Оценка теплового режима ИМС. Расчет надежности полупроводниковых ИМС по внезапным отказам - Коммуникации, связь, цифровые приборы и радиоэлектроника реферат

Оценка теплового режима ИМС. Расчет надежности полупроводниковых ИМС по внезапным отказам - Коммуникации, связь, цифровые приборы и радиоэлектроника реферат




































Главная

Коммуникации, связь, цифровые приборы и радиоэлектроника
Оценка теплового режима ИМС. Расчет надежности полупроводниковых ИМС по внезапным отказам

Конструкционные проблемы теплового режима металлических пленок бескорпусных полупроводниковых интегральных микросхем: диаграмма нагрева и расчет надежности эскизного проекта. Интенсивность отказов конструкции и структуры проводника металлизации.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
«Оценка теплового режима ИМС. Расчет надежности полупроводниковых ИМС по внезапным отказам»
Конструкция ИМС должна быть такой, чтобы теплота, выделяющаяся при ее функционировании, не приводила в наиболее неблагоприятных условиях эксплуатации к отказам элементов в результате перегрева. К тепловыделяющим элементам следует отнести, прежде всего, резисторы, активные элементы и компоненты. Мощности, рассеиваемые конденсаторами и индуктивностями, невелики. Пленочная коммутация ИМС благодаря малому электрическому сопротивлению и высокой теплопроводности металлических пленок способствует отводу теплоты от наиболее нагретых элементов и выравниванию температуры платы ГИС или кристаллов полупроводниковых ИМС.
Введем следующие понятия, необходимые для осуществления тепловых расчетов.
Перегрев элемента или компонента ИМС (И, °С), -- разность между их температурой и средней температурой поверхности корпуса. Максимально допустимая температура T max доп -- максимальная температура элемента или компонента ИМС, при которой обеспечиваются требования к их надежности. Удельная мощность рассеяния (Р 0 , Вт/°С) -- плотность теплового потока от элемента ИМС, кристалла или платы ИМС. Внутреннее тепловое сопротивление элемента, кристалла или компонента ИМС (R t вн , °С/Вт) -- тепловое сопротивление самого элемента (кристалла, компонента) и тепловое сопротивление контакта между элементом (компонентом) и платой (кристаллом и корпусом) с учетом теплового сопротивления клеевой прослойки.
Рис. 1. Тепловой поток от источника теплоты при различных соотношениях между размерами тепловыделяющих элементов и толщиной подложки: 1 -- теплоотвод; 2 -- слой клея или компаунда; 3 -- подложка; 4 -- тепловыделяющий элемент
В случае, когда весь тепловой поток сосредоточен под элементом ИМС и направлен к подложке (рис. 1), при соотношении l, b>>h тепловой поток плоскопараллелен и тепловое сопротивление
где R T -- тепловое сопротивление; и -- коэффициенты теплопроводности материала подложки и клея, Вт/(м*°С); h П и h K -- их толщины; b и l -- размеры контакта тепловыделяющего элемента с подложкой; h = h П + h K .
При уменьшении размеров источника тепла тепловой поток становится расходящимся (рис. 1), эффективность теплоотвода увеличивается и соответственно уменьшается тепловое сопротивление. Этот факт учитывается функцией :
где q = l/2h, r = b/2h, l и b -- линейные размеры плоского источника теплоты.
Для корпусов, значения функции даны на рис. 2.
а -- при q=0+0,1; б -- при q=0,1+0,4; в -- при q=0,4+1,0; г -- при q=1,0+4,0
Расчет надежности полупроводниковых ИМС по
Для расчета надежности полупроводниковых ИМС разработан ряд методик на основе статистического и физического методов.
Статистические методы используют для ориентировочного расчета надежности на этапе эскизного проектирования ИМС, а физические -- для окончательного расчета на этапе разработки рабочей документации.
Рассмотрим наиболее распространенные методики расчета для этих двух методов.
Статистический метод. В основу методики расчета надежности полупроводниковых ИМС на основе статистического метода положены те же допущения, что и при расчете гибридных ИМС. При этом учитывается, что резисторы и конденсаторы формируются на базе транзисторной структуры, т.е. с помощью прямых и обратно смещенных p-n-переходов. Поэтому интенсивность их отказов принимается такой же, что и у диодов. В качестве компонентов ненадежности полупроводниковых ИМС при данном расчете используют элементы структуры и конструкции ИМС (рис. 3): транзисторные 1 и диодные 2 p-n-переходы, внутрисхемные соединения 3 и выводы корпуса 4.
Интенсивность отказов корпусных полупроводниковых ИМС рассчитывают по выражению
где -- число условных транзисторных переходов; -- число условных диодных переходов, равное общему числу диодов, резисторов и конденсаторов; -- число внешних выводов; , -- коэффициенты режима работы транзисторных и диодных переходов; , и -- интенсивности отказов транзисторных переходов, диодных переходов и соединений соответственно (для нормальных условий); -- коэффициент вибрации.
При расчете бескорпусных полупроводниковых ИМС выражение (3) упрощается, так как отсутствуют соединения с выводами корпуса и = 0. Рекомендуемые для расчетов средние статистические значения интенсивностей отказов компонентов ненадежности следующие:
Рис. 4. Зависимости поправочных коэффициентов от температуры и коэффициента нагрузки k a для пленочных резисторов (a), транзисторов (б), диодов (в) и пленочных конденсаторов (г)
Рекомендуемые значения коэффициентов режима работы для различной температуры окружающей среды при расчете по данной методике приведены в табл. 1.
Значение вероятности безотказной работы Р (t) определяют обычным путем.
Рис. 5. Конструкция полупроводниковой биполярной ИМС
Следует отметить, что полупроводниковые ИМС общего применения универсальны и предназначены для многоцелевого использования. В конкретном схемном включении часть цепей и внешних выводов ИМС может не использоваться и, следовательно, они не будут влиять на надежность всего устройства. Поэтому расчет по выражению (27.1) необходимо производить с учетом конкретного включения ИМС. Это часто имеет место при использовании бескорпусных полупроводниковых ИМС в МСБ. Следовательно, одна и та же ИМС может иметь различные уровни надежности.
Табл. 1 Коэффициенты режима работы элементов полупроводниковых
Физический метод. Данный метод учитывает не только количество компонентов ненадежности, но и качество разработанной топологии, количество технологических операций, режим работы и эксплуатационные воздействия.
Исходными данными для расчета надежности полупроводниковых ИМС физическим методом являются принципиальная электрическая схема, разработанная топология, маршрут технологического процесса и значения интенсивности отказов компонентов ненадежности.
В отличие от гибридных ИМС в полупроводниковых ИМС выделяют следующие элементы конструкции, характеризующиеся определенными значениями интенсивности отказов: кристалл, корпус, соединения. Однако активные и пассивные элементы полупроводниковых ИМС формируются в объеме и (или) на поверхности кристалла с помощью определенного числа технологических операций и не могут считаться самостоятельными (дискретными) при расчете надежности. Их надежность во многом будет зависеть от сложности технологического процесса. Анализ отказов полупроводниковых биполярных и МДП-ИМС позволяет выявить наиболее часто встречающиеся отказы, обусловленные различного рода дефектами, и определить их интенсивность. Так, для полупроводниковых ИМС, в зависимости от вида дефекта, установлены такие значения интенсивности отказов элементов структуры и конструкции:
из-за дефектов, обусловленных диффузией (для одной стадии) ;
из-за дефектов металлизации (на 1 мм 2 площади) ;
из-за дефектов оксида (на 1 мм 2 площади) ;
из-за дефектов от посторонних включений в корпусе (на 1 мм 2 площади кристалла) ;
из-за поверхностных и структурных дефектов кристалла (на 1 мм 2 площади кристалла)
из-за некачественного крепления кристалла ;
из-за обрыва термокомпрессионного сварного соединения ;
из-за повреждения корпуса (для пластмассового корпуса) и (для металлокерамического корпуса).
По этим значениям можно определить интенсивности отказов активных и пассивных элементов и элементов конструкции полупроводниковых ИМС с учетом стадийности диффузионных или других высокотемпературных процессов, реальных площадей элементов, металлизации и кристалла.
Поэтому в качестве компонентов ненадежности используют элементы структуры и конструкции полупроводниковой ИМС, значения интенсивностей отказов которых определяются выражениями:
где , , -- интенсивности отказов элементов (транзистора, диода, диффузионного резистора, диффузионной перемычки или шины), металлизации и кристалла соответственно; -- число стадий диффузии при формировании того или иного элемента; , , -- площади (в мм 2 ) элемента, металлизации и кристалла соответственно.
К компонентам ненадежности относится также корпус и соединения, характеризующиеся значениями и . Только после такого определения расчет можно свести, как и в случае гибридных ИМС, к суммированию интенсивностей отказов отдельных компонентов ненадежности с учетом поправочных коэффициентов на величину электрической нагрузки и состояние окружающей среды.
В данном случае интенсивность отказов полупроводниковых ИМС с учетом того, что время появления внезапных отказов распределено по экспоненциальному закону, определяется выражением
n i -- число элементов данного типа с одинаковым режимом работы;
-- поправочный коэффициент, учитывающий влияние окружающей температуры и электрической нагрузки;
-- поправочный коэффициент, учитывающий механические воздействия, относительную влажность и изменение атмосферного давления;
-- интенсивность отказов элементов структуры (транзисторов, диодов, резисторов), металлизации, кристалла и конструкции (соединений, корпуса).
Порядок расчета надежности полупроводниковых ИМС по внезапным отказам физическим методом следующий.
1. По заданной принципиальной электрической схеме и разработанной топологии определяют число n i структурных элементов каждого типа и число т, m i типов элементов.
2. По топологии и маршрутной карте технологического процесса изготовления полупроводниковой ИМС определяют число диффузий для изготовления структурных элементов каждого типа.
3. По топологии определяют площади структурных элементов каждого типа , и площадь кристалла .
4. Используя данные по интенсивностям отказов элементов структуры и конструкции, по выражениям (4) -- (6) определяют значения для элементов каждого типа.
5. По заданным электрическим параметрам и принципиальной электрической схеме производят расчет электрического режима и определяют коэффициенты нагрузки k Hi для активных и пассивных элементов (как при расчете гибридных ИМС). Коэффициент нагрузки k НМ i наиболее нагруженных проводников металлизации (шины питания, сигнальные выходные шины и др.) определяют из выражения
где -- ток через i-й проводник металлизации; и -- ширина и толщина проводника металлизации; -- допустимая плотность тока через проводник металлизации.
6. Для заданной температуры и рассчитанных значений k н i по графикам рис. 6 и 8 определяют значения поправочных коэффициентов (,, и ).
7. По заданным условиям эксплуатации выбирают поправочные коэффициенты k 1 k 2 , и определяют k i = k 1 k 2 k 3 .
8. По полученным в п. 1, 4, 6 и 7 данным и выражению (7) рассчитывают интенсивность отказов ИМС.
Для заданного времени t рассчитывают вероятность безотказной работы ИМС
1. Новиков Ю.В. Основы цифровой схемотехники. Базовые элементы и схемы. Методы проектирования. М.: Мир, 2001. - 379 с.
2. Новиков Ю.В., Скоробогатов П.К. Основы микропроцессорной техники. Курс лекций. М.: ИНТУИТ.РУ, 2003. - 440 с.
3. Пухальский Г.И., Новосельцева Т.Я. Цифровые устройства: Учеб. пособие для ВТУЗов. СПб.: Политехника, 2006. - 885 с.
4. Преснухин Л.Н., Воробьев Н.В., Шишкевич А.А. Расчет элементов цифровых устройств. М.: Высш. шк., 2001. - 526 с.
5. Букреев И.Н., Горячев В.И., Мансуров Б.М. Микроэлектронные схемы цифровых устройств. М.: Радио и связь, 2000. - 416 с.
6. Соломатин Н.М. Логические элементы ЭВМ. М.: Высш. шк., 2000. - 160 с.
Разработка конструкции предварительного усилителя мощности коротковолнового передатчика. Расчет печатного монтажа, радиатора для охлаждения, надежности применяемых электрорадиоэлементов (ЭРЭ). Оценка качества, расчет надежности по внезапным отказам. курсовая работа [107,7 K], добавлен 10.06.2009
Описание электрической принципиальной схемы усилителя сигнала датчика. Разработка конструкции печатной платы: расчет площади, типоразмер и размеры краевых полей. Расчет минимальной ширины проводника. Расчет надежности блока по внезапным отказам. курсовая работа [1,2 M], добавлен 07.07.2012
Расчёты показателей надёжности изделий электронной техники при заданных условиях. Защита микросхем от внешних дестабилизирующих факторов: температуры и влажности. Обеспечение теплового режима работы интегральных микросхем (гибридных и полупроводниковых). курсовая работа [408,3 K], добавлен 19.03.2012
Схемотехнические параметры. Конструктивно–технологические данные. Классификация интегральных микросхем и их сравнение. Краткая характеристика полупроводниковых интегральных микросхем. Расчёт полупроводниковых резисторов, общие сведения об изготовлении. курсовая работа [3,8 M], добавлен 13.01.2009
Создание радиоэлектронных аппаратов, расчет теплового режима. Выбор конструкции и расчет параметров радиатора. Коэффициент теплоотдачи радиатора. Расчет теплового режима блока. Выбор системы охлаждения. Зависимость перегрева корпуса от удельной мощности. курсовая работа [1,9 M], добавлен 18.02.2013
Анализ технологии изготовления плат полупроводниковых интегральных микросхем – такого рода микросхем, элементы которых выполнены в приповерхностном слое полупроводниковой подложки. Характеристика монокристаллического кремния. Выращивание монокристаллов. курсовая работа [2,0 M], добавлен 03.12.2010
Надежность электронных компонентов, туннельный пробой в них и методы его определения. Надежность металлизации и контактов интегральных схем, параметры их надежности. Механизм случайных отказов диодов и биполярных транзисторов интегральных микросхем. реферат [420,4 K], добавлен 10.12.2009
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу .

© 2000 — 2021



Оценка теплового режима ИМС. Расчет надежности полупроводниковых ИМС по внезапным отказам реферат. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Сочинение: Город, в котором происходит действие Ревизора
Реферат по теме Структура налоговых органов РФ права, обязанности и функции
Политическая Элита России Реферат
Курсовая работа по теме Гражданское право как частное право
Қазіргі Қарым Қатынастар Мәдениеті Эссе Жазу
Книга: Коран перевод Саблукова 1907г.
Поэзия Фета Сочинение
Формирование и развитие сельскохозяйственной пропаганды
Круговорот Веществ Биологического Происхождения В Природе Реферат
Реферат На Тему Развитие Отношений Собственности При Переходе К Рынку
Уголовно Правовая Характеристика Получения Взятки Диссертация
Реферат: Расчет точности контрольного приспособления
Реферат: Возникновение Ислама. Шариат и его основные источники. Скачать бесплатно и без регистрации
Курсовая работа: Оценка опционов
Дипломная работа по теме Социальная работа христианских конфессий в пенитенциарных учреждениях
Курсовая работа: Инвестиционная привлекательность Белгородской области и показатели её характеризующие
Реферат На Тему Екологічне Виховання Учнів Початкових Класів
Принципы Исследования Реферат
Сочинение По Картине Наводнения 5 Класса
Курсовая работа по теме Имидж политика
Онтолингвистика - Иностранные языки и языкознание контрольная работа
Учет денежных операций - Бухгалтерский учет и аудит контрольная работа
Что нужно знать о России - География и экономическая география презентация


Report Page