Оцінка параметрів неоднорідного вхідного потоку у телекомунікаційних мережах - Коммуникации, связь, цифровые приборы и радиоэлектроника дипломная работа

Главная
Коммуникации, связь, цифровые приборы и радиоэлектроника
Оцінка параметрів неоднорідного вхідного потоку у телекомунікаційних мережах
Вивчення головних методик оцінки показника Херста. Самоподібні процеси та їх фрактальний і мультифрактальний аналіз. Опис мобільних програм, протоколів мережевого рівня. Дослідження структури GPRS-трафіку. Побудова імітаційної моделі GPRS-мережі.
посмотреть текст работы
скачать работу можно здесь
полная информация о работе
весь список подобных работ
Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Оцінка параметрів неоднорідного вхідного потоку у телекомунікаційних мережах
Швидкий прогрес технологій дозволив значно збільшити продуктивність і пропускну спроможність усіх видів мереж і створити багато нових видів послуг. Різко підвищився попит на надання інтегральних послуг (передача мови, даних, зображень, мультимедійної інформації) у рамках однієї мультисервісної мережі зв'язку.
З розвитком технологій змінилася і сама структура процесів, що відбуваються в телекомунікаційних мережах. Були виявлені нові властивості трафіку: наявність самоподібної природи і довготривалої залежності досліджуваного процесу. До теперішнього часу показано, що самоподібну структуру має телетрафік в дротяних мережах при роботі широко поширених протоколів Ethernet, OKC7, VоIP, TCP, та ін. Аналогічні ефекти виявлені в стільникових телефонних мережах з комутацією пакетів, в мережах з технологією безпровідного доступу.
Слід зазначити, що самоподібність трафіку спостерігається лише в певному діапазоні часових шкал і є основи вважати, що трафік має складнішу структуру. Тобто трафік є неоднорідним. Це відбувається внаслідок того, що в одному фізичному каналі є присутньою величезна кількість інформації, різної за своєю природою (аудіо, відео, дані).
Нині спостерігається глобалізація усіх процесів. У області телекомунікацій це відбивається в тому, що з'явилися глобальні телекомунікаційні мережі, в яких число абонентів досягає сотні тисяч. У зв'язку з цим важливим завданням є визначення повного навантаження на сервера в таких системах, тобто необхідно визначити розподіл сукупного потоку, що входить, в телекомунікаційній системі з великим числом джерел. В останні 20 років це завдання є актуальним.
1. Основні положення теорії фракталів і самоподібних процесів
Фракталами Мандельброт називав геометричні об'єкти: лінії поверхні, просторові тіла, що мають сильно порізану форму, які можуть мати властивість самоподібності. Слово "фрактал" походить від латинського слова fructus і переводиться як дробовий, ламаний. Фрактальний об'єкт має нескінченну довжину, що істотно виділяє його на тлі об'єктів традиційної геометрії Евкліда. Фрактал, який має властивість самоподібності, більш менш однаково влаштований в широкому діапазоні масштабів, тобто існує схожість характеристик фрактала при розгляді його на різних розширеннях. У ідеальному випадку самоподібність призводить до того, що фрактальний об'єкт стає інваріантним при зміні масштабу. Фрактальний об'єкт може і не бути самоподібним, але у тих фракталів, про які піде мова, всюди спостерігаються самоподібні властивості, тому, коли йтиметься про самоподібний трафік, мається на увазі, що його тимчасові реалізації є фракталами.
Для виниклого природним чином (природного) фрактала існує деякий мінімальний масштаб довжини такий, що на масштабах його фрактальна структура не підтримується. Крім того, на досить великих масштабах , де -- характерний геометричний розмір об'єктів в даному оточенні, фрактальна структура об'єкту також порушується. Тому властивості природних фракталів розглядаються лише на масштабах , що задовольняють співвідношенню .
Такі обмеження стають зрозумілими, коли як приклад фрактала наводиться зламана (нерівна) траєкторія броунівської частини. На малих масштабах на неї робить вплив скінченість маси і розмірів броунівської частки, а також закінченість часу зіткнення. При врахуванні цих обставин траекторія броунівської частки стає плавною кривою і втрачає свої фрактальні властивості. Значить, масштаб , на якому можна розглядати броунівський рух у рамках фрактальної теорії, обмежений вказаними чинниками. Якщо говорити про обмеження масштабу "згори" (), то очевидно, що траекторія руху броунівської частки обмежена деяким простором, в який вона поміщена, наприклад, ємністю з рідиною, в яку поміщають часточки фарби в класичній роботі з ідентифікації броунівського руху.
Відмітимо, що властивість точної самоподібності характерна лише для регулярних фракталів. Якщо замість детермінованого способу побудови включити в алгоритм їх створення деякий елемент випадковості, то виникають так звані випадкові (стохастичні) фрактали. Основна їх відмінність від регулярних полягає в тому, що властивості самоподібності справедливі тільки після відповідного усереднювання по усіх статистично незалежних реалізаціях об'єкту. При цьому збільшена частина фрактала не повністю ідентична початковому фрагменту, проте їх статистичні характеристики співпадають. До класу самоподібних стохастичних фракталів відносять і мережевий трафік. Тому в літературі поняття фрактального і самоподібного трафіку часто використовуються як синоніми, коли це не призводить до плутанини.
Відмінною властивістю фрактала є наявність у нього дробової розмірності. Формалізуємо поняття фрактальної розмірності і приведемо методику її обчислення.
Відповідно до алгоритму [1] для визначення хаусдорфовой розмірності деякої множини, що займає область з об'ємом в D-мірному просторі, покриємо цю множину кубами з об'ємом . Мінімальне число таких непорожніх кубів, що покривають множину, є . З цього виразу можна отримати наближену оцінку
На практиці зручніше для оцінки цієї розмірності використати математичну конструкцію, відому як розмірність Реньї, , пов'язану з ймовірністю знаходження контрольної точки в i- й ячійці в степеню q:
тобто розмірність Реньї співпадає з хаусдорфовой розмірністю (1.1). В силу монотонності як функції q розмірність Реньї зменшується як функція степені, і тому виконується наступна нерівність: . Таким чином, найбільша нижня межа хаусдорфової розмірності представима у виді
зважаючи, що ймовірність знаходження контрольної точки в i-й ячійці оцінюється як
де N -- загальне число контрольних точок через інтервали 1/L; -- число точок в i-й ячійці.
Формула (1.4) може бути розрахована з експериментально виміряних тривалостей сегментів. На практиці найбільшу нижню межу розмірності можна обчислити як тангенс кута нахилу лінійної регресії наступних точок:
Під мультифракталами розуміють неоднорідні фрактальні об'єкти, для повного опису яких, на відміну від регулярних фракталів, недостатньо введення усього лише однієї величини, його фрактальної розмірності , а потрібний цілий спектр такої розмірності, число якої в загальному випадку нескінченно. Причина цього полягає в тому, що разом з чисто геометричними характеристиками, визначуваними величиною , такі фрактали мають і деякі статистичні властивості.
Приведемо опис мультифрактальних об'єктів з формальної точки зору. Розглянемо фрактальний об'єкт, що займає обмежену область Ј, що характеризується розміром L в просторі Евкліда розмірністю D. Нехай на якомусь етапі побудови фрактал є множиною з точок, якось розподілених в цій області. Припускатимемо, що . Розіб'ємо усю область Ј на ячійки зі стороною які охоплюють одиниць розглядає мого простору. Нас цікавитимуть тільки зайняті ячійки, в яких міститься хоч би одна точка з К, що належить цьому фракталу. Нехай індекс зайнятих ячійок i змінюється в межах i = 1,2, … , де -- сумарна кількість зайнятих ячійок, яка залежить від розміру сторони ячійки . Нехай є кількістю точок в йчійці з індексом i, тоді величина
є ймовірністю того, що навмання узята точка з множини знаходиться в ячійці i. З умови нормування ймовірності виходить, що . Введемо в розгляд узагальнену статистичну суму , що характеризується показником степені q, який може набувати будь-яких значень в інтервалі :
Визначення 1.1. Спектром узагальненої фрактальної розмірності Реньї , що характеризують розподіл точок в області Ј, називається сукупність величин
Якщо , тобто не залежить від q, то ця множина точок є звичайним, регулярним фракталом, який характеризується усього лише однією величиною -- фрактальною розмірністю . Напротив, якщо функція якось змінюється з q, то дана множина точок є мультифракталом.
Таким чином, мультифрактал в загальному випадку характеризується деякою нелінійною функцією , що визначає поведінку статистичної суми при :
Розглянемо, як поводиться узагальнена статистична сума у разі звичайного регулярного фрактала з фрактальною розмірністю . В цьому випадку в усіх зайнятих ячійках міститься однакова кількість точок , тобто фрактал є однорідним. Тоді очевидно, що відносні населеності усіх ячійок теж однакові і узагальнена статистична сума набирає вигляду
Врахуємо тепер, що згідно з визначенням фрактальної розмірності число зайнятих ячійок при досить малому е поводиться наступним образом:
Підставляючи (1.11) в (1.10) і порівнюючи з (1.9), приходимо до висновку, що у разі звичайного фрактала функція
тобто є лінійною. Тоді усі і дійсно не залежать від q. Для фрактала, уся узагальнена фрактальна розмірність якого співпадають, часто використовується термін «монофрактал».
Якщо розподіл точок по ячійкам неоднаковий, то фрактал є неоднорідним, тобто представляє з себе мультифрактал, і для його характеристики потрібний цілий спектр узагальненої фрактальної розмірності , число яких в загальному випадку нескінченно.
Для характеристики розподілу точок необхідно знати не лише функцію , але і її похідну, що безпосередньо обчислюється з виразів (1.8б) і (1.7) :
Ця похідна має важливий фізичний сенс. Якщо вона не залишається постійною і змінюється з q, то це означає, що ми маємо справу з мультифракталом.
Фрактальна розмірність і інформаційна розмірність
З'ясуємо, який фізичний сенс має узагальнена фрактальна розмірність для деяких значень q. Так, при q=0 з вираження(1.7) виходить, що .
З іншого боку, згідно з формулами (1.9) и (1.8а)
Зіставляючи ці дві рівності, приходимо до співвідношення . Це означає, що величина є звичайною хаусдорфовою розмірністю множини Ј, яка є найбільш грубою характеристикою мультифрактала і не несе інформації про його статистичні властивості.
З'ясуємо тепер фізичний сенс величини . Можна показати, що
З точністю до знаку сума в цій формулі є ентропією фрактальної множини S(е):
В результаті узагальнена фрактальна розмірність пов'язана з ентропією S(е) співвідношенням
Ґрунтуючись на подібних міркуваннях, Клод Шеннон узагальнив поняття ентропії S на абстрактні задачі теорії передачі і обробки інформації. Для цих задач ентропія стала мірою кількості інформації, необхідної для визначення системи в деякому стані i. Іншими словами, вона є мірою нашого незнання про систему. Повертаючись до початкової задачі про розподіл точок на фрактальній множині Ј, можна сказати, що оскільки
величина характеризує інформацію, необхідну для визначення місця розташування точки в деякій ячійці. У зв'язку з цим узагальнену фрактальну розмірність часто називають інформаційною розмірністю. Вона показує, як інформація, необхідна для визначення місця розташування точки, зростає при наближенні розміру ячійки е до нуля.
Свойства фунцйії . Як ми вже говорили, мультифрактал характеризується неоднорідним розподілом точок по ячійкам. В той же час, якби точки, що становлять мультифрактал, були б розподілені по ньому рівномірно по усім N(е) ячійкам з ймовірністю , ентропія такого розподілу була б максимальна і рівна
Іншими словами, вона була б більше фактичної величини ентропії мультифрактала, розрахованої для реального неоднорідного розподілу точок, . Звідси слідує важливий висновок, що інформаційна розмірність мультифрактала завжди менше або дорівнює його хаусдорфовой розмірності Цю нерівність можна узагальнити для довільного показника міри q і довести, що узагальнена фрактальна розмірність завжди монотонно спадає(чи в крайньому випадку залишається постійною) із зростанням q: при . Знак рівності має місце, наприклад, для однорідного фрактала. Максимального значення величина досягає при q>-?, а мінімального при q>?.
Спектр фрактальних розмірностей. Таким чином, вище сформульовано поняття мультифрактала -- об'єкту, що є неоднорідним фракталом. Для його опису введений набір узагальненої фрактальної розмірності , де q набуває будь-яких значень в інтервалі . Проте величини не являються, строго кажучи, фрактальною розмірністю в загальноприйнятому розумінні цього слова. З цієї причини вони і називаються узагальненою розмірністю.
Тому часто разом з ними для характеристики мультифрактальної множини використовують функцію мультифрактального спектру f(б) (спектр сингулярностей мультифрактала), до якої більше підходить термін "фрактальна розмірність". Покажемо, що величина f(б) фактично дорівнює хаусдорфовій розмірності деякої однорідної фрактальної підмножини з початкової множини Ј, яке дає домінуючий вклад в статистичну суму при заданій величині q.
Однією з основних характеристик мультифрактала є набір ймовірностей pi, що показують відносну заселеність ячійок е, якими можна покрити досліджувану множину. Чим менше розмір ячійки, тим менше величина її заселеності. Для самоподібних множин залежність pi від розміру ячійки е має степенний характер:
де бi , є деяким показником степені(різний, взагалі кажучи, для різних ячійок i). Відомо, що для регулярного(однорідного) фрактала усі показники степені бi однакові і дорівнюють фрактальній розмірності Df :
В цьому випадку статистична сума (1.7) має вигляд
Тому і усі узагальнені фрактальні розмірності в цьому випадку співпадають і не залежать від q.
Проте для такого складнішого об'єкту, як мультифрактал, внаслідок його неоднорідності, ймовірність заповнення ячійок pi в загальному випадку неоднакова і показник степені бi для різних ячійок може набувати різних значень. У разі монофрактала, для якого усі бi однакові(і дорівнюють фрактальній розмірності ), число N(е), очевидно, степенним чином залежить від розміру ячійки е. Так що . Показник степені в цьому співвідношенні визначається фрактальною розмірністю множини .
Для мультифрактала це не так, і різні значення бi зустрічаються з ймовірністю, що характеризується не однією і тією ж величиною , а різними(залежно від б) значеннями показника степені f(б),
Таким чином, фізичний сенс функції f(б) полягає в тому, що вона є хаусдорфовою розмірністю деякої однорідної фрактальної підмножини Јб з початкової множини Ј, що характеризується однаковими ймовірностями заповнення ячійок . Оскільки фрактальна розмірність підмножини очевидно завжди менше або дорівнює фрактальній розмірності початкової множини , має місце важлива нерівність для функції f(б):
В результаті приходимо до висновку, що набором різних значень функції f(б) (при різних б) є спектр фрактальних розмірностей однорідних підмножин Јб початкової множини Ј, кожне з яких має своє власне значення фрактальної розмірності f(б).
Оскільки будь-якій підмножині належить лише частина від загального числа ячійок N(е), на які розбита початкова множина Ј, умова нормування ймовірностей , очевидно, не виконується при підсумовуванні тільки по цій підмножині. Сума цієї ймовірності виявляється менше одиниці. Тому і самі ймовірності з одним і тим же значенням бi, очевидно, менше(чи в крайньому випадку одного порядку), ніж величина , яка обернено пропорційна до числа наявних ячійок, що покривають цю підмножину(нагадаємо, що у разі монофрактала ). В результаті приходимо до наступної важливої нерівності для функції f(б). А саме, при усіх значеннях б
Знак рівності має місце, наприклад, для повністю однорідного фрактала, де f(б)= б=.
Визначення і властивості самоподібних процесів
Розглянемо дискретний в часі випадковий процес або часовий ряд X(t), t, где X(t) () інтерпретується як об'єм трафіку (вимірюваний в пакетах, байтах або бітах) до моменту часу t.
Визначення 1.2. Будемо вважати, що дійсно значний процес має стаціонарні прирости, якщо
Тут позначення = означає рівність в скінченномірних розподілах.
Послідовність приростів для при дискретному часі можна визначити як . Для цілей трафикового моделювання вважатимемо процес Х(t) "стаціонарним" в широкому сенсі, накладаючи обмеження, що ковариационная функція -- є інваріантною відносно зрушення, тобто для будь-яких . Припустимо, що перші два моменти існують і кінцеві для будь-яких t. Тут М(-) -- операція усереднювання; m -- початковий момент (математичне очікування); у2 -- дисперсія процесу X(t). Приймемо для зручності m = 0. Оскільки за умови стаціонарності , позначимо коваріацію як R(k), а коефіцієнт кориляції .
Визначення 1.3. [2] Дійснозначний процес є самоподібним з показником H>0 (H-ss), якщо для усіх а > 0 скінченномірні розподіли для ідентичні скінченномірним розподілам ; тобто, якщо для будь-яких і будь-яких a>0
Коротше рівняння (1.27) можна записати у виді
Формула (1.27) свідчить, що зміна тимчасового масштабу еквівалентна| зміні просторового масштабу станів. Тому типові реалізації самоподібного| процесу візуально схожі незалежно від масштаба| часу, на якому вони розглядаються. Це не означає, що процес| повторюється в точності, швидше спостерігається схожість статистичних властивостей через те, що статистичні характеристики при масштабуванні не змінюються [2]. Параметр H, що дістав назву "показник Херста", має надзвичайно важливе значення в теорії самоподібних| процесів|, оскільки є індикатором самоподібності| випадкового процеса|, характеризує властивість довготривалої залежності.
Самоподібні процеси з показником самоподібності| H отримали в літературі| спеціальне позначення H-ss. Невироджений самоподібний| H-ss процес не може бути стаціонарним. Проте існує важливий зв'язок між самоподібними| і стаціонарними процесами.
є стаціонарним. І навпаки, якщо є стаціонарним, тоді
Теорема 1.1 показує, що існує безліч різних самоподібних процесів. З точки зору використання на практиці цікаві ті, що мають стаціонарні прирости, оскільки вони призводять до стаціонарних послідовностей з особливими властивостями.
Процес H-ss (Н-Self-Similar), що має стаціонарні прирости, отримав спеціальне позначення Н-sssi (Self-similar process with Self-similarity parameter H with Stationary Increments).
Визначення 1.4. [2] Процес називається Н-sssi, якщо він є самоподібним з показником Н і має стаціонарні прирости.
Лема 1.1. [2]. Допустимо, що є (невиродженим) процесом Н-sssi з нескінченною дисперсією. Тоді 0 1 автокореляція процесу приростів не існує. Діапазон 0 < H < 0,5 можна виключити з розгляду на практиці, оскільки в цьому випадку процес приростів являється КВЗ. Для практичних цілей важливий лише діапазон 0,5 < H < 1. У цьому діапазоні нормована кореляційна функція (коефіцієнт кореляції) процесу приростів Х(t)
Агрегований процес. Нехай стаціонарний процес з кореляційною функцією R(k). Визначимо m-агрегований часовий ряд усереднюючи початковий ряд по блоках розміру m, що не перекриваються, замінюючи кожен блок його середнім значенням, тобто
і позначимо кореляційну функцію, що відповідає йому, як .
Визначення 1.5. Дискретний, випадковий процес є строго самоподібним в широкому сенсі(exactly second-order self-similar) з показником самоподібності H (0,5 0 ). Отже, коваріаційна функція є непідсумовуваною, і ряд, утворений послідовними значеннями коваріаційної функції, розходиться:
Ця нескінченна сума є ще одним визначенням довготривалої залежності (ДВЗ), тому майже усі самоподібні процеси є довготривало залежними. Наслідки цього дуже істотні, оскільки кумулятивний ефект в широкому діапазоні затримок може значно відрізнятися від того, який спостерігається в короткочасно залежном КВЗ (SRD-Short Range Dependence) процесі(наприклад, пуасоновський, марківський або авторегресійний(AR- AutoRegressive) процес).
Хоча у минулому аналіз телетрафіку в основному базувався на КВЗ моделях, наслідки ДВЗ можуть бути дуже серйозними. Оскільки ДВЗ є причиною тривалих пульсацій, які перевищують середні рівні трафіку, ця властивість призводить до переповнювання буферів і викликає втрати і/або затримки.
По-друге, вибіркова дисперсія агрегованих процесів затухає повільніше, ніж величина, зворотна розміру вибірки. Якщо ввести в розгляд нову тимчасову послідовність , отриману усереднюванням первинної послідовності по послідовних блоках розміру m, що не перетинаються, тоді для самоподібних процесів виявиться характерним повільніше загасання дисперсії згідно із законом
тоді як для традиційних(несамоподібних) стаціонарних випадкових процесів , тобто затухає обернено пропорційно до довжини вибірки. Це говорить про те, що статистичні характеристики вибірки, такі як середнє значення і дисперсія, сходитимуться дуже повільно, особливо при H>1. Ця властивість відбивається на усіх заходах самоподібних процесів і буде детальніше розглянуто при оцінці статистичних характеристик.
По-третє, якщо розглядати самоподібні процеси в частотній області, то явище довготривалої залежності призводить до степенного характеру спектральної щільності поблизу нуля:
де 0 < г < 1; L2 -- що повільно змінюється в 0 і -- спектральна щільність. Отже, з позиції спектрального аналізу довготривала залежність має на увазі, що , тобто спектральна щільність прагне до +?, коли частота щ наближається до 0 (подібне явище надалі назване 1/f -- шум). І навпаки, процеси з короткочасною залежністю характеризуються спектральною щільністю, що має позитивне і кінцеве значення при щ = 0.
Співвідношення (1.37), (1.39) і (1.40) пов'язані з показником H, який називається показником Херста. Показник Херста самоподібного процесу лежить між 0,5 і 1. При наближенні H до 1 ряд стає усе більш самоподібним, проявляючи себе у все повільніше затухаючій коваріації, як це видно з (1.37).
На практиці перевірка на самоподібність і оцінка показника Херста є складним завданням. Проблема в тому, що в реальних умовах завжди оперують з кінцевими наборами даних, тому неможливо перевірити, чи є траса трафіку самоподібною. Тобто необхідно досліджувати різні властивості самоподібності в реальному виміряному трафіку.
Перша проблема, з якою зазвичай стикаються, полягає в тому, що навіть якщо підтверджуються деякі перелічені вище властивості самоподібності, не можна відразу зробити висновок, що проаналізовані дані мають самоподібну структуру, оскільки існують інші дії, які можуть призводити до таких же властивостей (наприклад, присутність нестаціонарності). І оскільки аналіз грунтувався тільки на тих тестах, які можуть ввести в оману, розумно говорити про самоподібну структуру, в заданому масштабному діапазоні для заданого набору даних.
Друга проблема полягає в тому, що оцінка показника Херста залежить від багатьох чинників (наприклад, методики оцінки, розміру вибірки, масштабу часу, кореляційної структури і так далі), що затруднює знаходження найдоречнішої для поставленого завдання "оцінки H".
Третя проблема при використанні показника Херста в практичних цілях (наприклад, визначення розмірів буферів) полягає в тому, що інтерпретація показника H (яка очевидна для теоретичних самоподібних процесів) не очевидна для реального трафіку, який може ніколи не розглядатися як теоретично самоподібний процес. На сьогодні відомі декілька методів оцінки самоподібності в тимчасових рядах [2, 8-10]. Найпопулярніші методи: аналіз R/S-статистики; аналіз графіку зміни дисперсії; аналіз, грунтований на специфічних властивостях S(щ); оцінка Віттла; аналіз, грунтований на вейвлет-функціях.
Теоретична основа для багатьох з цих статистичних інструментальних засобів базується на центральних або нецентральних граничних теоремах для випадкових послідовностей з довготривалою залежністю. Докази вимагають розуміння структури моментів нелінійних функцій випадкових змінних гаусів і лінійних процесів.
Методи оцінки показника Херста в часовій області
Аналіз нормованого розмаху. Грунтуючись на дослідженні різних явищ (наприклад, зміни рівня води в річці), Херст розробив нормовану безрозмірну міру, здатну описати мінливість. Цей захід він назвав нормованим розмахом (R/S). Для заданого набору спостережень з вибірковим середнім вводиться поняття розмаху
тобто різниця між максимальним и мінімальним відхиленням.
Ця характеристика відрізняється від розмаху тимчасової послідовності випадкової величини Xj який дорівнює
Замість нього вибрана величина, що враховує накопичення і характеризуюча мінливість величини X відносно середнього значення. Для опису мінливості зручніша нормована безрозмірна характеристика
Херст назвав це відношення нормованим розмахом і показав, що для багатьох природних явищ справедливе емпіричне співвідношення
де с -- позитивна кінцева константа, не залежна від п.
Прологарифмував обидві частини (1.70), отримаємо
Таким чином, параметр Н можна оцінити, зобразив графік , і, використовуючи отримані точки, підібрати по методу найменших квадратів пряму лінію з нахилом H.
R/S-метод не занадто точний, оскільки дає оцінку тільки рівня самоподібності в часовому ряду. Тому цей метод може використовуватися тільки для перевірки, чи є часовий ряд самоподібним і, якщо являється, отримати грубу оцінку H (рисунок 1.1).
Рисунок 1.1 - Графік R/S-статистики для Ethernet-трафіка
Цей результат може бути використаний, щоб оцінити показник Херста по заданому ряду спостережень. Проте, якщо спостереження беруться з короткочасно залежного процесу, тоді показано, що
де d -- кінцева додатня константа, не залежна від n. Цей випадок може розглядатися як характеристика процесу, що не має властивості самоподібності.
Графік зміни дисперсії. Як було показано вище для самоподібного процесу, зв'язок між дисперсією об'єднаного процесу і розміром блоку m формулюється як
де а -- деяка кінцева додатня константа. Прологарифмувавши обидві частини (1.73), отримаємо залежність
Отже, можна отримати оцінку в, вичисливши для різних значень m і, відображаючи результати графічно від , провести через отримані точки пряму лінію по методу найменших квадратів. Оцінку для в визначимо як від'ємний нахил прямої лінії, підібраної по методу найменших квадратів. Оскільки відомо, що H пов'язаний з в через співвідношення H=1-в/2, це дає оцінку для H, рівну .
Як і у разі R/S-аналізу, метод зміни дисперсії -- лише евристичний метод. Обидва методи використовуються надалі при різних обмеженнях; наприклад, вони можуть бути дійсно обгрунтовані при малій кількості статистичних даних, доступних спостереженню з окремої вибірки самоподібного процесу. Отже, зміна дисперсії може використовуватися тільки для того, щоб перевірити, чи є часовий ряд самоподібним, і якщо являється, то отримати грубу оцінку H.
Індекс дисперсії для відліків. Мірою опису мінливості трафіку на різних масштабах часу зазвичай є індекс дисперсії для відліків IDC.
Самоподібні процеси дають монотонно зростаючий IDC виду m-1t2H-1. Накресливши графік від , отримуємо пряму лінію з приблизним нахилом 2H-1.
Методи оцінки показника Херста в частотній області
Оцінка Віттла. Тоді як графіки зміни дисперсії і R/S-графіки дуже корисні для виявлення самоподібності (здебільшого в евристичній манері), відсутність яких-небудь результатів для граничних законів відповідних статистичних характеристик робить їх непридатними, коли потрібен тонший аналіз даних (наприклад, довірчі інтервали для степені самоподібності H, критерій вибору моделі або критерії згоди). Тонший аналіз даних можливий, якщо використати оцінки максимальної правдоподібності (ОМП) і пов'язані з ними методи, що використовують періодограми.
Дамо визначення ОМП. Нехай задана спектральна щільність процеса X, де ; Н = (б +1)/2 -- показник самоподібності (див. Визначення 1.7); -- параметры, що визначають КВЗ-структуру процесу. У якості масштабного коефіцієнта використовуємо дисперсію інновації е в нескінченному AR уявленні процесу, тобто , де . Це означає, що має місце співвідношення
Оцінка Віттла для з вибирається з таким розрахунком, щоб значення наступного виразу було мінімальним (рисунок 1.4):
- періодограма, а оцінка знаходиться згідно
Тоді можна сказати, що є нормально розподіленою величиною, якщо може бути записаний у вигляді нескінченного процесу ковзаючого середнього. У разі гаусівського процесу асимптотичні розподіли оцінки і ОМП співпадають.
У цьому контексті з позиції стійкості, як правило, виникають дві проблеми: перша із-за відхилень реального розподілу від гаусівського; друга - із-за відмінностей між реальною і передбачуваною моделями спектру. Для подолання першої проблеми можна перетворити дані так, щоб приблизно отримати необхідний маргінальний (нормальний) розподіл. До вирішення другої проблеми існує декілька підходів, у тому числі визначення оцінки H з ординат періодограми тільки на низьких частотах або ж обмеження періодограми високих частотах. За наявності
Оцінка параметрів неоднорідного вхідного потоку у телекомунікаційних мережах дипломная работа. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Реферат: Интернет-технологии на клавишах телефона
Образование В Казахстане Сочинение
Дипломная работа по теме Оценка платежеспособности и финансовой устойчивости предприятия (на примере ООО 'Плодоовощное хозяйство – Монастырское подворье')
Проблема утилизации и переработки промышленных отходов
Организация Инклюзивного Образования В Доу Курсовая Работа
Восточные Славяне В Сочинениях Византийцев План
Право На Одновременное Получение Двух Пенсий Реферат
Реферат: Общая спортивная подготовка в системе физического воспитания
Курсовая работа: Управление инвестиционным процессом в муниципальном образовании
Реферат На Тему Несобственные Интегралы
Реферат по теме Проблемы вексельного обращения в России
Реферат На Тему Занятия Физической Культурой
Курсовая Срочно
Реферат Образование И Самообразование
Курсовая работа: Предпринимательство в России
План Сочинения Один День Лета
Сочинение На Тему Подвиг Чувашского Народа
Реферат по теме Карибский кризис 1962
Дипломная работа по теме Организация дежурства дошкольников
Техника Метания Теннисного Мяча Реферат
Пистолеты - Военное дело и гражданская оборона реферат
Нивелир: как им пользоваться и что это такое - Геология, гидрология и геодезия презентация
Уголовно-процессуальные функции - Государство и право контрольная работа