Модернизация магистральной оптической сети связи - Коммуникации, связь, цифровые приборы и радиоэлектроника дипломная работа

Модернизация магистральной оптической сети связи - Коммуникации, связь, цифровые приборы и радиоэлектроника дипломная работа



































Анализ оснащенности участка проектирования. Современные волоконно-оптические системы передачи. Системы удаленного мониторинга оптических волокон. Разработка схемы организации магистрального сегмента сети связи. Расчет показателей эффективности проекта.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Настоящий дипломный проект посвящен модернизации магистральной оптической сети связи на участке Сосногорск - Лабытнанги Северной железной дороги при помощи мультиплексора FlexGain A2500 Extra. Рассмотрены вопросы организации системы телефонной связи, обоснование выбора типа цифрового оборудования и технические данные мультиплексора FlexGain A2500 Extra. Произведены расчеты регенерационных участков, количество регенераторов, а также произведен расчет и построение диаграммы уровней передачи Разработаны планы размещения мультиплексоров и регенераторов на проектируемом участке. Рассмотрен вопрос по проектированию системы удаленного мониторинга оптических волокон. Разработана схема организации удаленного мониторинга оптических волокон на базе системы FiberVisor (EXFO). Рассмотрены вопросы охраны труда по нормализации параметров микроклимата в помещениях электромеханика. Рассчитаны капитальные вложения, эксплуатационные расходы и приведенные затраты проекта.
Данный дипломный проект может быть принят к внедрению на других участках железнодорожного транспорта.
Мир телекоммуникаций и передачи данных сталкивается с динамично растущим спросом на частотные ресурсы. Эта тенденция в основном связана с увеличением числа пользователей Internet и также с растущим взаимодействием международных операторов и увеличением объемов передаваемой информации. Полоса пропускания в расчете на одного пользователя стремительно увеличивается. Поэтому поставщики средств связи при построении современных информационных сетей используют волоконно-оптические кабельные системы наиболее часто. Это касается как построения протяженных телекоммуникационных магистралей, так и локальных вычислительных сетей. Оптическое волокно (ОВ) в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Сегодня волоконная оптика находит применение практически во всех задачах, связанных с передачей информации. Благодаря появлению современных волоконно-оптических кабелей оказались возможными высокие скорости передачи в линейных трактах (ЛТ) цифровых систем передачи с одновременным удлинением секций регенерации до 100 км и более. Производительность таких ЛТ превышает производительность цифровых трактов на кабелях с металлическими парами в 100 и более раз, что радикально увеличивает их экономическую эффективность. Большинство регенераторов оказывается возможным совместить с оконечными или транзитными станциями.
Быстрое развитие телекоммуникационных сетей и необходимость существенного увеличения объема, надежности и экономичности передачи цифровых сигналов привели к коренным изменениям в практике построения и использования интегральных цифровых сетей.
Телефонизация неразрывно связана с развитием первичной сети, изменением топологии местных телефонных сетей общего пользования, их цифровизацией и внедрением новых технологий АТМ, SDH (Synchronous Digital Hierarchy - синхронной цифровой иерархии). Перспективы развития транспортных сетей заключаются в дальнейшей цифровизации магистральной первичной сети - строительстве волоконно-оптических линий передачи (ВОЛП), выполненных по технологии синхронной цифровой иерархии (SDH). Системы СЦИ обеспечивают скорости передачи от 155 Мбит/с и выше и могут транспортировать как сигналы существующих цифровых систем, так и новых перспективных служб, в том числе широкополосных. Аппаратура SDH является программно управляемой и интегрирует в себе средства преобразования, передачи, оперативного переключения, контроля, управления.
Интенсивное развитие современных телекоммуникационных сетей, их мультисервисная многоуровневая структура и сложная разветвленная топология, выдвигают новые требования к принципам эксплуатации сетей связи. Наиболее эффективно задачи эксплуатации решают автоматизированные системы мониторинга телекоммуникаций, обеспечивающие в реальном режиме времени централизованный контроль работоспособности сети, обнаружение неисправностей с возможностью их прогнозирования и минимизации времени устранения.
Волоконно-оптические сети связи (ВОСС) уверенно наращивают свою мощь и, как любая другая сложная техническая система, для нормального функционирования требуют измерения и контроля своих параметров. В настоящее время решение задач измерения параметров волоконно-оптических линий связи (ВОЛС) обеспечивают оптические рефлектометры, мультиметры и другие измерительные приборы, которые находятся на вооружении монтажных и эксплуатирующих подразделений.
Однако в современных ВОСС для этих целей все шире используются автоматизированные системы мониторинга.
В первую очередь, необходимо отметить, что объем передаваемой информации непрерывно увеличивается. Современная техника временного и спектрального мультиплексирования обеспечивает скорость передачи в канале более 40 Гбит/с, а число каналов передачи в одном оптическом волокне (0В) может достигать до 100 спектрально-мультиплексированных каналов.
Вторым важнейшим следствием развития ВОЛС является увеличение длины регенерационных участков за счет развития техники широкополосных усилителей оптического сигнала.
Совершенствование технологии увеличило срок службы ВОЛС, что при постоянном высоком приросте и минимальном выводе из эксплуатации обеспечило непрерывный количественный их рост.
Суммируя, отметим следующие особенности современного состояния ВОСС:
-наблюдается значительный рост числа функционирующих ВОЛС;
-усложняется топология волоконно-оптических сетей;
-информационная емкость ВОЛС непрерывно увеличивается;
-увеличиваются доля информации и значимость трафика, передаваемых по ВОЛС;
-растет цена простоя ВОЛС при авариях.
ВОЛС становятся всеобъемлющими, все более сложными, увеличивается значимость этих систем. Поэтому повышение их надежности приобретает все более важное значение.
Проблема надежности ВОЛС охватывает широкий круг вопросов и по своей сути является комплексной. Ее решение требует применения соответствующих методик оценки, расчета и контроля различных параметров оптических кабелей (ОК) и показателей надежности ВОЛС. Надежность ВОЛС зависит от различных конструктивно-производственных и эксплуатационных факторов. К первым относят факторы, связанные с разработкой, проектированием и изготовлением ОК и других вспомогательных изделий и устройств, входящих в состав ВОЛС. Ко вторым - все факторы, влияющие на надежность ОК в процессе его прокладки, монтажа и последующей эксплуатации.
Одним из основных эксплуатационных факторов, позволяющих прогнозировать ухудшение характеристик оптических волокон и обеспечивать требуемый уровень надежности ВОЛС, является непрерывный мониторинг ОК ВОЛС. При этом системы мониторинга ОК ВОЛС должны предусматриваться уже на этапе планирования и проектирования современных цифровых сетей связи . Это особенно важно и актуально для ВОЛС на воздушных линиях электропередачи (ВОЛС-ВЛ), применяемых при создании больших корпоративных сетей связи крупными энергокомпаниями. Такие ВОЛС-ВЛ имеют очень высокую надежность, но при этом в случае аварии требуют значительных затрат времени и материально-технических ресурсов на проведение аварийно-восстановительных работ.
Именно поэтому системы непрерывного мониторинга оптических волокон в ОК ВОЛС приобретают особую значимость при построении современных цифровых мультисервисных сетей.
Целью дипломного проекта является модернизация магистральной сети связи на участке Сосногорск - Лабытнанги с применением цифровых волоконно-оптических систем передачи.
Первоначально сеть передачи данных дороги была построена на аналоговых проводных линиях связи с использованием каналов тональной частоты и максимальной скоростью на магистральных каналах связи 24 кбит/с.
Оперативно технологическая связь(ОТС) на участке Сосногорск- Лабытнанги с начала 2011 работает по волоконно-оптической линии связи на базе мультиплексора СМК-30, однако магистральная связь по прежнему осуществляется по двум симметричным кабелям МКПАБ - 7x4x1,05+5x2x0,7+1x0,7 с использованием аналоговых систем передачи П-306 и К-60п. Схема организации магистральной сети связи на базе аналоговой аппаратуры показана на рисунке 1.2. Для организации магистрального сегмента связи по ОК зарезервировано с 5 по 8 ОВ, а также не задействованы ОВ №№ 15,16.
1.2 Современные волоконно-оптические системы передачи
SDH (Synchronous Digital Hierarchy) - синхронная цифровая иерархия - технология передачи высокоскоростных данных на большие расстояния с использованием в качестве физической среды проводных, оптических и радиолиний связи. Данная технология пришла на смену PDH (Plesiochronous Digital Hierarchy), которая обладала существенным недостатком: сложностью выделения из высокоскоростных потоков низкоскоростных трибутарных каналов. Причина заключается в том, что потоки более высокого уровня в PDH получаются путем последовательного мультиплексирования. Соответственно, для выделения потока необходимо развертывать весь поток, т.е. проводить операцию демультиплексирования. При этом придется устанавливать дорогостоящее оборудование в каждом пункте, где необходима такая процедур, что значительно увеличивает стоимость строительства и эксплуатации высокоскоростных линий PDH. Технология SDH призвана решить эту проблему. Скорости для SDH уже не ограничиваются 500 Мбит/сек, как это было в PDH. Пример сети SDH с промежуточным извлечением потока Е1 из потока STM-4 показан на рисунке 1.3
Рисунок 1.3 - Схема построения сети SDH
Рассмотрим принципы построения синхронной цифровой иерархии. Скорость самого медленного цифрового потока в SDH, получившего название STM-1, составляет 155,52 Мбит/сек. Вся полезная нагрузка передается в, так называемом, виртуальном контейнере VC. Информация может быть загружена либо непосредственно в контейнер, либо если речь идет о потоках PDH, то используются дополнительные промежуточные контейнеры, возможно не с одним уровнем вложения. В любом случае в итоге, вся информация должна быть размещена в пределах виртуального контейнера STM-1.
К каждому виртуальному контейнеру добавляется заголовок, который несет в себе служебную информацию: адресную информацию, информацию для обнаружения ошибок, данные о полезной нагрузке и т.д. Контейнеры всегда имеют фиксированную длину. Для получения более высокой скорости применяется мультиплексирование 4-х потоков STM-1 в один поток STM-4.
Таким образом, удается получить скорость 622,08 Мбит/сек. Для получения еще большей скорости применяется еще одно мультиплексирование четырех STM-4 в один поток STM-16, для передачи которого требуется скорость 2488,32 Мбит/сек и т.д. Общая схема увеличения скорости: четыре STM-N мультиплексируются в один STM-4хN. В отличие от PDH общая схема мультиплексирования неизменна для любых скоростей. В таблице 1 ниже представлены первые шесть уровней иерархии SDH.
Причем SDH не ограничена STM-1024. На текущий момент основным ограничением для повышения скорости SDH являются максимально возможные скорости существующих технологий передачи данных. Теоретически, цифровую синхронную иерархию можно продолжать и дальше до бесконечности. Преимущественно SDH используется при строительстве магистральных линий связи[4].
С развитием компьютерных сетей, Интернета, технологий передачи данных (FR, ATM и т.д.) инфраструктуру транспортных сетей на основе SDH все чаще применяют для организации цифровых каналов сетей передачи данных (т.е. строят наложенные сети поверх SDH). Недостатки использования «классического» SDH для передачи данных наиболее остро стали проявляться при необходимости предоставления широкополосных услуг связи локальных сетей[3].
Во-первых, это необходимость в преобразовании интерфейсов LAN (Ethernet) к интерфейсам SDH (E1, E3, STM-1, STM-4 и т.д.), используя промежуточные устройства, такие, как FRAD, ATM IAD, IP маршрутизаторы и т.д. Во-вторых, небольшой ряд возможных скоростей передачи данных (который к тому же слабо корелируется с рядом скоростей LAN: 10, 100, 1000 Мбит/с), значительно ограничивает возможности эффективного предоставления услуг, либо требует применения в подключаемом оборудовании дополнительных схем (например, инверсное мультиплексирование). Таким образом типичный результат при добавлении служб данных к традиционным SDH сетям -- увеличение сложности оборудования и повышение стоимости.
Для преодоления этих ограничений, производители SDH оборудования пошли по пути создания систем SDH следующего поколения (Next Generation SDH, NG SDH). Оборудование NG SDH имеет интегрированные интерфейсы передачи данных (в частности, Ethernet), а также использует новые технологии, которые позволяют более эффективно выделять требуемую полосу для служб данных и обеспечивать низкую стоимость внедрения этих технологий в уже существующие сети, так как поддержка дополнительной функциональности требуется только на граничных узлах сети.
Ethernet поверх SDH (EoS) -- самая распространенная реализация систем NG SDH. Так опрос Light Reading более 150 операторов, предоставляющих на своих сетях услуги Ethernet, показал, что подавляющее большинство (42%) приходится на Ethernet поверх SONET/SDH (на втором месте Ethernet поверх MPLS с 16%). Применение интерфейсов Ethernet в системах NG SDH естественно и закономерно:
- Один и тот же физический интерфейс может работать в широком диапазоне скоростей, позволяя при необходимости изменять скорость подключения без замены оборудования;
- Устраняется необходимость промежуточного преобразования интерфейсов при передаче данных из одной локальной сети в другую (а такой трафик составляет основной объем от всего трафика данных);
- Значительно снижаются затраты на подключение.
На рисунке 1.4 приведена функциональная схема реализации служб Ethernet в рамках технологии NG SDH
Рисунок 1.4 - Функциональная схема Ethernet поверх SDH
Встроенный Ethernet коммутатор является опциональным, однако его наличие расширяет набор реализуемых в сети Ethernet служб. Встраиваемая в Ethernet коммутатор поддержка VLAN (802.1Q), технологии Q-in-Q (802.1ad), приоритезации кадров 802.1p в сочетании с GFP, VCAT, LCAS и остальными возможностями SDH позволяют строить региональные Ethernet сети (Metro-Ethernet) операторского класса. К таким дополнительным возможностям относятся схемы самовосстановления сети и средства эксплуатации, администрирования и обслуживания.
Технология Ethernet не имеет встроенных средств эксплуатации, администрирования и обслуживания (OA&M), обеспечивающих развитые средства диагностики, обнаружения и локализации аварий, мониторинг производительности. При реализации EoS эти функции обеспечиваются встроенными в SDH средствами OA&M. Это важно и критично для тех сетей и тех операторов, которые предоставляют услуги на основе SLA. Поэтому, если сравнивать сеть EoS с коммутаторами Ethernet поверх «темного волокна», то в последнем случае мы имеем дешевый и прямолинейный способ поддержки служб Ethernet, не оставляющий сомнений в том, за что придется платить. И если это домовая сеть, предоставляющая своим абонентам широкополосный доступ в Интернет, то такой подход вполне оправдан. Когда нам надо обеспечить надежный Ethernet транспорт для бизнес приложений (особенно в сочетании со службами выделенных каналов E1), то зачастую EoS наиболее эффективный способ.
Системы SDH следующего поколения -- многофункциональные мультисервисные платформы, предоставляющие множество услуг без дороговизны и сложности наложенных сетей[5]..
Контролировать состояние и измерять параметры ВОЛС необходимо как в процессе монтажа, так и во время эксплуатации. Кроме того это требуется делать при авариях - для определения их причины и места, при ремонтных работах - для определения качества проведенных ремонтных работ, для профилактики - с целью предупреждения аварий и повышения надежности ВОЛС.
В процессе эксплуатации возникает необходимость контроля полного затухания тракта и затухания, вносимого сростками. В случае аварии, при обрыве ОК или ОВ, требуется быстро и точно определить место обрыва.
Для прогнозирования аварийных ситуаций необходимо проводить мониторинг состояния тракта и анализировать изменение его состояния, находить и анализировать существующие в нем неоднородности.
В настоящее время при измерении параметров оптического тракта наиболее распространенным является рефлектометрический метод. В методе импульсной рефлектометрии (OTDR) формируется короткий зондирующий оптический сигнал, который через оптический разветвитель вводится в исследуемое ОВ. Сигнал, отраженный на неоднородностях, поступает на фотоприемное устройство рефлектометра. Временной анализ отраженного сигнала обеспечивает фиксацию эволюции зондирующего сигнала вдоль ВОЛС с последующим определением параметров тракта.
Оптические рефлектометры позволяют измерять: общее затухание (дБ) и распределение затухания - погонное затухание в ОВ (дБ/км); затухания, вносимые неоднородностями (разъемные и неразъемные соединения, прочие неоднородности); координаты неоднородностей.
Следует отметить основные характеристики оптических рефлектометров:
-диапазон длин волн зондирующего излучения лямбда s: 0,85 и 1,31 мкм - для многомодовых 0В; 1,31, 1,55 и 1,625 мкм -для одномодовых ОВ;
-динамический диапазон измерений, который определяет максимальное затухание в измеряемом 0В при заданном времени усреднения;
-разрешение по расстоянию, обеспечивающее возможность различить две неоднородности на ОВ;
Современные оптические рефлектометры представляют собой измерительные устройства с возможностями мощного персонального компьютера и обеспечивают измерение, обработку и накопление первичного отраженного сигнала; обработку, анализ и хранение рефлектограмм, а также возможность обмена информацией и дистанционного управления с помощью сетевых решений. С их помощью можно успешно решать задачи измерения параметров ВОЛС.
Интенсивное развитие современных телекоммуникационных сетей и необходимость обеспечения их безотказной работы выдвигают на первый план задачу централизованного документирования и контроля сетевого кабельного хозяйства с возможностью прогнозирования и минимизации времени устранения неисправностей возникающих в волоконно-оптических линиях связи. Наиболее эффективно данная задача решается с помощью автоматизированных систем администрирования волоконно-оптических кабелей, включающих систему удаленного контроля оптических волокон (Remote Fiber Test System -- RFTS), программу привязки топологии сети к географической карте местности, а так же базы данных оптических компонентов, критериев и результатов контроля.
Независимо от метода контроля оптических волокон, система должна обеспечивать:
- Дистанционный автоматический контроль пассивных и активных оптических волокон кабелей;
- Документирование волоконно-оптического кабельного хозяйства;
- Автоматическое обнаружение неисправности ВОЛС с указанием ее точного местоположения на основе сравнения текущих и эталонных результатов измерения параметров ВОЛС;
- Проведение измерений параметров оптических волокон в ручном режиме по запросу оператора системы;
- Различные способы оповещения персонала о повреждении оптических кабелей (визуальная и звуковая сигнализация, автоматическая рассылка сообщений на пейджер, по заданным адресам электронной почты, по факсу);
- Автоматический анализ изменения параметров оптических волокон во времени на основе накапливаемых в процессе мониторинга данных;
- Для обеспечения функции управления процессом инсталляции ВОК должен быть предусмотрен удаленный доступ к системе по различным каналам связи с использованием портативного компьютера или рефлектометра со специальной функцией удаленного доступа;
- Совместимость с Bellcore форматом хранения рефлектограмм. Эта функция предназначена для возможности загрузки в систему данных измерений, произведенных на сети с помощью рефлектометров различных фирм-производителей.
- Система должна иметь возможность интеграции в общую сеть управления телекоммуникациями (TMN) сети связи оператора.
Важнейшей функции системы RFTS является то, что она постоянно автоматически ведет сбор и статистический анализ результатов тестирования оптических волокон сети. Статистический анализ с использованием корреляционных, многофакторных методов, а также современных нейросетевых методов дает возможность обнаруживать и прогнозировать неполадки волокна задолго до того, как они приведут к серьезным проблемам в сети.
проектирование волоконный оптический связь
2.3.1 Расчет и оптимизация длины регенерационного участка
Количество регенераторов, которые необходимо установить на линии, найдем по формуле:
l ру - максимальная длина регенерационного участка для выбранной аппаратуры, км.
Элементарный кабельный участок - вся физическая среда передачи между соседними окончаниями участка. Окончание участка - граница, выбранная условно в качестве стыка оптического волокна с регенератором.
Точка S - линейная сторона оптического шнура на оптическом кроссе в точке окончания участка на передающей стороне.
Точка R - линейная сторона оптического шнура на оптическом кроссе в точке окончания участка на приемной стороне.
Для расчета и оптимизации длины регенерационного участка руководствуются двумя параметрами: суммарным затуханием регенерационного участка и дисперсией оптического волокна[1].
Если исходить из затухания с учетом всех потерь, имеющих место в линейном тракте, то расчетная формула длины регенерационного участка выглядит следующим образом:
l ру (Э п - рс n рс - нс n нс - t - B)/(+ нс/l c) (2.2)
Здесь: Э п - энергетический потенциал ВОСП, дБ, определяемый как разность мощности оптического сигнала на выходе Р вых=2 дБм (таблица 1.3) и входе Р вх=-28 дБм (таблица 1.3) указанных в технических характеристиках аппаратуры ВОСП:
Э п = Р вых - Р вх =- 2 - (- 28) = 26 дБм,;
- коэффициент затухания оптического волокна: = 0,20 дБ/км для л=1,55мкм Параметры оптического волокна представлены в таблице2.3;
Таблица 2.3 -Технические параметры оптического волокна SMF-28™CPC6
Коэффициент затухания, дБ/нм, не более:
Результирующая удельная полоса пропускания, МГц·км:
Коэффициент хроматической дисперсии, пc/нм·км, не более:
- в интервале длин волн (1285-1330) нм
- в интервале длин волн (1530-1565) нм
Наклон дисперсионной характеристики в области длины волны нулевой дисперсии, пс/нм 2 ·км, не более:
- в интервале длин волн (1285-1330) нм
n рс - число разъёмных соединителей (установлены на вводе и выводе оптического излучения в ОВ) n рс = 2;
рс - потери в разъёмном соединителе дБ (таблица 2.4);
n нс - число неразъёмных соединителей на участке регенерации,
- потери в неразъемных соединениях (таблица 2.5), дБ Потери в неразъемных соединениях определяются из характеристик сварочного аппарата, которым было произведено соединение волокон. Технические характеристики сварочного аппарата представлены в таблице 2.3.
Таблица 2.4 - Технические характеристики оптических соединителей SC для одномодовых волокон SMF
Скругленный торец, физический контакт, плавающий наконечник, конструкция без утягивания кабеля
Таблица 2.5 - Технические характеристики сварочного аппарата Fujikura FSM-30S
Средние потери на сварном соединении:
Функция внесения потерь в месте сварки
Преднамеренное внесение потерь в диапазоне от 0.5 до 20 дБ с шагом 0.5 дБ для создания затухания в линии
Коэффициент отражения от сварного соединения:
Телекамера и 4-х дюймовый ЖКИ дисплей
Проверка механической прочности места сварки:
Растягивающее усилие 200 гр, дополнительный тест 450 гр
8.0 кг (сварочный аппарат) и 4.0 кг (кейс)
t - допуск на затухание потерь оптического волокна с изменением температуры;
В - допуск на затухание потерь, связанных с ухудшением характеристик компонентов регенерационного участка со временем;
Расчёт проводится для всего тракта передачи.
Так как у нас мультиплексоры расположены на крупных станциях: Сосногорск, Ираель, Печера, Инта, Сивая Маска, Воркута, Лабытнанги, наш проектируемая сеть связи разбивается на несколько участков. Рассчитаем регенерационные участи для каждого отдельно.
Определим число число неразъёмных соединителей на рассматриваемых участках:
где l c = 4 км - строительная длина кабеля.
Допуски на потери от старения во времени элементов в зависимости от комбинации источников и приемников излучения возьмем из таблицы 1.3.
Определим длину регенерационного участка по формуле 2.2 для каждого участка:
1) l ру ? (26- 0,5·2 - 29·0,04 - 4 - 4)/(0,2 + 0,04/4) ? 75,4 км
2) l ру ? (26- 0,5·2 - 32·0,04 - 4 - 4)/(0,2 + 0,04/4) ? 74,9 км
3) l ру ? (26- 0,5·2 - 44·0,04 - 4 - 4)/(0,2 + 0,04/4) ? 72,5 км
4) l ру ? (26- 0,5·2 - 34·0,04 - 4 - 4)/(0,2 + 0,04/4) ? 74,4 км
5) l ру ? (26- 0,5·2 - 31·0,04 - 4 - 4)/(0,2 + 0,04/4) ? 75 км
6) l ру ? (26- 0,5·2 - 47·0,04 - 4 - 4)/(0,2 + 0,04/4) ? 72 км
Так как L > l ру , значит необходимо применение регенераторов (ЛР). Подсчитаем число регенераторов для каждого участка по формуле 2.1
Правильность выбора регенерационного участка проверим с учетом дисперсионных свойств оптического волокна. Максимальная длина регенерационного участка с учётом дисперсии ОВ выбирается из условия:
где В - скорость передачи информации; В=2,488·10 9 бит/с;
- среднеквадратичное значение дисперсии выбранного оптического волокна, с/км.
Для одномодовых волокон величина находится из соотношения:
л - ширина полосы оптического излучения;
н - нормированная среднеквадратичная дисперсия.
= К·? л· н = 10 -12 ·0,2·3 = 0,6·10 -12 с/км
l max 0,25/0,6·10 -12 ·2,488·10 9 = 167,4 км
Длина регенерационного участка, полученная на основе этого расчёта, должна быть:
Рассчитанные ранее l ру удовлетворяет данному условию.
По теории надежности отказы рассматриваются как случайные события. Интервалом времени от момента включения до первого отказа является случайной величиной, называемой «время безотказной работы».
Интегральная функция распределения этой случайной величины, представляющая собой (по определению) вероятность того, что время безотказной работы будет менее t , обозначается и имеет смысл вероятности отказа на интервале 0…. Вероятность противоположного события - безотказной работы на этом интервале - равна:
Удобной мерой надежности элементов и систем является интенсивность отказов , представляющая собой условную плотность вероятности отказов в момент , при условии, что до этого момента отказов не было. Между функциями и существует взаимосвязь.
В период нормальной эксплуатации (после приработки, но еще до того, как наступил физический износ) интенсивность отказов примерно постоянна . В этом случае:
Таким образом, постоянной интенсивности отказов, характерной для периода нормальной эксплуатации, соответствует экспоненциальное уменьшение вероятности безотказной работы с течением времени.
Среднее время безотказной работы (наработки на отказ) находят как математическое ожидание случайной величины «время безотказной работы».
Следовательно, среднее время безотказной работы в период нормальной эксплуатации обратно пропорционально интенсивности отказов:
Оценим надежность некоторой сложной системы, состоящей из множества разнотипных элементов.
Пусть , ,… - вероятности безотказной работы каждого элемента на интервале времени 0… t , n - количество элементов в системе. Если отказы отдельных элементов происходят независимо, а отказ хотя бы одного элемента ведет к отказу всей системы (такой вид соединения элементов в теории надежности называется последовательным), то вероятность безотказной работы системы в целом равна произведению вероятностей безотказной работы отдельных ее элементов:
где - интенсивность отказов системы, час -1 ;
- интенсивность отказа i - го элемента, час -1 .
Среднее время безотказной работы системы определяется:
К числу основных характеристик надежности восстанавливаемых систем относится коэффициент готовности, который определяется по формуле:
где - среднее время восстановления элемента (системы), он соответствует вероятности того, что элемент (система) будет работоспособен в любой момент времени.
Линейный тракт, в общем случае, состоит из последовательно соединенных элементов (кабель, НРП, ОРП - обслуживаемый регенерационный пункт), каждый из которых характеризуется своими параметрами надежности, и отказы в первом приближении происходят независимо, поэтому для определения надежности магистрали можно использовать приведенные выше формулы.
В нашем случае линейный тракт состоит из последовательно соединенных участков кабеля и мультиплексоров (ОРП). При проектировании ВОЛС должна быть рассчитана ее надежность по показателям:
коэффициент готовности и наработка на отказ. При этом полученные данные должны сопоставляться с показателями надежности для соответствующего типа сети: местная, внутризоновая, магистральная.
коэффициент готовности оборудования линейного тракта для магистральной линии максимальной протяженности = 1400 км должен быть больше 0,99; наработка на отказ должна быть более 350 часов (при времени восстановления ОРП или оконечного пункта (ОП) менее 0,5 часа и времени восстановления оптического кабеля менее 10 часов).
Интенсивность отказов линейного тракта определяют как сумму интенсивностей отказов НРП, ОРП и кабеля:
где - интенсивности отказов НРП и ОРП;
- интенсивность отказов одного километра кабеля;
А так как кабельная магистраль не содержит НРП, то интенсивность отказов НРП не учитываем.
Средняя по России интенсивность отказов 1 км оптического кабеля равна =3,8810 -7 час -1 . Согласно техническому описанию, наработка на отказ мультиплексора аппаратуры FlexGain A2500 Extra равна 20 годам или 175200 часов, откуда интенсивность отказов будет равна .Значения необходимых для расчетов параметров возьмем из таблицы 2.6
Таблица 2.6 - Показатели надежности
Время восстановления повреждения,tв, ч
Определим среднее время безотказной работы линейного тракта:
Вероятность безотказной работы в течение суток часа:
Рассчитаем коэффициент готовности. Предварительно найдем среднее время восстановления связи по формуле:
где - время восстановления соответственно НРП, ОРП и кабеля.
Теперь найдем коэффициент готовности:
Расчёты вероятности безотказной работы занесём в таблицу 2.7
Таблица 2.7 - Данные расчета вероятности безотказной работы
В результате расчетов можно сдел
Модернизация магистральной оптической сети связи дипломная работа. Коммуникации, связь, цифровые приборы и радиоэлектроника.
История Создания Microsoft Word Реферат
Реферат по теме Личная и общественная гигиена. Гигиенические основы физических упражнений
Контрольная Работа 7 2 Класс Гдз
Ликвидация Юридического Лица Курсовая
Дипломная работа: Сварка и труд сварщика
Реферат: Мідхат-паша суспільно-політичні погляди та діяльність
Отзыв Руководителя На Дипломную Работу
Жива Ли Обломовщина Сегодня Сочинение
Реферат: Commedia Dell
Роль Общения В Жизни Пожилого Человека Реферат
Дипломная работа по теме Оптимизация метода выделения днк из срезов фиксированной ткани колоректальных опухолей
Контрольная работа: Анаболические стероиды и здоровье спортсменов
Реферат по теме Подвижники краеведения
Реферат: Вселенная и процессы в ней. Скачать бесплатно и без регистрации
Контрольная работа по теме Егоцентризм в підлітковому і юнацькому віці
Тарихта Тере Ізі Бар Эссе Можно Казакша
Курсовая работа по теме Конкуренция и монополии
Рахманинов Биография Реферат
Курсовая работа по теме Цена и ценовая политика предприятия
Реферат: Конотопська битва
Происхождение государства в отечественной политико-правовой мысли от древности до современности - Государство и право курсовая работа
Організація та проведення виборів - Государство и право дипломная работа
Обращения граждан в системе обеспечения законности государственного управления - Государство и право контрольная работа


Report Page