в признании им не единовременного образования массы гидросферы, а постепенного наращивания ее в результате сложных процессов, происходящих в недрах Земли.
Аналогичную точку зрения на происхождение воды развивал В. А. Магницкий (1958). Рассматривая две основных гипотезы о направлении развития земной коры -- гипотезу расширения океанов за счет погружения континентов и гипотезу постепенного роста континентов за счет сокращения коры океанического типа -- и отдавая предпочтение второй из них. Магницкий отмечает, что ни у кого из исследователей не вызывает особых сомнений поднятие уровня океанов в течение геологической истории. По мнению Магницкого, поднятие уровня океанов могло быть обусловлено, с одной стороны, выделением воды в процессе поступления магмы и, с другой, сокращением площади океанических бассейнов.
Близкие взгляды по данному вопросу высказывает Е. Н. Люстих (1959). А. П. Виноградов (1967) предполагает, что океаны и материки возникли на Земле одновременно, а наращивание массы гидросферы происходило постепенно в процессе выплавления легкоплавких соединений из вещества земной коры и мантии.
Согласно третьей гипотезе, основная масса воды, заключенной в океанических впадинах, выделилась преимущественно в мезозое и кайнозое, что подчеркивает относительно молодой возраст океанов. Наиболее последовательными сторонниками гипотезы молодого возраста океанов являются Белоусов, Панов, Шухерт, Дю-Тойт, Менард и др. В одной из работ Белоусов (1962, стр. 390), прямо указывает, что «океаны представляют собой вторичное явление на поверхности Земли, что они начали образовываться, вероятно, либо в конце палеозоя, либо в начале мезозоя и с тех пор постоянно расширялись и углублялись». Сторонники гипотезы молодого возраста океанов не отрицают существование древних океанов в виде мелководных бассейнов в более отдаленные геологические эры. Однако в их концепции подчеркивается, что современные глубокие океанические впадины образовались на более поздних этапах развития природы Земли, что океанические впадины не только углубляются, но и расширяются за счет материков. При этом первичная материковая гранитная кора превращается во вторичную океаническую, базальтовую.
Изучение различных гипотез происхождения океанов приводит к выводу о том, что у первой и третьей из них есть некоторые общие черты, несмотря на коренное различие положенных в их основу теоретических предпосылок. В обоих гипотезах красной нитью проходит мысль о компактном выделении огромной массы поверхностных вод за сравнительно короткий геологический период времени. Согласно гипотезе, разделяющей идею о древнем возрасте океанов, основная масса воды выделилась на ранней стадии развития Земли. Почему именно в эту стадию выделилось огромное количество гравитационной воды, скопившейся в океанах и морях? Этот вопрос встает неизбежно при критическом рассмотрении гипотезы древнего возраста океанов. Во времена Э. Зюсса, когда господствовала теория происхождения Земли из первично раскаленного тела, подверженного последующей контракции или сжатию в результате непрерывного остывания, выделение большой массы поверхностных вод, сосредоточенных в океанах и морях, объясняли преимущественно охлаждением верхней оболочки Земли, остыванием земной коры. В настоящее время сторонники гипотезы древнего возраста океанов привлекают другую теорию, объясняющую сущность процессов, обусловивших выделение на заре геологической истории больших масс гравитационной воды на поверхности нашей планеты. В частности, Б. Личков (1960) связывает начало появления на Земле гравитационных вод в больших количествах с превращением астероида, каковым была Земля в начальных стадиях развития, в планету. Этот вывод Б. Личков основывает на признании идеи различного состояния пространства и связанного с этим изменения его свойств, впервые сформулированной П. Кюри и развитой позже В. И. Вернадским. Вернадский (1965) выделял также коллоидное состояние пространства. При современном уровне знаний есть основание выделять еще одно состояние пространства -- атомарное.
Каждое состояние пространства зависит от заключенной в нем массы частиц или тел. При этом гравитационное состояние пространства характерно только для достаточно больших тел.
Разделяя теорию различного состояния пространства, Личков полагает, что до тех пор пока Земля пребывала в состоянии астероида, которому свойственна кристаллическая структура вещества, вода в нем находилась в связанном состоянии. С превращением астероида в планету, чему соответствует новое гравитационное состояние пространства, в котором силы тяготения начинают играть решающую роль в формировании новой структуры вещества, связанная вода переходит в свободную -- гравитационную воду, образуя большие скопления ее в океанах и морях.
Процесс выделения больших масс гравитационной воды на поверхности земной планеты, по-видимому, протекал достаточно интенсивно и охватил сравнительно небольшой период начальных стадий развития Земли.
О продолжительности этого процесса, к сожалению, нет надежных данных. Поэтому о ней приходится судить на основании косвенных соображений, учитывая некоторую последовательность первичных стадий развития Земли. В. И. Баранов (1963) считает, что в начале Земля образовалась из однородного по химическому составу вещества, но в процессе эволюции имела место дифференциация его на атмосферу и земную кору. На первом этапе развития Земли должны были, по его мнению, образоваться химические элементы в протопланетном веществе, на втором -- индивидуальное тело (будущая Земля), на третьем-- земная кора и на четвертом этапе -- Мировой океан и атмосфера. Такая последовательность первичных стадий в процессе дифференциации геосфер находится в противоречии с теорией гравитационного состояния пространства, согласно которой Мировой океан должен был образоваться на втором этапе развития Земли, а не на четвертом, как это предполагается в схеме Баранова.
Имеются и другие крайние точки зрения по этому вопросу, отстаивающие очень короткий период образования Земли как планеты. По В. С. Сафронову (1958), аккумуляция массы современной Земли завершилась в течение 100--250 млн. лет.
Представляется более логичным признать одновременное образование земной коры и Мирового океана как двух взаимно связанных частей. Известно, что Мировой океан, как и суша, является одной из двух крупнейших мегаструктур земной коры. Сопряженность этих двух обширных структур ни у кого не вызывает сомнений. Поэтому неубедительна вторая половина схемы последовательных этапов развития природы Земли, предложенная Барановым для времени образования земной коры и Мирового океана. Мировой океан как часть земной коры первоначально формировался, вероятно, в виде мелководного бассейна одновременно с образованием континентов. Это не означает, что соотношение площадей, занимаемых мировым океаном и континентами, всегда оставалось неизменным на разных этапах развития Земли.
Имея представление о возрасте Земли как планеты и возрасте земной коры, с некоторым приближением можно судить по разности между ними о продолжительности формирования первичного мелководного океана, а также и земной коры. По выводам Г. В. Войткевича (1956) и В. И. Баранова (1963), эта разность лежит в пределах 0,5--1 млрд. лет, но, по-видимому, она еще не раз будет подвергаться уточнению и пока не может считаться достаточно надежной.
Наиболее спорной в гипотезе древнего происхождения Мирового океана является ее энергетическая сторона. Какой могучий источник энергии мог обусловить выделение больших масс воды из земных недр в относительно короткий период времени? По современным представлениям, энергетическую основу дифференциации земных оболочек составляют преимущественно радиоактивные процессы, происходящие в земной коре и мантии. Относительно малое значение в поднятии из глубоких недр Земли летучих веществ, в том числе и воды, имеет тепло, образующееся в процессе сжатия Земли. Однако не все согласны с радиомиграционной теорией, с ее универсальным значением для объяснения генезиса земных геосфер, в том числе и гидросферы. Б. Личков полагает (1960), что радиоактивное тепло может играть только вспомогательную роль в крупном геотектоническом процессе.
Если прав был В. Г. Хлопин (1937) в том, что на заре геологической истории содержание радиоактивных веществ в Земле было в несколько раз больше, чем в современный период, то,, конечно, основным источником тепла, способствовавшим в древности выделению летучих веществ, в том числе гравитационной воды океанов и морей, могли быть преимущественно радиоактивные вещества.
Тот же самый вопрос возникает при критическом анализе гипотезы, поддерживающей идею молодого возраста океанов. Как было показано несколько раньше, согласно этой гипотезе, основная масса гравитационной воды выделилась с начала мезозоя и образовала большие скопления в относительно молодых глубоководных океанических впадинах. П. Н. Кропоткин (1956), а также В. А. Магницкий (1958) высказывают сомнения в достоверности этой гипотезы. Они считают, что нет никаких геологических данных, которые бы указывали на резко выраженную неравномерность в формировании гидросферы во времени. По их мнению, за 200 млн. лет, составляющих всего 5% истории развития Земли, не могло выделиться 70% воды Мирового океана. В. А. Магницкому, кроме того, представляется неубедительным, что «прибавление воды (в океанах) в течение геологической истории очень хорошо соответствовало росту вместилищ» (1958, стр. 26), иными словами, приращение объема воды в океанах почему-то в точности соответствовало росту углубления и площади океанов. Г. Джеффрис (1960) вслед за А. Холмсом, основываясь на денудационном методе, приходит к выводу, что возраст океанов составляет около 380 млн. лет, причем эту величину он считает заниженной.
Из предыдущего можно заключить, что обе гипотезы -- древнего возраста и молодого возраста океанов -- при современном уровне знаний не могут объяснить выделение столь большой массы гравитационной воды в короткий в геологическом измерении период развития Земли.
Срединно-океанические поднятия (хребты), их строение
СРЕДИННО-ОКЕАНИЧЕСКИЕ ХРЕБТЫ (а. mid-ocean ridges; н. mittelozeanische Gebirgsrucken; ф. dorsales oceaniques mediannes; и. соrdilleras del medio oceano) -- подводные поднятия ложа океанов в зонах активного раздвига (дивергенции) литосферных плит и новообразованияокеанской коры. Известны во всех океанах планеты; образуют мировую систему срединно-океанических хребтов, открытую в конце 50-х гг. 20 века при участии советских экспедиций. Общая протяжённость свыше 60 тысяч км.
В строении срединно-океанских хребтов обычно выделяются три зоны - осевая зона, большей частью представленная рифтовой долиной (грабеном), гребневая зона, по обе стороны этой долины с сильно расчлененным рельефом, и зона флангов или склонов хребта, постепенно понижающаяся в направлении смежных абиссальных равнин. Рифтовые долины, протягивающиеся вдоль осей хребтов и представляющие оси активного спрединга имеют глубину 1-2 км при ширине в несколько километров. Они имеют строение сложных грабенов, с рядом ступеней, спускающихся к центру долины. Наблюдения с подводных обитаемых аппаратов обнаружили ряд интересных черт строения дна рифтовых долин.
1 - свежие базальты; 2 - базальты, слегка прикрытые осадками; 3 - более древние базальты под чехлом осадков; 4 - метагаббро; 5 - серпентинизированные перидотиты; 6 - разрывы.
Вариации в магматическом и структурном проявлении низкоскоростного спрединга на профилях через осевую часть срединно-океанского хребта Центральной Атлантики, по Дж. Карсону и др. (1987). Профили расположены в порядке убывания роли базальтового вулканизма и нарастания относительной роли разрывных структур растяжения. Превышение вертикального масштаба в 3 раза. Привязка профилей к полигонам глубоководного геологического картирования: I - MARK, 2; II - FAMOUS; III - TAG; IV - MARK, 5; V - MARK, 4; VI - AMAR; VII - MARK, 3.
На дне существуют открытые трещины растяжения, подобные давно известным под названием «гьяу» на о. Исландия, представляющем приподнятый над уровнем океана участок Срединно-Атлантического хребта.
Имеются здесь и многочисленные центры вулканических поднятий, выраженные холмами высотой до 200 - 600 м, местами застывшие лавовые озера. Потоки базальтовых лав имеют форму труб, а в поперечном сечении сплюснутых шаров - подушек, столь характерную для их древних аналогов, встречаемых на суше. Нередко они очень свежие, о чем свидетельствует почти полное отсутствие поверх них осадков; в Красном море они лишь слегка припудрены известковым илом. Но современных излияний нигде не встречено, они отмечены лишь непосредственно к югу от Исландии. По обе стороны от молодых вулканических центров обнаружены гидротермы, сначала в Красном море, затем в Тихом и позднее в Атлантическом океанах - pppa.ru. Эти гидротермы представляют весьма впечатляющее зрелище: они отлагают сульфиды, сульфаты и окислы металлов (цинка, меди, железа, марганца и др.), образующие скопления, достигающие в высоту десятков метров, которые в будущем могут иметь серьезное промышленное значение. Струи горячей воды, содержащей в растворе газы Н2, СO2, СH4 и указанные выше металлические соединения, нагреты до температуры 350°. Над жерлами, из которых они выделяются, воздымаются облака из тонкодисперсных сульфатов, благодаря чему эти гидротермы получили название чёрных и белых (в зависимости от состава преобладающих минералов сульфидов и сульфатов) курильщиков. Благодаря высокой концентрации во флюидах сероводорода вокруг гидротерм бурно развиваются сульфиднокислые бактерии, служащие пищей для более высокоорганизованных живых существ, в том числе ранее неизвестных биологической науке.
Деятельность гидротерм связана со взаимодействием поднимающейся вдоль осей спрединга базальтовой магмы с морской водой. Вода проникает в трещины остывающих базальтовых лав и выщелачивает из них металлы и другие соединения и затем осаждает их при своем охлаждении. Открытие гидротерм показало, что осевые зоны срединно-океанских хребтов характеризуются весьма высоким тепловым потоком, и позволило констатировать, что осевые зоны срединно-океанских хребтов являются основными зонами выделения внутреннего тепла Земли.
Как уже указывалось, рифтовые долины практически не заполнены осадками. Исключение составляют осыпи и обвалы у подножия уступов по краям этих долин, высота которых может превышать 1 км. Эти осыпи состоят из глыб и щебня пород океанской коры - базальтов, габбро, перидотитов - и образуют особый тип осадочных пород, который русские морские литологи И.О. Мурдмаа и В.П. Петелин назвали эдафогенными. В разрезе 2-го слоя океанской коры они могут переслаиваться с подушечными и массивными базальтами. В основании 1-го слоя океанской коры при бурении нередко встречаются металлоносные осадки - продукты отложения материала, выделяемого гидротермами.
Рифтовыми зонами называют весьма протяженные (длиной в многие сотни и тысячи километров) планетарного масштаба полосовидные тектонические зоны, распространенные в пределах континентов и океанах, в которых происходит подъем глубинного (мантийного) материала, сопровождаемый его распространением в стороны, что приводит к более или менее значительному поперечному растяжению в верхних этажах земной коры. Важнейшим структурным выражением процесса растяжения на поверхности Земли обычно является образование глубокого и относительно узкого (от нескольких километров до нескольких десятков километров), нередко ступенчатого грабена (симметричного или асимметричного), ограниченного нормальными сбросами большой глубины заложения (собственно рифта или «рифтовой долины»), либо нескольких (иногда целой серии) подобных грабенов. Дно грабенов также бывает рассечено сбросами и трещинами растяжения. Погружение дна грабенов относительно их бортов, как правило, опережает аккумуляцию в них осадочного материала, хотя последняя во многих случаях дополняется заполнением их вулканическими продуктами, и поэтому рифты обычно имеют отчетливое прямое выражение в рельефе в виде линейных депрессий. По большей части рифты обрамляются с обеих сторон или хотя бы с одной стороны асимметричными поднятиями (пологими полусводами, односторонними горстами и реже горстами), в той или иной степени разбитыми, как и грабены, продольными, диагональными и поперечными трещинами, сбросами и нередко осложненными второстепенными узкими грабенами. В некоторых случаях поднятие возникает также внутри рифта, расщепляя его на две ветви. Отношение объемов этих поднятий и рифтовых впадин отражает соотношения масштабов воздымания и растяжения в той или иной рифтовой зоне. Некоторые из них, в особенности океанические, характеризуются существенной ролью поперечных сдвиговых смещений, в частности, по зонам так называемых трансформирующих разломов.
Рифтовые зоны в целом и в первую очередь осевые грабены (рифты) обладают повышенной или даже очень высокой сейсмичностью, причем очаги землетрясений лежат на глубинах от первых километров до 40-50 км, а план напряжений в очагах характеризуется господством максимальных субгоризонтально направленных растяжений, приблизительно перпендикулярных к оси рифтовой зоны. Рифтовым зонам, за редкими исключениями, свойствен повышенный тепловой поток, величина которого в общем возрастает по мере приближения к их оси, нередко достигая 2-3, а иногда даже 4-5 единиц теплового потока. Развитие большинства рифтовых зон сопровождается проявлениями гидротермальной активности и магматизма и, в частности, вулканическими извержениями, питаемыми из подкоровых, а в некоторых материковых рифтовых зонах, может быть, и из внутрикоровых магматических очагов. Однако масштабы магматического процесса, объемы его продуктов, их состав, приуроченность к тем или иным стадиям рифтогенеза и к тем или иным участкам рифтовой зоны варьируют в чрезвычайно широких пределах. Наряду с рифтовыми зонами, в которых магматическая деятельность сопутствовала всем стадиям их развития, а ее продукты покрывают почти всю их площадь и достигают объемов в сотни тысяч кубических километров, существуют рифтовые зоны, где она проявлялась локально, спорадически или совершенно отсутствовала.
Рифтовые зоны океанов характеризуются контрастным полосовидным билатерально-симметричным магнитным полем, согласно господствующим представлениям создающимся в процессе рифтогенеза и как бы запечатляющим отдельные его стадии. Однако магнитное поле континентальных рифтовых зон в значительной мере отражает особенности строения их фундамента и подверглось лишь некоторой перестройке в процессе рифтообразования. Рифтовые зоны обычно, хотя и не всегда, характеризуются гравитационными минимумами в поле аномалий Буге, но в осевых частях некоторых из них выделяются узкие максимумы, вызванные подъемом основного и ультраосновного материала. Однако формы, размеры гравианомалий и характер факторов, вызывающих возмущения, могут существенно различаться. Как правило, рифтовые зоны близки к состоянию изостатического равновесия.
Земная кора в современных рифтовых зонах несколько утоньшена по сравнению со смежными областями, а верхняя часть мантии, по крайней мере непосредственно ниже поверхности М, во многих из них отличается аномально низкой скоростью прохождения продольных сейсмических волн (7,2-7,8 км/с) и несколько пониженной плотностью и вязкостью, что, по-видимому, обусловлено повышенным тепловым режимом и в ряде случаев возникновением очагов селективного плавления в верхах мантии. Эти линзы или «подушки» разуплотненного мантийного материала, вероятно, представляют собой выступы кровли астеносферы, достигающие под современными рифтовыми зонами подошвы земной коры. Рифтовые зоны редко существуют изолированно; как правило, они образуют более или менее сложные сочетания. Способы «стыковки» соседних рифтовых зон и общий план их группировки могут быть весьма разнообразными и при этом существенно различаются у континентальных и океанических зон. Сочетания ряда тесно связанных между собой в пространстве приблизительно одновозрастных рифтовых зон сходного или различного типа мы называем рифтовыми системами. Этот термин может применяться к любым комбинациям рифтовых зон, независимо от их размеров, сложности и рисунка, но главным образом используется в отношении таких их сочетаний, которые характеризуются присутствием различно ориентированных рифтовых зон, древовидным рисунком или наличием нескольких полуизолированных ветвей, не полосовидным, а близким к изометричному общим контуром. В тех случаях, когда рифтовые зоны (или их системы), сочетаясь между собой, образуют в совокупности линейно вытянутые сооружения протяженностью в несколько или даже много тысяч километров, мы называем их рифтовыми поясами (по аналогии с соизмеримыми с ними по длине и ширине геосинклииальными и орогеническими поясами). Термин рифтовая система используется также для обозначения всех взаимосвязанных рифтовых поясов Земли, образующих в совокупности сложно извивающуюся и разветвляющуюся сеть на поверхности нашей планеты. В последнем случае мы говорим о мировой рифтой системе. Последняя, со своими главными ответвлениями, объединяет большинство рифтовых поясов (и систем) Земли. Основная ее часть пересекает океаны, а ее затухающие окончания и ответвления в нескольких районах Земли проникают в глубь континентов. Однако в пределах континентов (а возможно, и в океанах) имеются так же отдельные, изолированные рифтовые пояса и даже отдельные рифтовые зоны, не связанные с мировой рифтовой системой.
Категории рифтовых зон, выделяемые по их глубинному строению. Все рифтовые зоны земного шара по характеру глубинного строения можно разделить на три основные категории:
1) океанические, или внутриокеанические, в которых как осевая «рифтовая долина», так и ее обрамление обладают корой, близкой к океанической, которая подстилается выступом мантийного материала с аномально пониженными по сравнению с типичными для верхней части мантии скоростями прохождения сейсмических волн и плотностью;
2) межконтинентальные, в которых осевая часть рифта обладает корой, близкой к таковой внутриокеанических рифтовых зон, ее периферические части - несколько утонченной и переработанной континентальной корой, а «плечи»- типичной континентальной корой. Межконтинентальные рифтовые зоны, как и внутриконтинентальные, могут закладываться либо на платформах (рифты Аденский и Красноморский), либо в пределах молодой складчатой области (рифт Калифорнийского залива);
3) континентальные или внутриконтинентальные, в которых и рифт, и его «плечи» обладают корой континентального типа, но обычно несколько утоньшенной, в особенности под рифтом (от 20 до 30-35 км), раздробленной, аномально прогретой и подстилаемой линзой несколько разуплотненного мантийного материала.
Наблюдаемые в природе взаимопереходы и тесные структурные связи межконтинентальных рифтов как результат далеко зашедшего процесса развития внутриконтинентальных рифтов. По крайней мере некоторая часть ширины межконтинентальных рифтовых зон (порядка нескольких десятков километров), по-видимому, обусловлена раздвиговыми или раздвигово-сдвиговыми деформациями блоков континентальной коры и выдвижением между ними материала мантийного происхождения, тогда как во внутриконтинентальных рифтах мы в основном имеем дело с грабенообразным проседанием блоков материковой коры при амплитуде растяжения порядка нескольких километров и далеко не всегда - с заполнением приоткрывающихся трещин дайкообразными интрузиями. В свою очередь, межконтинентальные рифтовые зоны в структурном отношении тесно связаны с рифтовыми поясами Индийского и Тихого океанов, в которых процесс подъема глубинного материала и горизонтального расширения протекает еще более интенсивно. Однако было бы неосторожно полагать по аналогии, что все рифтовые зоны и пояса океанов представляют собой дальнейшую стадию развития межконтинентальных рифтов и, следовательно, возникли в результате еще большего разобщения блоков континентальной коры. Например, в отношении Восточно-Тихоокеанского рифтового пояса можно с достаточной уверенностью утверждать, что он моложе Тихого океана и возник на океанической коре. Тот факт, что продолжение этого рифтового пояса почти полностью переходит на Североамериканский континент и накладывается на Кордильерскую мезозойскую складчатую область, очевидно, говорит о том, что движущий механизм рифтогенеза связан с такими большими глубинами, на которых уже не сказываются различия между океанами и континентами, но конкретные проявления этого процесса на поверхности Земли существенно отличаются в зависимости от того, воздействует ли он на земную кору океанов, молодых складчатых областей, платформ и т. п.
Рифтовые зоны и пояса, принадлежащие к трем выделенным категориям, существенно различаются по своим размерам, морфологии структурных форм, масштабу вулканизма (наибольшему в рифтовых зонах океанов), химизму его продуктов (толеитовые базальты в рифтовых зонах, весьма разнообразные по кислотности и щелочности породы в рифтовых зонах континентов), величине теплового потока (наивысшей в океанических рифтовых зонах), структуре магнитного поля, плану напряжений в очагах землетрясений (в континентальных рифтовых зонах вектор с
Океаны как структурный элемент высшего порядка контрольная работа. Геология, гидрология и геодезия.
Контрольная Работа На Тему Ядерный Конфликт
Реферат На Тему Медицинская Служба Полка
Курсовая работа по теме Работа исследователя в процессе исследования
Реферат по теме Распад СССР: ностальгия, преступление, подвиг
Реферат по теме Кадмий в биосфере и его влияние на живые организмы
Курсовая работа по теме Экология как основа комплексной науки о сохранении окружающей среды и рациональном использовании природных ресурсов
Как Писать Аргумент В Сочинении Егэ
Малая Сочинение Толстого
Права Социального Обеспечения Дипломная
Реферат: Совместные инвестиции России и Украины
Контрольная Работа На Тему Сучасний Стан Та Перспективи Розвитку Суднобудування України
Шпаргалка: Психология и педагогика
Реферат: Основні роботи операційної системи UNIX Підтримка мережі UNIX
Реферат На Тему Етнічний Розвиток Та Релігійне Життя Київської Русі
Реферат по теме Щоденники Пилипа Орлика як зразок літературної творчості бароко
Диссертация На Соискание
Реферат: Sticking With The Theme Of Ocean Currents
Контрольная работа: PR-технологии: методы, механизмы и инструментарий. Скачать бесплатно и без регистрации
Структура Философского Знания Реферат
Реферат по теме Персия при Камбисе. Покорение Египта
Учет и анализ готовой продукции (на примере ЗАО "Рабочий") - Бухгалтерский учет и аудит дипломная работа
Анализ движения денежных средств - Бухгалтерский учет и аудит дипломная работа
Работа руководителя по обеспечению безопасности персонала - Безопасность жизнедеятельности и охрана труда курсовая работа


Report Page