Напрямки розвитку волоконної оптики - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа

Напрямки розвитку волоконної оптики - Коммуникации, связь, цифровые приборы и радиоэлектроника курсовая работа



































Дослідження тенденцій розвитку волоконних лазерів та їх використання у різних галузях. Розрахунок спектральних характеристик, просторових та енергетичних параметрів волоконного лазера. Вивчення оптичних волокон з гауівським профілем показника замовлення.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Одним з основних напрямків розвитку волоконної оптики в теперішній час є створення волоконних лазерів, що генерують в нових спектральних діапазонах. [4] Волоконні лазери були розроблені порівняно недавно, в 1980-х роках минулого сторіччя. З лазерів з напівпровідниковим накачуванням найбільш популярними є волоконні лазери.
У цей час відомі моделі волоконних технологічних лазерів потужністю до 20 кВт. Ці пристрої мають невисоку вартість, компактні, зручні для сполучення з магістральним волокном при мінімумі внесених втрат. Сьогодні ці пристрої досягли рівня характеристик, у першу чергу, потужності, надійності, що дозволяють із успіхом використовувати їх для розв'язку різних завдань лазерної обробки матеріалів. Вони являють собою практично ідеальні перетворювачі світлової енергії лазерних діодів накачування в лазерне випромінювання з рекордним ККД, у порівнянні, наприклад, із твердо тільними Nd:YAG-лазерами. [5]
Волоконні лазери володіють унікальним набором робочих характеристик і високими експлуатаційними якостями. У дослідницькій практиці отримана генерація в ближній інфрачервоній області спектра на великій кількості активних середовищ, реалізованих легуванням волоконних світловодів рідкоземельними елементами. [4]
Основним елементом волоконних лазерів є волоконний світловод з подвійною оболонкою, одномодова серцевина якого легована домішкою рідкоземельного елементу. Випромінювання накачування, зазнаючи повного внутрішнього відбивання на границі з зовнішньою полімерною оболонкою, розповсюджується по внутрішній оболонці з кварцевого скла. Перетинаючи серцевину, випромінювання накачування поглинається іонами рідкоземельного елементу, при цьому генерація виникає в одномодовій серцевині з характерним поперечним розміром 5-10 мкм. Таким чином, волоконний лазер з накачуванням в оболонку є приладом, який підвищує густину потужності випромінювання на 2-3 порядки. [6]
Найбільше поширення одержали неодимові, іттербієві, ербієві волоконні лазери [1]. Значний інтерес викликають лазери, генерація яких відбувається за допомогою вимушеного комбінаційного розсіяння (ВКР) у волокні. Внаслідок аморфності скла волоконних світловодів спектр ВКР-підсилення широкий і тому можлива генерація такого лазера на будь-якій довжині хвилі в діапазоні від 1 до 2 мікрон [2]. Застосування фосфосилікатних волоконних світловодів становить особливий інтерес, так як вони мають велику величину стоксового зсуву, що становить ~1300 см -1 [3]. [4]
Створення таких лазерів стало результатом багаторічного розвитку лазерної техніки. Останнім часом волоконні лазери активно витісняють традиційні лазери з таких областей застосування лазерної техніки, як, наприклад, лазерне різання й зварювання матеріалів, маркування й обробка поверхонь, поліграфія й швидкісне лазерне друкування. Їх використовують у лазерних далекомірах і тривимірних локаторах, апаратурі для телекомунікації, у медичних установках і інших сферах промислових і військових комплексів.[5]
Розділ 1. Тенденції розвитку волоконних лазерів. Використання волоконних лазе рів у різних галузях
Лазерна техніка не стоїть на місці, розвивається, у тому числі відбувається й постійне вдосконалювання тих типів лазерів, які використовуються в лазерних системах для цифрової флексографії.
Говорячи про сьогоднішній день цифрової технології флексографії, слід зазначити, що зараз у лазерних системах запису зображень домінують лазери з так званим напівпровідниковим накачуванням. Їхні основні переваги, на відміну від лазерів з ламповим накачуванням у тому, що вони споживають значно менше електроенергії; не потрібні зовнішнє водяне охолодження, у конструкції цих лазерів відсутні змінні компоненти (у ламповій системі, наприклад, лампу накачування доводиться міняти кожні 500-1000 год. роботи). В лазерах з напівпровідниковим накачуванням «часи життя», що перевищують 10000 год. дозволяють будувати надійні й, разом з тим, зручні системи лазерного запису, експлуатувати які могли б оператори, що не є фахівцями в лазерній техніці, що надзвичайно важливо для поліграфічних підприємств. Інша істотна особливість таких систем полягає в тім, що за названий час лазерна система повністю відкуповує себе - це надзвичайно важливо при плануванні інвестицій.
З лазерів з напівпровідниковим накачуванням, у свою чергу, найбільш популярними стають волоконні лазери (Fiber Laser або Faser). Сьогодні ці пристрої досягли рівня характеристик, у першу чергу, потужності, надійності, що дозволяють із успіхом використовувати їх для розв'язання різних завдань лазерної обробки матеріалів. Дуже часто волоконні лазери заміняють у додатках лазери інших типів, наприклад, твердо тільні Nd:YAG-лазери. Вони являють собою практично ідеальні перетворювачі світлової енергії лазерних діодів накачування в лазерне випромінювання з рекордним ККД, у порівнянні, наприклад, з Nd:YAG-лазерами. Створення таких лазерів стало результатом багаторічного розвитку лазерної техніки.
Говорячи про технічну сторону справи, варто зупинитися на деяких конструкційно-технологічних і експлуатаційних перевагах систем з волоконними лазерами.
Спочатку зупинимося на технічних особливостях самих волоконних лазерів з напівпровідниковим накачуванням. Саме загальне подання про них давалося на сторінках журналу приблизно рік тому у загальному огляді лазерів, застосованих для технологій Computer-to-Plate. Нагадаємо деякі найбільш важливі особливості цих лазерів. На рис. 1.1 представлена схема роботи волоконного лазера з напівпровідниковим накачуванням і в загальному виді весь оптичний тракт аж до оброблюваного матеріалу.
Рис. 1.1. Оптична система з волоконним лазером: 1 -- серцевина, легована металом, діаметр 6-8 мкм; 2 -- кварцове волокно, діаметр 400-600 мкм; 3 -- полімерна оболонка; 4 -- зовнішнє захисне покриття; 5 -- лазерні діоди оптичного накачування; 6 -- оптична система накачування; 7 -- волокно (до 40 м); 8 -- коліматор; 9 -- модулятор світла; 10 -- фокусуюча оптична система
Головна особливість цього лазера в тому, що випромінювання тут відбувається в тонкому, діаметром усього в 6-8 мкм, волокні (серцевині - наприклад, активне середовище іттербій), що фактично перебуває усередині кварцового волокна діаметром 400-600 мкм. Випромінювання лазерних діодів накачування вводиться у кварцове волокно й поширюється уздовж усього складного складеного волокна, що має довжину кілька десятків метрів. Це випромінювання «перетинає», тобто оптично накачує серцевину, саме в ній на атомах іттербія (Yb) відбуваються ті фізичні перетворення, що приводять до виникнення лазерного випромінювання. Поблизу кінців волокна на серцевині є два дифракційних дзеркала - у вигляді набору «насічок» на циліндричній поверхні серцевини (дифракційні решітки); у такий спосіб створюється резонатор волоконного лазера. Загальну довжину волокна й кількість лазерних діодів вибирають, виходячи з необхідної потужності, ефективності. На виході отримуємо ідеальний одномодовий лазерний пучок з досить рівномірним розподілом потужності, що дозволяє сфокусувати випромінювання в пляму малого розміру й мати більшу, ніж у випадку потужних твердо тільних Nd:YAG-лазерів, глибину різкості, а це надзвичайно важлива для лазерних систем властивість, особливо для багатопроменевих оптичних систем (рис. 1.2).
Також варто відзначити, що ряд властивостей випромінювання волоконних лазерів, наприклад, характер поляризації пучка, робить більш зручним і надійним керування цим випромінюванням за допомогою акустооптичних компонент, дозволяє реалізувати багатопроменеві схеми запису зображень. У цілому підвищується надійність усього оптичного тракту лазерної системи. Оскільки оптичне накачування йде по всій довжині волокна, відсутні, наприклад, властиві звичайним твердо тільним лазерам ефекти, як термолінза в кристалі, спотворення хвильового фронту внаслідок дефектів самого кристала, девіація променя з часом та ін. Ці ефекти завжди були перешкодою для досягнення максимальних можливостей твердо тільних систем. У волоконному ж лазері сам принцип його пристрою й роботи гарантує високі характеристики і робить такі лазери практично ідеальними перетворювачами світлового випромінювання в лазерне.
Рис. 1.2. Форма пучка різних лазерних джерел: а - волоконні лазери, одно модовий режим; б - Nd:YAG-лазери, багато модовий режим; в - випромінювання лазерних діодів
Цікава історія розвитку цих лазерів. Спочатку це були підсилювачі волоконних ліній зв'язку, у яких використовується такий же фізичний принцип підсилення сигналу, що й при генерації лазерного випромінювання. Такі підсилювачі широко використовуються в системах телекомунікації на базі оптичних волокон. Розвиток цих пристроїв привів до того, що потужність створеного ними оптичного випромінювання досягло декількох десятків ват, а це уможливило їхнє застосування в лазерній обробці матеріалів. Для одного з таких завдань - видалення тонкого чорного шару на цифровому фотополімері - ці лазери підходять найбільш оптимально, можна сказати, ідеально.
Рис. 1.3. Апарат Laser-Graver4003DS
Серед західних виробників додрукованих систем для цифрової технології флексографії, що використовують випромінювачі даного типу - фірми Hell, FlexoLaser, Cartomac. Фірма «Альфа», провідна російська компанія, що займається виготовленням цих систем і поставляє їх не тільки на вітчизняний, але й на західні ринки, також перейшла на даний тип лазерів. Восени 2001 р. «Альфа» зняла з виробництва машини LaserGraver, на базі Nd:YAG-лазерів з ламповим накачуванням. Рік тому кожна модель LaserGraver (рис. 1.3), мала чотири застосування: одно- або двопроменева (DualBeam) оптична система, з лазером з ламповим або з напівпровідниковим накачуванням. Тепер кожна машина із заданим форматом пропонується лише у двох модифікаціях - один або два промені, а як лазер завжди використовується волоконний лазер з напівпровідниковим накачуванням (активне середовище іттербій, ІЧ-випромінювання).
Перед прийняттям цього рішення був проаналізований досить тривалий досвід роботи систем LaserGraver з такими лазерами в умовах реальних виробництв флексографічних форм у деяких європейських клієнтів. Тому зараз вітчизняним користувачам фактично пропонується розв'язок, перевірений на заході, що, безумовно, представляє додатковий інтерес. Пропозиція вітчизняним поліграфістам цих сучасних лазерних систем, що відповідають прийнятим у даній області техніки світовим стандартам, стало можливим після того, як розвиток волоконних лазерів і розширення спектра їх застосування в промисловості дозволило знизити на них ціни. Тому з'явилася можливість створити доступні й вітчизняним флексографічним друкарям моделі устаткування.
На закінчення підсумуємо головні переваги лазерних систем запису зображень на цифровому фото полімері, побудованих на базі волоконного лазера з напівпровідниковим накачуванням:
· мале енергоспоживання, наприклад, системи LaserGraver являють собою практично офісну техніку, живлення якої здійснюється від звичайної розетки;
· ніякого водяного охолодження, для компонентів волоконного лазера досить повітряного охолодження;
· відсутність змінних елементів і профілактичних операцій з боку оператора;
· зручність для побудови багатопроменевих оптичних систем;
· висока надійність устаткування. [7]
· висока якість (мала розбіжність) випромінювання - до M 2 ?1.05 при вихідній потужності 100 Вт;
· можливість генерації як неперервного, так і коротких (до нс) імпульсів випромінювання з великою частотою (20 кГц і більше);
· рекордно великі потужності випромінювання - до 50 кВт ( в 2005 р.) і це не межа;
· ефективність генерації на багатьох довжинах хвиль (1.06 мкм (Nd, Yt), 1.56 мкм (Er), 1.75-2.0 мкм (Tu) і ін.) для обробки матеріалів (1.06 мкм), медицини (1.75-2.0 мкм) і зв'язку (1.56 мкм);
· зручність електричного керування тимчасовими й перемикальними характеристиками;
· електричне накачування (діодів) електроенергією з низькою напругою;
· природна волоконна доставка випромінювання;
· висока надійність і великий ресурс роботи більше 1 млн. годин;
· висока стабільність параметрів ± 2%, стійкість до механічних, теплових забруднень навколишнього середовища (пилу) та інших впливів;
· висока просторова й спектральна яскравість;
Потужні волоконні лазери на іттербії ( л = 1050 ? 1080 нм)
· можлива модуляція вихідного випромінювання із частотою 5 кГц;
· якість пучка -- M 2 = 2,5 ? 6 мрад;
· середня вихідна потужність - до 200 Вт;
· частота проходження імпульсів - 20-100 кГц
· компактний з повітряним охолодженням;
· колімований вихідний пучок з M 2 =1,4 ? 5;
На рис. 1.4, 1.5 наведений зовнішній вигляд деяких типових вузлів волоконних лазерів.
Ведучий генератор (а), підсилювач (б) і вихідний коліматор волоконного лазера і загальний вид імпульсного лазера потужністю 200 Вт ( 1 - одномодове активне оптичне волокно, 2 - модуль напівпровідникового накачування). 700 Вт іттербієвий волоконний лазер неперервної дії (рис 1.4) і його робоча станція (рис 1.5). [8]
Потужні іттербієві лазери Лазерний обробний центр із 500 Вт, 1 кВт, 2 кВт. роботом для зварювання Al.
Таким чином, волоконні лазери з комплексу властивостей найбільш оптимальні для застосування в системах цифровий флексографії й у цьому, мабуть, головна причина знаходження ними все більшої популярності в цій області техніки. [7]
Розділ 2. Теоретичні основи волоконних лазерів
Оскільки активним елементом волоконного лазера є оптичне волокно, розглянемо механізми поширення оптичного випромінювання у волокні.
2.1 Поширення світла в оптичних волокнах
Принцип дії оптичного волокна базується на використанні відомих процесів відбивання i заломлення оптичної хвилі на межі розділу двох середовищ з різними оптичними властивостями. Оптичні властивості матеріалу залежать від показника заломлення. В однорідному середовищі електромагнітна хвиля розповсюджується прямолінійно, проте на межі зміни густини середовища її напрям i якісний склад змінюються. В спрощеному вapiaнтi розглянемо два середовища, що межують, з різною густиною. Розповсюджуючись в одному з них промінь може досягати поверхні іншого під деяким кутом а (до нормалі поверхні). При цьому хвиля частково відбивається в середовище з якого прийшла під кутом b i частково проникає в нове середовище в зміненому напрямі під кутом с. При падінні променя на межу розділу двох середовищ в загальному випадку з'являються заломлена i відбита хвилі.
Рис 2.1. Відбивання і заломлення променя на межі і заломлення відповідно розділу двох середовищ
Згідно закону Снелліуса кут падіння пов'язаний з кутами відбивання і заломлення наступним співвідношенням:
де - показники заломлення двох середовищ; - кути падіння
Згідно фізичним законам поширення світла кут падіння променя рівний куту відбивання, тобто а= b .
У мipy збільшення кута падіння можна досягти такого стану, коли заломлений промінь починає ковзати по межі розділу середовищ без переходу в середовище з меншим показником заломлення. Кут падіння, при якому спостерігається такий ефект, називається граничним кутом повного внутрішнього відбивання, який можна знайти, виходячи з закону заломлення:
Для всіх кутів падіння, які перевищують граничний, матиме місце тільки відбивання, а заломлена хвиля буде відсутня.
Це явище називається повним внутрішнім відбиванням, воно закладене в основу передачі оптичного випромінювання по волокну.
Оптичні волокна, звичайно, мають круглий поперечний пepepiз i складаються з двох концентричних шарів діелектрика. В центрі розташовується серцевина з оптично більш густого скла, яка оточена оболонкою з скла з меншою оптичною густиною. Показник заломлення оптичної оболонки менш ніж на 1% менший показника заломлення серцевини.
На межі розділу серцевини i оболонки відбувається відбивання світла, яке поширюється вздовж oci волокна. Таким чином, серцевина служить для передачі електромагнітної енергії, оболонка призначена в основному для покращення умов відбивання на межі розділу серцевина/оболонка i захисту від випромінювання енергії в оточуюче середовище. Волокно має додаткову захисну оболонку навколо оптичної оболонки. Захисна оболонка (один або декілька шарів полімеру) оберігає серцевину i оптичну оболонку від дій, які можуть вплинути на їx оптичні властивості i не впливає на процес розповсюдження світла по волокну. [13]
Існують декілька видів профілів показника заломлення, серед яких часто використовуються два: ступінчастий i градієнтний. Волокно з ступінчастим профілем має серцевину з однорідним показником заломлення.
При цьому присутній різкий стрибок показника заломлення на межі між серцевиною i оптичною оболонкою. У ступінчастому оптичному волокні промені світла спрямовуються внаслідок явища повного внутрішнього відбивання на межі серцевина/оболонка. Якщо кут падіння променя на межу оболонка-серцевина менший ніж критичний кут, то промінь заломлюється в оболонку i виходить з волокна.
Рис. 2.3. Поширення світла в оптичному волокні
2.3 Просторові параметри випромінювання волоконного лазера
Просторові параметри волоконного лазера визначаються геометричними розмірами оптичного волокна, профілем показника заломлення серцевини оптичного волокна, співвідношенням показників заломлення серцевини i оболонки, а також довжиною хвилі випромінювання.
Волоконні світловоди, в яких може поширюватися лише одна мода, на даний час є найбільш перспективними для активних середовищ волоконних лазерів.
Електричний та магнітний вектори Е i Н модового поля волоконного світловоду з круговою симетрією поперечного січення можна записати у вигляді:
де - постійна поширення моди, - полярні координати в площині поперечного перерізу волокна, а - відстань по oci волокна. У загальному випадку вектори Е i Н знаходять з розв'язку рівнянь Максвела. Проте, оскільки оптичні волокна є слабо напрямлюючими (слабо каналізуючими), тобто відносна різниця між максимальним та мінімальним значеннями профілю показника заломлення мала - зазвичай менше 1 %, вектори Е i Н можна апроксимувати розв'язками скалярного хвильового рівняння.
Постійна поширення основної моди повинна знаходитися в інтервалі між двома екстремумами, які визначаються значеннями для плоских хвиль, що поширюються у напрямку z у нескінченно (однорідних) середовищах з показником заломлення, рівним максимальному та мінімальному значенням профілю волокна .
Якщо ці значення визначити як - максимальне значення показника заломлення , - мінімальне значення показника заломлення , то буде обмежуватися інтервалом
де - довжина хвилі у вакуумі. З урахуванням слабкої каналізації світловодів, призначених для систем оптичного зв'язку, тобто ,
з (2.4) випливає, що співпадає з постійною поширення плоскої хвилі у z - напрямку у безмежному середовищі з показником заломлення .
Таким чином, основна мода волоконного світловоду повинна бути квазіпоперечною електромагнітною (ТЕМ 00 ) хвилею, у найпростішому випадку - це хвиля, одно рідно поляризована лише в одному напрямку. Позначивши напрямок поляризації через х, поле у світловоді можна записати у вигляді:
Тут компоненти поля Е у , E z , H у , H z не враховуються, оскільки вони дуже малі, описує просторову фільтрацію у площині, перпендикулярній oci світловода, - магнітна проникність середовища,
де і - діелектрична проникність вакууму.
Оскільки , поляризаційні властивості волоконної структури слабо впливають на поле у світловоді. Відмітимо, що якщо діелектричні середовища мають приблизно однакові параметри, то відбивання плоскої хвилі від межі їх розділення практично не реагує на поляризацію падаючої хвилі. Відповідно й просторова варіація поля повинна бути нечутливою до поляризаційних ефектів, тому - розв'язок скалярного хвильового рівняння, тобто
Основна мода описується розв'язком рівняння (2.6), що відповідають найбільшому , не залежному від полярного кута .
Отже, основна мода - це квазіпоперечна електромагнітна хвиля, що визначається формулою (2.6), з просторовою залежністю, що є розв'язком скалярного хвильового рівняння.
2.4 Оптичні волокна з гаусівським профілем показника заломлення
Числові методи розв'язку рівняння (2.6) для ступінчастого профілю волокна показують, що форма приблизно гаусівська. У відповідності з цим поле моди ТЕМ 11 має вигляд:
де - розмір плями. Цей вираз можна представити у якості пробної функції для стаціонарного виразу постійної поширення , крім того розмір плями вибирається з умови забезпечення найбільшого . Основна мода відповідає максимальному значенню . Стаціонарний вираз для має вигляд:
Таким чином, розмір плями знаходиться безпосередньо. Підставляючи наближений вираз (2.8) у (2.9) можна визначити з умови . Наближення для постійної поширення отримується далі підстановкою у вираз (2.9). Знаючи та ми можемо повністю характеризувати поле за допомогою формул (2.5) та (2.8).
За допомогою загального виразу для розподілу показника заломлення можна конкретизувати форму профілю показника заломлення , який має узагальнений вигляд:
- різниця показників заломлення, що визначається як
причому характеризує довільну форму профіля ( при максимальній величині показника заломлення), а - радіус серцевини оптичного волокна.
Спочатку ми розглянемо профіль, форма якого представляється гаусівською функцією:
Рівняння (2.12) визначає зв'язок радіуса серцевини волокна , сталої розповсюдження світлової хвилі і відносної різниці показників заломлення з радіусом світлової плями на виході оптичного волокна :
де , а V - безрозмірний параметр волокна, що визначається як
Розмір плями , знаходиться з умови , що дає
Вираз (2.15) має фізичний зміст лише при ( додатне). Проте, як буде показано нижче, цей факт не заважає вичерпному описові співвідношення (2.15) передавальних характеристик волоконних світловодів. Підставляючи у (2.8), отримуємо вираз для
який придатний тільки при V 0,5, так як з (2.4) випливає, що .
Розмір плями та постійна поширення цілковито характеризують поле основної моди, а відповідно, й передавальні властивості одномодових світловодів, що розглядаються нижче. Доцільність введення параметра V випливає з того, що залежить лише від V.
2.5 Діапазон значень V для одномодового режиму
При збільшенні V вище певного визначеного значення стає можливим поширення й інших мод; для світловодів зi ступінчастим профілем це значення, а для волокон з гаусівським профілем . Проте в реальних випадках волокна є "ефективно одномодовими" i при великих значеннях V (наприклад при V 3 для ступінчастого профілю), оскільки моди вищих порядків мають великі втрати на випромінювання, викликані не регулярностями волокон.
Розподіл густини потужності, або профіль інтенсивності, представлений у табл. 2.1, має вигляд
тобто зі збільшенням відстані від oci інтенсивність спадає експоненційно.
В табл. 2.1 наведені вирази для параметрів основної моди, які виражені через розмір плями для гаусівського i ступінчастого профілів.
Таблиця 2.1 Параметри основної моди
Гаусівський профіль показника заломлення
Ступінчастий профіль показника заломлення
При менших значеннях V зниження відбувається повільніше, тому, чим менше V, тим менша частина загальної потужності поширюється поблизу oci волокна. Цей ефект безпосередньо ілюструється шляхом обчислення долі потужності в інтервалі від 0 до, як показано в табл. 2.1. 3 наведених даних зрозуміло, що у світловодах з малим V, випромінювання, що поширюється, захоплює більшу частину поперечного перерізу, ніж у випадку V >2 [13].
На виході волоконного лазера розбіжність випромінювання приблизно визначається числовою апертурою волокна. Для градієнтного волокна, яким є волокно з гаусівським профілем, використовується поняття локальної числової апертури, яка визначається наступним виразом:
значення якої максимальне на oci і падає до нуля на границі розділу серцевини i оболонки. А відповідно розбіжність випромінювання визначається наступним чином [13]:
2.6 Оптичні волокна зі ступінчастим профілем показника заломлення
Для волокна з ступінчастим профілем справедливими є наступні вирази для радіуса плями i сталої розповсюдження:
які приводять до інших значень параметрів у табл. 2.1()[13].
Розбіжність випромінювання в даному волокні визначається показниками заломлення серцевини i оболонки [13]:
волоконний лазер оптичний спектральний
2.7. Вимоги до матеріалів активних середовищ
Лазерне середовище волоконного лазера створюють легуванням серцевини волокна (основа) активаторами, що володіють заданою картиною енергетичних рівнів. Склоподібна основа (в нашому випадку кварц) повинна задовольняти деяким умовам.
Оптична прозорість для випромінювання накачування i для випромінювання іонів активатора;
Висока оптична однорідність (відсутність механічних напружень, мікровключень);
Структура повинна допускати введення активатора в заданій концентрації.
Іони активатора вводяться в основу без порушення оптичної однорідності i механічної міцності, створюють збуджені метастабільні piвнi, час життя на яких повинен визначатись в основному випромінювальними оптичними переходами, володіють широкими смугами поглинання i сильними вузькими лініями люмінесценції. Для виготовлення таких волокон застосовують, зокрема, силікатні, фосфатні, боратні, германатні, теллуридні, фторофосфатні скла, які активовані такими рідкоземельними іонами, як Nd 3+ ,Tb + , Но 3+ , Ег 3+ , Tm 3+ ,Yb 3+ . 3 допомогою Yb 3+ - волоконного лазера з домішками Tm 3+ можна реалізувати волоконний лазер з пасивним переключенням добротності, при якому адсорбер інтегрований в підсилювальне волокно. Узгоджена адсорбція в цій системі базується на легуванні Tm 3+ .
У волоконних лазерах переважає неоднорідне розширення лінії випромінювання, механізм якого полягає в тому, що резонансні частоти окремих атомів розподіляються в деякій смузі частот (не співпадають) i, відповідно, лінія всієї системи є розширеною при відсутності розширення лінії окремих атомів. Рівні енергії, а отже i частоти переходів, залежать від найближчих сусідів кожного атома. Випадкові деформації, які завжди мають місце в оптичному волокні, змінюють це оточення від іона до ioнa, що приводить до розкиду частот переходів.
Волоконний лазер може генерувати як в неперервному, так i в імпульсному режимі, які будуть розглянуті нижче. Модовий режим роботи буде залежати від оптичного волокна, яке використовується.
2.8 Схема накачування волоконного лазера
Спектр випромінювання активатора може відповідати три- або чотири рівневі cxeмi. В своїй більшості іони рідкоземельних металів володіють набором енергетичних рівнів, що відповідають чотири рівневі системі.
Рис. 2.4. Схема розміщення енергетичних рівнів для Nd 3+ в скляній матриці
Розглянемо чотирирівневу модель роботи волоконного лазера. При термодинамічній рівновазі майже вci атоми згідно статистики Больцмана знаходяться в основному стані (нульовий рівенъ). Під дією випромінювання лазерного діода (накачування) атоми переходить з рівня 0 на рівень 3. З цього рівня атоми будуть швидко релаксувати з переходом на більш низький метастабільний рівень 2. Якщо така релаксація проходить достатньо швидко, то рівень 3 залишається практично незаселеним. Оскільки рівень 1 спочатку був незаселеним, кожний атом, що знаходиться в збудженому стані буде давати вклад в інверсію заселеності між рівнями 2 i 1. Коли в лазері виникає генерація, атоми в процесі вимушеного випромінювання переходять з рівня 2 на рівень 1.
Рис. 2.5. Схема енергетичних рівнів чотирирівневого лазера
Якщо верхній рівень накачування пустий, то швидкість, з якою верхній лазерний рівень 2 буде заселятись з допомогою накачування можна записати у вигляді:
тут - заселеність основного рівня, a W p - швидкість накачування. Для того щоб досягнути порогових умов, швидкість накачування повинна перевищувати деяке порогове значення.
2.9 Забезпечення додатного зворотного зв'язку в волоконному лазері
Напруженість електричного поля оптичних хвиль, які поширюються по волокну в прямому i зворотному напрямах:
де - амплітуда падаючої на гратку хвилі i поширюється зліва направо; - відбита від граток Брегга хвиля, що поширюється справа наліво; - стала розповсюдження по оптичному волокну, її можна виразити таким чином: ; - середнє значення показника заломлення оптичного волокна;- функція, яка пропорційна напруженості електричного поля впоперек волокна i є нормованою; - циклічна частота.
Методом зв'язаних хвиль при параболічному наближенні на основі хвильового рівняння для одномодового оптичного волокна з гратками Брегга можна отримати систему рівнянь, яка пов'язує між собою падаючу хвилю з амплітудою i відбиту хвилю з амплітудою (рис. 2.6), i які мають
де - величина, що характеризує відхилення від умов Брегга; - період зміни показника заломлення в оптичному волокні
- коефіцієнт зв'язку між хвилями , для волокна без втрат - дійсна величина i для нашого випадку визначається співвідношенням:
де - хвильове число;коефіцієнт модуляції показника заломлення оптичного волокна за наявності граток , причому .
Система рівнянь (2.24) є лінійною iз змінними коефіцієнтами, яку шляхом заміни змінних:
з наступним опусканиям штриха біля , приведемо до лінійної системи з постійними коефіцієнтами, яка остаточно матиме наступний вигляд:
Цю систему рівнянь необхідно доповнити такими початковими умовами:
Рис. 2.6. Система чотирьох граток на серцевині оптичного волокна з відповідними геометричними розмірами. - падаюча хвиля; -відбита хвиля; - період гратки; - довжини граток; - відстані між сусідніми гратками.
Для знаходження спектральної залежності коефіцієнтів пропускання i відбивання системи граток необхідно мати розв'язок системи (2.25) за початкових умов (2.26) на інтервалі [0, ]. Для i є справедливими такі співвідношення:
Згідно теорії лінійних систем диференціальних рівнянь з постійними коефіцієнтами, амплітуди хвиль i на п - ній гратці зліва в матричній формі можна записати так:
Маючи співвідношення (2.28), (2.30), (2.31), (2.32), ми можемо виконати розрахунок спектральної залежності пропускання (відбивання) системи граток Брегга в оптичному волокні.
Розділ 3. Розрахунок одномодового волоконногоYAG: Nd 3+ лазера
Розрахунок лазера може проводитись по - різному в залежності від того, які параметри є заданими у технічному завданні на лазер. Як правило, в технічному завданні на лазер задаються такі основні параметри: робоча довжина хвилі, вихідна потужність, діаметр пучка та
Напрямки розвитку волоконної оптики курсовая работа. Коммуникации, связь, цифровые приборы и радиоэлектроника.
Реферат: Галилео Галилей
Реферат: История болезни - ИБС
Эссе На Тему Рф
Сочинение: Лирика В Набокова
Реферат: Lahingulaev Bismarck
Отчет по практике по теме Развитие эмоционального интеллекта школьников-подростков в процессе внеклассной работы
Реферат На Тему Концепція Відносності Простору-Часу
Сочинение Рассуждение На Тему Поступок Екатерины
Курсовая Работа На Тему Толкание Ядра
Контрольная Работа По Математике За 2 Четверть
Дипломная работа: Термодинамика химической устойчивости сплавов системы Mn-Si
Курсовая работа: Технология бетона
Дипломная Работа Пример Готовой Работы
Шпаргалки На Тему Деньги, Кредит, Банки
Курсовая работа: Избирательное право и избирательная система в Российской Федерации
Контрольная Работа По Географии Гп России
Курсовая работа: Проблема самоуправления в современной школе
Курсовая работа по теме Приверженность школьников и студентов к алкогольным напиткам
Реферат: Понятие и признаки договора мены
Материнский Капитал Реферат
Римское частное право - Государство и право шпаргалка
Особливості притягнення до кримінальної відповідальності народних депутатів України - Государство и право статья
Механізм впровадження організаційно-структурних засад розвитку системи місцевого самоврядування - Государство и право магистерская работа


Report Page