(Не)совершенная случайность

(Не)совершенная случайность

Леонард Млодинов

Глава 6
ЛОЖНАЯ ПОЛОЖИТЕЛЬНОСТЬ И ПОЛОЖИТЕЛЬНАЯ ЛОЖНОСТЬ

Случай этот произошел в 1970-х: как-то на занятия к профессору, преподававшему психологию в Гарварде, пришел один странного вида студент средних лет. После первых лекций студент счел нужным объяснить, зачем он записался на курс
{102}

. В моей преподавательской практике были случаи, когда особо воспитанные студенты объясняли, почему бросают курс, однако ни один студент не потрудился сказать, почему он решил ходить ко мне. Наверно поэтому я в мечтах представляю, как студент подходит и говорит: «Меня очень заинтересовал ваш предмет, вы замечательно читаете лекции». Однако у того студента причины были иными. Ему нужна была помощь, так как с ним происходило нечто странное. Жена сказала ему то, о чем он в тот момент как раз думал; в результате она с ним разводится. Коллега по работе во время дружеской посиделки в баре вскользь упомянул о сокращении, и через два дня наш студент пополнил ряды безработных. Он признался: за последнее время с ним не раз и не два случались подобного рода несчастья и, как он назвал их, вызывающие тревогу совпадения.

Поначалу все эти происшествия лишь сбили его с толку. Затем он, как и большинство из нас на его месте, придумал себе некое объяснение с точки зрения общемирового порядка. Которое, однако, резко отличалась от всего того, что наверняка пришло бы в голову каждому из нас: он решил, что участвует в строго засекреченном научном эксперименте. Что эксперимент ставится большой группой ученых под началом известного психолога Б.Ф. Скиннера. И что когда эксперимент закончится, он, участник, прославится, и его назначат на высокий государственный пост. Вот почему, сказал студент, он записался на курс. Он хотел узнать: как, основываясь на множестве накопившихся к тому времени доказательств, проверить свое предположение.

Спустя некоторое время, когда курс лекций был прочитан, студент снова подошел к профессору. И сообщил, что эксперимент продолжается; он же теперь судится со своим бывшим работодателем, который нашел психиатра, готового засвидетельствовать паранойю бывшего работника.

Одной из навязчивых, по мнению психиатра, идей был якобы выдуманный священник из восемнадцатого века, на реальности существования которого настаивал бывший работник. В частности, психиатр высмеивал утверждение, будто этот священник, увлекаясь на досуге математикой, изобрел причудливую теорию вероятностей. Автор идеи утверждал, что священника звали Томас Байес. А теория его описывала следующее: каким образом можно оценить вероятность того, что некое событие произойдет, если произойдет некое другое событие. Каковы шансы того, что этот студент станет объектом скрытых наблюдений психологов? Следует признать, они невелики. Но что, если чья-то жена высказывает вслух тайные мысли мужа, а коллега за кружкой пива в непринужденной обстановке мимоходом предсказывает увольнение? Студент уверял, что теория Байеса демонстрировала, каким образом необходимо изменить первоначальные подсчеты в свете новых доказательств. И во время суда студент вывалил на судей мешанину из формул и вычислений, подкреплявших его гипотезу, делая вывод о том, что дополнительные доказательства подтверждают: в 999 999 из 1 000 000 его предположения о тайном эксперименте верны. Психиатр со стороны работодателя утверждал, что и священник с математическими наклонностями, и теория — плоды воспаленного воображения бывшего работника.

Студент попросил профессора помочь с опровержением этого утверждения. Профессор согласился. И у него были на то веские причины, потому как Томас Байес, родившийся в Лондоне в 1701 г., действительно был священником, имевшим приход в Танбридж-Уэлс. Байес умер в 1761 г и был похоронен на территории лондонского парка Банхилл-Филдс, в той же самой могиле, что и его отец Джошуа, также служитель церкви. Томас Байес в самом деле изобрел теорию «условных вероятностей», чтобы доказать, что теория вероятностей может распространяться не только на независимые события, но и на события, чьи исходы зависят друг от друга. Например, и вероятность того, что случайно выбранный человек окажется психически больным, и вероятность того, что случайно выбранный человек утверждает, будто жена читает его мысли, весьма низки, однако вероятность того, что человек психически болен, если он утверждает, будто жена читает его мысли, уже гораздо выше, как и вероятность того, что человек утверждает, будто жена читает его мысли, если при этом он психически болен. Как все эти вероятности связаны между собой? Ответ следует искать в области условных вероятностей.

Профессор дал показание под присягой: подтвердил реальное существование Байеса и его теории, хотя и не высказался в поддержку специфических и сомнительных вычислений, которые, как утверждал теперь уже бывший студент, доказывали его вменяемость. Жалость вызывает не сам шизофреник, человек уже немолодой, а команда врачей и юристов, которую сколотило обвинение. Печален тот факт, что некоторые люди больны шизофренией, но хотя лекарства и могут помочь в излечении болезни, они не в силах побороть невежество. Как мы дальше убедимся, неосведомленность об идеях Томаса Байеса лежит в основе многих серьезных ошибок, будто то медицинские диагнозы или судебные решения. Во время же обучения будущих врачей и юристов с невежеством этим редко когда борются.

И в наши дни мы выносим суждения согласно теории Байеса. В одном фильме рассказывается об адвокате, у которого была замечательная работа, очаровательная жена, идеальная семья. Он любил жену и дочь, но ощущал в своей жизни некую пустоту. Однажды вечером он возвращается на трамвае домой и замечает красивую женщину — она с задумчивым видом смотрит из окна танцевальной студии. Проезжая на следующий день и через день, он ищет ее взглядом, с каждым разом все больше подпадая под ее чары. Наконец в один из вечеров он поддается порыву: сходит с электрички и записывается на танцевальные занятия в студию, надеясь увидеть ту женщину. Однако когда видит ее вблизи, чарующий образ, который преследовал его в воображении, улетучивается. Тем не менее он увлекается, однако не той женщиной, а танцами.

Свое увлечение он скрывает и от семьи, и от коллег по работе, выдумывая разные предлоги, чтобы вечером ускользнуть из дому. Наконец жена узнает, что он вовсе не засиживается за работой допоздна, как он говорит. Она думает: вероятность того, что он лжет о сверхурочной работе, гораздо больше при условии, что у него любовная связь, нежели при условии, что никакой любовной связи нет. И приходит к выводу: он все-таки лжет. Однако жена ошибается не столько в своих выводах, сколько в рассуждениях: она путает вероятность того, что муж избегает ее, если у него связь, с вероятностью того, что у него связь, если он ее избегает.

Это довольно распространенная ошибка. Предположим, начальник стал отвечать на ваши электронные письма с запозданием. Многие сочтут это знаком скорого заката собственной карьеры, потому что если вашей карьере подходит конец, велика вероятность того, что босс перестает отвечать на ваши письма оперативно. Однако босс может запаздывать с ответом и потому, что занят или у него заболела мать. Так что вероятность того, что ваша карьера подходит к концу, если начальник отвечает на ваши письма не сразу, гораздо ниже, чем вероятность того, что ваш начальник станет отвечать на письма с задержкой, если вас ждет увольнение. Своей привлекательностью многие теории тайных сговоров обязаны неправильному пониманию вышеприведенных логических выкладок. То есть все дело в путанице: вероятность того, что ряд событий произойдет, если события эти являются результатом тайного сговора, путают с вероятностью того, что тайный сговор существует, если имеет место ряд событий.

На вероятность влияет тот факт, что событие произойдет, если или при условии, что произойдут другие события. В этом и заключается теория Байеса. Чтобы понять принцип ее действия, обратимся к другой задаче, которая имеет отношение к задаче о двух дочерях из главы 3. Предположим, что у двоюродной сестры двое детей. По условию задачи о двух дочерях вам известно, что один ребенок или оба — девочки, и вы пытаетесь вспомнить, как же оно на самом деле: одна девочка или две? Если в семье двое детей, какова вероятность (при условии, что один ребенок — девочка) того, что оба ребенка — девочки? В главе 3 мы не подходили к задаче с такой стороны, однако это «если» переводит задачу в плоскость условных вероятностей. Если бы это «если» отсутствовало, вероятность того, что оба ребенка — девочки, была бы равна 1 из 4 случаев, то есть 4 вариантов очередности рождения (мальчик, мальчик), (мальчик, девочка), (девочка, мальчик), (девочка, девочка). Однако дополнительные сведения о том, что в семье одна девочка точно есть, сводит вероятность к 1 из 3. И это потому, что если один из детей — девочка, для этой семьи существуют всего 3 возможных варианта — (мальчик, девочка), (девочка, мальчик), (девочка, девочка), и лишь 1 из 3 соответствует исходу, при котором оба ребенка — девочки. Возможно, это простейший способ понять идеи Байеса — все дело исключительно в подсчетах. Сначала надо обозначить пространство элементарных событий, то есть сделать список всех возможностей, а вместе с ними и их вероятностей, если они не равны (вообще-то способ хорош для решения любой запутанной задачи на тему вероятностей). Далее надо вычеркнуть те возможности, которые исключаются условиями (в данном случае условие: «хотя бы один ребенок — девочка»). В остатке: возможности и соответствующие им вероятности.

Возможно, все это покажется очевидным. Ничуть не усомнившись в своих силах, вы решите, что могли бы додуматься до этого и без помощи дражайшего преподобного Байеса, после чего дадите себе слово, что когда уединитесь в уборной в следующий раз, захватите почитать какую-нибудь другую книжку. Поэтому прежде чем мы продолжим, рассмотрим несколько измененную задачу про двух дочерей — ее решение может оказаться гораздо более неожиданным
{103}
.

Вариант таков. В семье двое детей; какова вероятность того, что если один из детей — девочка по имени Флорида, то и другой ребенок тоже девочка? Да, вам не показалось: я назвал девочку Флоридой. Может, вы и подумаете на имя, что оно выбрано наугад, на самом деле это не так — кроме того, что оно обозначает название штата, где полно кубинских иммигрантов, апельсинов и пожилых людей, которые меняют свое просторное жилье в северной части страны на радость обозревать пальмы и играть в бинго, это еще и настоящее имя. В самом деле, оно входит в 1 000 самых популярных женских имен за первые тридцать лет прошлого века в Америке. Я выбрал его совсем неспроста, потому что часть загадки заключается в вопросе: есть ли что-то в имени Флорида, что влияет на вероятность, и если есть, то что? Однако я забегаю вперед. Прежде чем мы продолжим, обдумайте такой вопрос: если брать задачу с девочкой по имени Флорида, остаются ли шансы на семью из двух девочек такими же: 1 из 3 (как в задаче с двумя дочерьми)?

Ответ отрицательный, и я вкратце объясню, почему. Тот факт, что одну из девочек зовут Флорида, меняет шансы на 1 из 2. Может, вам сложно представить такое, однако не стоит переживать по этому поводу. Ключ к пониманию случайности, да и вообще математики заключается не в том, чтобы решить любую задачу мгновенно на интуитивном уровне, а воспользоваться соответствующими средствами и вычислить ответ.

Те, кто сомневался в существовании Байеса, были правы в одном: Байес не опубликовал ни одного научного труда. О его жизни нам известно немного, возможно, он занимался математикой в свое удовольствие и не испытывал потребности в собеседниках. В этом отношении и в некоторых других они с Якобом Бернулли были полными противоположностями. Бернулли сопротивлялся изучению богословия, а Байес совмещал теологию и математику. Бернулли гнался за славой, а Байеса она совершенно не привлекала. И, наконец, теорема Бернулли решает следующий вопрос: сколько получится орлов, если планируется произвести много бросков идеальной монеты, в то время как Байес исследовал первоначальную цель Бернулли — вопрос о том, насколько можно быть уверенным в том, что монета идеальна, если выпадает определенное число орлов.

Существование теории, благодаря которой Байес нам и известен, обнаружилось 23 декабря 1763 г., когда другой священнослужитель и математик, Ричард Прайс, прочел в Королевском обществе, этой британской национальной академии наук, доклад по научной работе. Работа, названная Байесом «Эссе о решении проблем в теории случайных событий», была опубликована в «Philosophical Transactions» Королевского общества в 1764 г. Байес оставил работу Прайсу по завещанию, вместе со 100 фунтами. По свидетельству Прайса, этого «как я полагаю, священника из Ньюингтон Грин», как высказался о нем Байес, автор «Эссе» умер спустя четыре месяца после того, как написал завещание

{104}
.

Хотя Байес и упомянул Ричарда Прайса вскользь, мимоходом, на самом деле Прайс отнюдь не был никому не известным священником. Его знали как пропагандиста свободы вероисповедания, друга Бенджамина Франклина, человека, которому Адам Смит доверил критический обзор некоторых частей чернового варианта «Исследования о природе и причинах богатства народов». Кроме всего прочего, Ричард Прайс был известным математиком. В заслугу ему ставят также основание страховой статистики, история которой началась с того, что в 1765 г. трое служащих из страховой компании «Equitable Society» обратились к Прайсу за помощью. Спустя шесть лет Прайс опубликовал свою работу в виде книги под названием «Заметки о страховых выплатах». И хотя книга, своего рода Библия для экспертов-статистиков из страховых учреждений, прослужила вплоть до XIX в., Прайс по-видимому недооценил среднюю продолжительность жизни — из-за недостаточности сведений и ненадежного метода подсчетов. В результате неоправданно завышенные страховые взносы обогатили его приятелей из «Equitable Society». С другой стороны, незадачливое британское правительство, производившее свои ежегодные выплаты исходя из таблиц Прайса, потерпело убытки: к ожидаемому по табличным данным сроку пенсионеры по-прежнему оставались в добром здравии.

Как я уже говорил, Байес разработал условную вероятность в попытке ответить на тот же вопрос, который увлек Бернулли: как по известному факту события вычислить вероятность того, что оно было вызвано данной причиной? Если в процессе клинических испытаний лекарство помогло 45 пациентам из 60, каковы шансы того, что лекарство подействует и на следующего пациента? Если оно помогло 600 000 пациентов из 1 млн, шансы того, что оно подействует, приближаются к 60%. Однако к какому выводу вы придете, если будете исходить из испытаний меньшего масштаба? Байес задался и другим вопросом: если перед испытаниями у вас были основания верить в то, что лекарство эффективно лишь на 50%, насколько весомыми окажутся новые сведения для ваших дальнейших оценок? Наш жизненный опыт в основном выглядит следующим образом: мы наблюдаем сравнительно небольшую выборку исходов, а уже из этого выводим информацию и приходим к заключению относительно качеств, которые привели к подобным исходам. Как нам следует выводить информацию?

Байес задумал решить задачу через метафору
{105}

. Предположим, нам выдали квадратный стол и два мяча. Первый мяч мы катим по столу таким образом, чтобы имели место равные вероятности: мяч остановится в любой точке. Наша цель — определить, не глядя, где именно вдоль всей оси слева направо мяч остановился. При этом наше орудие — второй мяч, который мы поначалу тоже будем неоднократно катать по столу тем же самым образом, что и первый. С каждым разом специально поставленный для этого человек будет записывать, где именно, справа или слева от первого мяча, остановился второй мяч. В конце человек сообщит нам общее количество попыток, во время которых второй мяч останавливался в каждом из двух основных направлений. Первый мяч представляет собой то неизвестное, о чем мы хотели узнать, второй мяч представляет собой свидетельства, которые нам удалось собрать. Если второй мяч будет раз за разом останавливаться справа от первого мяча, можно быть в достаточной степени уверенным, что первый мяч останавливается в дальнем левом углу стола. Если он останавливается — не так последовательно, раз за разом — мы будем в меньшей степени уверенными в своем выводе или же предположим, что первый мяч находится в дальнем правом углу. Байес продемонстрировал, как, опираясь на сведения о втором мяче, определять точную вероятность того, что первый мяч находится в любой данной точке рядом с осью слева направо. И продемонстрировал, как при наличии дополнительных сведений можно пересмотреть первоначальные подсчеты. Согласно терминологии Байеса, первоначальные подсчеты называются априорной вероятностью, а новые предположения — апостериорной вероятностью.

Байес затеял эту игру по той простой причине, что она моделирует многие решения, которые мы принимаем в жизни. В примере с испытаниями лекарства положение первого мяча представляет собой истинную эффективность лекарства, а то, что говорится о втором мяче, представляет собой информацию о пациенте. Положение первого мяча может также обозначать интерес к фильму, качество изделия, умение водить машину, усердную работу, упрямство, талант, способность — да что угодно, что определяет успех либо неудачу того или иного предприятия. Сообщения о втором мяче в таком случае обозначали бы наши наблюдения либо полученные нами данные. Теория Байеса демонстрирует, как производить оценку и согласовывать ее при наличии новой информации.

В наше время байесовский анализ широко применяется и в науке, и на производстве. К примеру, в модели, с помощью которых рассчитываются страховые тарифы для автомобилей, заложена математическая функция, описывающая в единицах времени за рулем вероятность для вас лично попасть в аварию однажды, не один раз, ни одного раза. В нашем случае достаточно рассмотреть упрощенную модель, согласно которой все водители распределяются на две категории: высокого риска, к которой относятся водители, в среднем попадающие в одну аварию в год, и малого риска, к которой относятся водители, в среднем попадающие в менее чем одну аварию в год. Допустим, в момент обращения за страховкой вы предоставляете данные, согласно которым проездили без единой аварии аж двадцать лет, либо предоставляете данные, согласно которым за двадцать лет побывали в тридцати семи авариях. Страховая компания четко определит для себя, к какой категории вас отнести. Однако если вы сели за руль недавно, к какой категории вас отнести: малого риска (водитель не превышает скорость и не употребляет ни капли спиртного за рулем) или высокого риска (водитель гонит по шоссе, отхлебывая из уже полупустой бутылки вина)? У страховой компании нет на вас никаких данных — ни малейшего представления о «положении первого мяча», — поэтому вас могут отнести с равной априорной вероятностью и к той, и к другой категории, либо, на основании известных данных о начинающих водителях, сразу приписать к категории высокого риска, скажем, 1 к 3. В таком случае компания применит к вам смешанную оценку — одна треть высокого риска и две трети малого риска — и возьмет с вас одну треть платы, которую берет с водителей категории высокого риска, и две трети платы, которую берет с водителей категории малого риска. Далее после года наблюдений — то есть, после броска одного из вторых байесовских мячей, — компания будет располагать другими данными, чтобы переоценить модель, привести в соответствие ранее рассчитанные пропорции в одну треть и две трети и определить новую ставку. Если у вас не было ни одной аварии, соотношение малого риска и следовательно низкого тарифа возрастет; если у вас произошло две аварии, соотношение снизится. Точные размеры соответствия даются теорией Байеса. Таким же образом страховая компания может периодически приводить в соответствие свои оценки в последующие годы, отражая факт того, что у вас не было аварии или же вы дважды попали в аварию, когда ехали по улице с односторонним движением не в ту сторону, Да еще одной рукой прижимали к уху мобильный телефон, а в другой держали пончик. Вот почему страховые компании могут назначать скидки так называемым «примерным водителям»: отсутствие аварий повышает апостериорную вероятность того, что водитель входит в категорию малого риска.


Все материалы, размещенные в боте и канале, получены из открытых источников сети Интернет, либо присланы пользователями  бота. 
Все права на тексты книг принадлежат их авторам и владельцам. Тексты книг предоставлены исключительно для ознакомления. Администрация бота не несет ответственности за материалы, расположенные здесь

Report Page