Математика - Математика методичка

Математика - Математика методичка




































Главная

Математика
Математика

Определитель и его свойства. Элементарные преобразования, миноры и алгебраические дополнения. Элементы векторной алгебры. Уравнения линии на плоскости. Расстояние от точки до прямой. Введение в математический анализ. Тригонометрическая форма числа.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Нужна помощь с учёбой? Наши эксперты готовы помочь!
Нажимая на кнопку, вы соглашаетесь с
политикой обработки персональных данных

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное государственное образовательное учреждение высшего профессионального образования
Тюменская государственная сельскохозяйственная академия
Тема 1 . Элементы линейной алгебры
Определение. Определителем квадратной матрицы А=
называется число, которое может быть вычислено по элементам матрицы по формуле: ДA = .
Замечание. Определитель можно вычислить только для квадратных матриц.
Определение. Матрица, называется квадратной, если число ее строк равно числу столбцов.
Свойство1. Определитель матрицы А равен определителю матрицы AT, транспонированной для матрицы А.
Свойство 4. Если в квадратной матрице поменять местами какие-либо две строки (или столбца), то определитель матрицы изменит знак, не изменившись по абсолютной величине.
Свойство 5. При умножении столбца (или строки) матрицы на число ее определитель умножается на это число.
Свойство 6. Если в матрице А строки или столбцы линейно зависимы, то ее определитель равен нулю.
Свойство 7. Если матрица содержит нулевой столбец или нулевую строку, то ее определитель равен нулю. (Данное утверждение очевидно, т.к. считать определитель можно именно по нулевой строке или столбцу.)
Свойство 8. Определитель матрицы не изменится, если к элементам одной из его строк(столбца) прибавить(вычесть) элементы другой строки(столбца), умноженные на какое-либо число, не равное нулю.
Свойство 9. Если для элементов какой- либо строки или столбца матрицы верно соотношение: d = d1 d2 , e = e1 e2 , f = f1 f2 , то верно:
Пример. Вычислить определитель матрицы А =
Пример:. Даны матрицы А = , В = . Найти det (AB).
det (AB) = 718 - 819 = 126 - - 152 = -26.
1. 2 Элементарные преоб разования матрицы
Определение. Элементарными преобразованиями матрицы назовем следующие преобразования: 1) умножение строки на число, отличное от нуля; 2) прибавление к элементам одной строки элементов другой строки; 3) перестановка строк; 4) вычеркивание (удаление) одной из одинаковых строк (столбцов); 5) транспонирование; Те же операции, применяемые для столбцов, также называются элементарными преобразованиями.
С помощью элементарных преобразований можно к какой-либо строке или столбцу прибавить линейную комбинацию остальных строк (столбцов).
Выше было использовано понятие дополнительного минора матрицы. Дадим определение минора матрицы.
Определение. Если в матрице А выделить несколько произвольных строк и столько же произвольных столбцов, то определитель, составленный из элементов, расположенных на пересечении этих строк и столбцов называется минором матрицы А. Если выделено s строк и столбцов, то полученный минор называется минором порядка s.
Заметим, что вышесказанное применимо не только к квадратным матрицам, но и к прямоугольным.
Если вычеркнуть из исходной квадратной матрицы А выделенные строки и столбцы, то определитель полученной матрицы будет являться дополнительным минором. Алгебраические дополнения.
Определение. Алгебраическим дополнением минора матрицы называется его дополнительный минор, умноженный на (-1) в степени, равной сумме номеров строк и номеров столбцов минора матрицы.
В частном случае, алгебраическим дополнением элемента матрицы называется его дополнительный минор, взятый со своим знаком, если сумма номеров столбца и строки, на которых стоит элемент, есть число четное и с противоположным знаком, если нечетное.
Теорема Лапласа. Если выбрано s строк матрицы с номерами i1, … ,is, то определитель этой матрицы равен сумме произведений всех миноров, расположенных в выбранных строках на их алгебраические дополнения.
Как было сказано выше, минором матрицы порядка s называется определитель матрицы, образованной из элементов исходной матрицы, находящихся на пересечении каких - либо выбранных s строк и s столбцов.
Определение. В матрице порядка mn минор порядка r называется базисным, если он не равен нулю, а все миноры порядка r+1 и выше равны нулю, или не существуют вовсе, т.е. r совпадает с меньшим из чисел m или n.
Столбцы и строки матрицы, на которых стоит базисный минор, также называются базисными.
В матрице может быть несколько различных базисных миноров, имеющих одинаковый порядок.
Определение. Порядок базисного минора матрицы называется рангом матрицы и обозначается Rg А.
Очень важным свойством элементарных преобразований матриц является то, что они не изменяют ранг матрицы.
Определение. Матрицы, полученные в результате элементарного преобразования, называются эквивалентными.
Надо отметить, что равные матрицы и эвивалентные матрицы - понятия совершенно различные.
Теорема. Наибольшее число линейно независимых столбцов в матрице равно числу линейно независимых строк.
Т.к. элементарные преобразования не изменяют ранг матрицы, то можно существенно упростить процесс нахождения ранга матрицы.
2. Пример: Определить ранг матрицы.
Если с помощью элементарных преобразований не удается найти матрицу, эквивалентную исходной, но меньшего размера, то нахождение ранга матрицы следует начинать с вычисления миноров наивысшего возможного порядка. В вышеприведенном примере - это миноры порядка 3. Если хотя бы один из них не равен нулю, то ранг матрицы равен порядку этого минора.
Теорема. В произвольной матрице А каждый столбец (строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.
Таким образом, ранг произвольной матрицы А равен максимальному числу линейно независимых строк (столбцов) в матрице.
Если А- квадратная матрица и det A = 0, то по крайней мере один из столбцов - линейная комбинация остальных столбцов. То же самое справедливо и для строк. Данное утверждение следует из свойства линейной зависимости при определителе равном нулю.
1. 4 Решение произво льных систем линейных уравнений
Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:
где aij - коэффициенты, а bi - постоянные. Решениями системы являются n чисел, которые при подстановке в систему превращают каждое ее уравнение в тождество.
Определение. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной.
Определение. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного.
Определение. Для системы линейных уравнений матрица
А = называется матрицей системы, а матрица
А*= называется расширенной матрицей системы
Определение. Если b1, b2, …,bm = 0, то система называется однородной. однородная система всегда совместна, т.к. всегда имеет нулевое решение.
1. 5 Эле ментарные преобразования систем
К элементарным преобразованиям относятся:
1)Прибавление к обеим частям одного уравнения соответствующих частей другого, умноженных на одно и то же число, не равное нулю.
3)Удаление из системы уравнений, являющихся тождествами для всех х.
Теорема Кронекера - Капели (условие совместности системы).
(Леопольд Кронекер (1823-1891) немецкий математик)
Теорема: Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.
Очевидно, что система (1) может быть записана в виде:
1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход АА* не изменяют ранга.
2) Если RgA = RgA*, то это означает, что они имеют один и тот же базисный минор. Столбец свободных членов - линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.
Пример. Определить совместность системы линейных уравнений:
Пример. Определить совместность системы линейных уравнений.
Система совместна. Решения: x1 = 1; x2 =1/2.
Тема 2. Элементы векторной алгебры
2.1 Базис. Линейная зависимость векторов
1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.
2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.
3)Базисом на прямой называется любой ненулевой вектор.
Определение. Если - базис в пространстве и , то числа , и - называются компонентами или координатами вектора в этом базисе.
В связи с этим можно записать следующие свойства:
равные векторы имеют одинаковые координаты,
при умножении вектора на число его компоненты тоже умножаются на это число,
при сложении векторов складываются их соответствующие компоненты.
Определение. Векторы называются линейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременно i , т.е. .
Если же только при i = 0 выполняется , то векторы называются линейно независимыми.
Свойство 1. Если среди векторов есть нулевой вектор, то эти векторы линейно зависимы.
Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.
Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.
Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.
Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.
Свойство 6. Любые 4 вектора линейно зависимы.
Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой- либо системе координат должно однозначно определяться. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат.
Зафиксируем в пространстве точку О и рассмотрим произвольную точку М.
Вектор назовем радиус- вектором точки М. Если в пространстве задать некоторый базис, то точке М можно сопоставить некоторую тройку чисел - компоненты ее радиус- вектора.
Определение. Декартовой системой координат в пространстве называется совокупность точки и базиса. Точка называется началом координат. Прямые, проходящие через начало координат называются осями координат.
Чтобы найти компоненты вектора нужно из координат его конца вычесть координаты начала.
Если заданы точки А(x1, y1, z1), B(x2, y2, z2), то = (x2 - x1, y2 - y1, z2 - z1).
Определение. Базис называется ортонормированным, если его векторы попарно ортогональны и равны единице.
Определение. Декартова система координат, базис которой ортонормирован называется декартовой прямоугольной системой координат.
Пример. Даны векторы(1; 2; 3), (-1; 0; 3), (2; 1; -1) и (3; 2; 2) в некотором базисе. Показать, что векторы , и образуют базис и найти координаты вектора в этом базисе.
Векторы образуют базис, если они линейно независимы, другими словами, если уравнения, входящие в систему:
Это условие выполняется, если определитель матрицы системы отличен от нуля.
Для решения этой системы воспользуемся методом Крамера.
Итого, координаты вектора в базисе , , : { -1/4, 7/4, 5/2}.
2.3 Уравнение поверхности в пространстве
Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.
Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:
вектор нормали к плоскости. Возможны следующие частные случаи:
А = 0 - плоскость параллельна оси Ох
В = 0 - плоскость параллельна оси Оу
С = 0 - плоскость параллельна оси Оz
D = 0 - плоскость проходит через начало координат
А = В = 0 - плоскость параллельна плоскости хОу
А = С = 0 - плоскость параллельна плоскости хОz
В = С = 0 - плоскость параллельна плоскости yOz
А = D = 0 - плоскость проходит через ось Ох
В = D = 0 - плоскость проходит через ось Оу
С = D = 0 - плоскость проходит через ось Oz
А = В = D = 0 - плоскость совпадает с плоскостью хОу
А = С = D = 0 - плоскость совпадает с плоскостью xOz
В = С = D = 0 - плоскость совпадает с плоскостью yOz
2.3.2 Уравнение плоско сти, проходящей через три точки
Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой. Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат. Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы были компланарны.
Уравнение плоскости, проходящей через три точки:
2.3.3 Уравнение плоскости по двум точкам и в ектору, коллинеарному плоскости
Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную точку М(х, у, z) параллельно вектору .
Векторы и вектор должны быть компланарны, т.е.
2.3.4 Уравнение плоскости по одной точке и двум векторам, коллинеарным плоскости
Пусть заданы два вектора и , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы должны быть компланарны. Уравнение плоскости:
2.3.4 Уравнение плоск ости по точке и вектору нормали
Теорема. Если в пространстве задана точка М0(х0, у0, z0), то уравнение плоскости, проходящей через точку М0 перпендикулярно вектору нормали (A, B, C) имеет вид:
A(x - x0) + B(y - y0) + C(z - z0) = 0.
Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору . Тогда скалярное произведение
Таким образом, получаем уравнение плоскости
2.3.5 Уравнение плоскости в отрезках
Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D) , заменив , получим уравнение плоскости в отрезках:
Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z.
2.3.6 Уравне ние плоскости в векторной форме
- радиус- вектор текущей точки М(х, у, z),
- единичный вектор, имеющий направление, перпендикуляра, опущенного на плоскость из начала координат.
, и - углы, образованные этим вектором с осями х, у, z.
p - длина этого перпендикуляра. В координатах это уравнение имеет вид:
2.3.7 Р асстояние от точки до плоскости
Расстояние от произвольной точки М0(х0, у0, z0) до плоскости Ах+Ву+Сz+D=0 равно:
Пример. Найти уравнение плоскости, зная, что точка Р(4; -3; 12) - основание перпендикуляра, опущенного из начала координат на эту плоскость.
Таким образом, A = 4/13; B = -3/13; C = 12/13, воспользуемся формулой:
A(x - x0) + B(y - y0) + C(z - z0) = 0.
Пример. Найти уравнение плоскости, проходящей через две точки P(2; 0; -1) и
Q(1; -1; 3) перпендикулярно плоскости 3х + 2у - z + 5 = 0.
Вектор нормали к плоскости 3х + 2у - z + 5 = 0 параллелен искомой плоскости.
Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и В(3, 2, -1) перпендикулярно плоскости х + у + 2z - 3 = 0.
Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор (1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали (1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то
Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 112 + 71 - 24 + D = 0; D = -21.
Итого, получаем уравнение плоскости:
Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) - основание перпендикуляра, опущенного из начала координат на эту плоскость.
Находим координаты вектора нормали = (4, -3, 12). Искомое уравнение плоскости имеет вид:
Для нахождения коэффициента D подставим в уравнение координаты точки Р:
Пример. Даны координаты вершин пирамиды А1(1; 0; 3), A2(2; -1; 3), A3(2; 1; 1), A4(1; 2; 5).
Найти угол между ребрами А1А2 и А1А4.
Найти угол между ребром А1А4 и гранью А1А2А3.
Сначала найдем вектор нормали к грани А1А2А3 как векторное произведение векторов и.
Найдем угол между вектором нормали и вектором .
Искомый угол между вектором и плоскостью будет равен = 900 - .
Воспользуемся формулой уравнения плоскости, проходящей через три точки.
Тема 3. Э лементы аналитической геометрии
Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.
Определение. Уравнением линии называется соотношение y = f(x) между координатами точек, составляющих эту линию.
Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t.
Характерный пример - траектория движущейся точки. В этом случае роль параметра играет время.
Определение. Любая прямая на плоскости может быть задана уравнением первого порядка
причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 0. Это уравнение первого порядка называют общим уравнением прямой.
В зависимости от значений постоянных А,В и С возможны следующие частные случаи:
C = 0, А 0, В 0 - прямая проходит через начало координат
А = 0, В 0, С 0 { By + C = 0}- прямая параллельна оси Ох
В = 0, А 0, С 0 { Ax + C = 0} - прямая параллельна оси Оу
В = С = 0, А 0 - прямая совпадает с осью Оу
А = С = 0, В 0 - прямая совпадает с осью Ох
Уравнение прямой может быть представлено в различном виде в зависимости от каких - либо заданных начальных условий.
3.3 Уравнение пря мой, проходящей через две точки
Пусть в пространстве заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда уравнение прямой, проходящей через эти точки:
Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На плоскости записанное выше уравнение прямой упрощается:
Дробь = k называется угловым коэффициентом прямой.
Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).
Применяя записанную выше формулу, получаем:
3.4 Уравнение прямой п о точке и угловому коэффициенту
Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:
и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k.
Если в общем уравнении прямой Ах + Ву + С = 0 С 0, то, разделив на -С, получим: или ,
Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b - координатой точки пересечения прямой с осью Оу.
Пример. Задано общее уравнение прямой х - у + 1 = 0. Найти уравнение этой прямой в отрезках. С = 1, , а = -1, b = 1.
3.6 Угол между прямыми на плоскости
Определение. Если заданы две прямые y = k1x + b1, y = k2x + b2, то острый угол между этими прямыми будет определяться как
Две прямые параллельны, если k1 = k2.
Две прямые перпендикулярны, если k1 = -1/k2.
Теорема. Прямые Ах + Ву + С = 0 и А1х + В1у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = А, В1 = В. Если еще и С1 = С, то прямые совпадают.
Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.
3.7 Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой
Определение. Прямая, проходящая через точку М1(х1, у1) и перпендикулярная к прямой у = kx + b представляется уравнением:
Теорема. Если задана точка М(х0, у0), то расстояние до прямой Ах + Ву + С =0 определяется как
Доказательство. Пусть точка М1(х1, у1) - основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М1:
Координаты x1 и у1 могут быть найдены как решение системы уравнений:
Второе уравнение системы - это уравнение прямой, проходящей через заданную точку М0 перпендикулярно заданной прямой. Если преобразовать первое уравнение системы к виду:
алгебра векторный математический анализ
A(x - x0) + B(y - y0) + Ax0 + By0 + C = 0,
Подставляя эти выражения в уравнение (1), находим:
Пример. Определить угол между прямыми:
3х - 5у + 7 = 0 и 10х + 6у - 3 = 0 перпендикулярны.
Находим: k1 = 3/5, k2 = -5/3, k1k2 = -1, следовательно, прямые перпендикулярны.
Пример. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.
Искомое уравнение высоты имеет вид:
Тогда y = Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: . Ответ: 3x + 2y - 34 = 0.
Т ема 4. В ведение в математический анализ
Определение. Если f(x) A1 при х а только при x < a, то - называется пределом функции f(x) в точке х = а слева, а если f(x) A2 при х а только при x > a, то называется пределом функции f(x) в точке х = а справа.
Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки. Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А - конечный предел функции f(x).
где С = const. Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при ха.
Доказательство этой теоремы будет приведено ниже.
Теорема 5. Если f(x)>0 вблизи точки х = а и , то А>0.
Аналогично определяется знак предела при f(x) < 0, f(x) 0, f(x) 0.
Теорема 6. Если g(x) f(x) u(x) вблизи точки х = а и
то и . Определение. Функция f(x) называется ограниченной вблизи точки х = а, если существует такое число М>0, что f(x)M на f(x)>M, то получим:
Графически приведенные выше случаи можно проиллюстрировать следующим образом:
Определение. Функция называется бесконечно большой при ха, где а - чосли или одна из величин , + или -, если , где А - число или одна из величин , + или -. Связь бесконечно больших и бесконечно малых функций осуществляется в соответствии со следующей теоремой. Теорема. Если f(x)0 при ха (если х ) и не обращается в ноль, то
Сравнение бесконечно малых функций. Пусть (х), (х) и (х) - бесконечно малые функции при х а. Будем обозначать эти функции , и соответственно. Эти бесконечно малые функции можно сравнивать по быстроте их убывания, т.е. по быстроте их стремления к нулю. Например, функция f(x) = x10 стремится к нулю быстрее, чем функция f(x) = x. Определение.
Если , то функция называется бесконечно малой более высокого порядка, чем функция . Определение.
Если , то и называются бесконечно малыми одного порядка. Определение.
Если то функции и называются эквивалентными бесконечно малыми. Записывают ~ . Пример. Сравним бесконечно малые при х0 функции f(x) = x10 и f(x) = x.
т.е. функция f(x) = x10 - бесконечно малая более высокого порядка, чем f(x) = x. Определение. Бесконечно малая функция называется бесконечно малой порядка k относительно бесконечно малой функции , если предел конечен и отличен от нуля. Однако следует отметить, что не все бесконечно малые функции можно сравнивать между собой. Например, если отношение не имеет предела, то функции несравнимы. Пример. Если , то при х0 , т.е. функция - бесконечно малая порядка 2 относительно функции . Пример. Если , то при х0 не существует, т.е. функция и несравнимы.
4.5 Свойства эквивалентных бесконечно малых
Следствие: а) если ~ 1 и , то и б) если ~ 1 и , то
Свойство 4 особенно важно на практике, т.к. оно фактически означает, что предел отношения бесконечно малых не меняется при замене их на эквивалентные бесконечно малые. Этот факт дает возможность при нахождении пределов заменять бесконечно малые на эквивалентные им функции, что может сильно упростить вычисление пределов.
Так как tg5x ~ 5x и sin7x ~ 7x при х 0, то, заменив функции эквивалентными бесконечно малыми, получим:
Пример. Найти предел Если и - бесконечно малые при ха, причем - бесконечно малая более высокого порядка, чем , то = + - бесконечно малая, эквивалентная . Это можно доказать следующим равенством . Тогда говорят, что - главная часть бесконечно малой функции . Пример. Функция х2 +х - бесконечно малая при х0, х - главная часть этой функции. Чтобы показать это, запишем = х2, = х, тогда
Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точке х0, если предел функции и ее значение в этой точке равны, т.е.
Тот же факт можно записать иначе: Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 - точкой разрыва.
1) Сумма, разность и произведение непрерывных в точке х0 функций - есть функция, непрерывная в точке х0.
2) Частное двух непрерывных функций - есть непрерывная функция при условии, что g(x) не равна нулю в точке х0. 3) Суперпозиция непрерывных функций - есть непрерывная функция.
Это свойство может быть записано следующим образом:
Если u = f(x), v = g(x) - непрерывные функции в точке х = х0, то функция v = g(f(x)) - тоже непрерывнаяфункция в этой точке. Справедливость приведенных выше свойств можно легко доказать, используя теоремы о пределах.
4.7 Т очки разрыва и их классификация
Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0 является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной.
Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом. Если односторонний предел (см. выше) , то функция называется непрерывной справа.
Определение. Точка х0 называется точкой разрыва функции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке. Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.
Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее.
Из определения можно сделать вывод, что в точке разрыва 1 - го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 - го рода еще иногда называют устранимой точкой разрыва, но подробнее об этом поговорим ниже.
Определение. Точка х0 называется точкой разрыва 2 - го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен.
Пример. Функция Дирихле (Дирихле Петер Густав(1805-1859) - немецкий математик, член- корреспондент Петербургской АН 1837г)
не является непрерывной в любой точке х0.
Пример. Функция f(x) = имеет в точке х0 = 0 точку разрыва 2 - го рода, т.к.
Функция не определена в точке х = 0, но имеет в ней конечный предел , т.е. в точке х = 0 функция имеет точку разрыва 1 - го рода. Это - устранимая точка разрыва, т.к. если доопределить функцию:
Эта функция также обозначается sign(x) - знак х. В точке х = 0 функция не определена. Т.к. левый и правый пределы функции различны, то точка разрыва - 1 - го рода. Если доопределить функцию в точке х = 0, положив f(0) = 1, то функция будет непрерывна справа, если положить f(0) = -1, то функция будет непрерывной слева, если положить f(x) равное какому- либо числу, отличному от 1 или -1, то функция не будет непрерывна ни слева, ни справа, но во всех случаях тем не менее будет иметь в точке х = 0 разрыв 1 - го рода. В этом примере точка разрыва 1 - го рода не является устранимой. Таким образом, для того, чтобы точка разрыва 1 - го рода была устранимой, необходимо, чтобы односторонние пределы справа и слева были конечны и равны, а функция была бы в этой точке не определена.
5.1 Тригонометрическая форма записи комплексного числа
Определение. Комплексным числом z называется выражение , где a и b - действительные числа, i - мнимая единица, которая определяется соотношением:
При этом число a называется действительной частью числа z (a = Re z), а b- мнимой частью (b = Im z).
Если a =Re z =0, то число z будет чисто мнимым, если b = Im z = 0, то число z будет действительным.
Определение. Числа и называются комплексно - сопряженными.
Определение. Два комплексных числа и называются равными, если соответственно равны их действительные и мнимые части:
Определение. Комплексное число равно нулю, если соответственно равны нулю действительная и мнимая части.
Понятие комплексног
Математика методичка. Математика.
Конспекты лекций: Социальная психология
Иностранное Инвестирование В Экономику России Дипломная Работа
Сочинение Егэ Бывает Ли Общественное Мнение Ошибочным
Сочинение Егэ Бунин
Пример Отчета Практики Бухгалтера
Курсовая работа по теме Понимание герменевтики различными философами
Может Ли Человек Изменить Себя Сочинение
Практические Работы 8 Класс География Алексеев
Курсовая На Тему Школы Уголовного Права
Реферат: Телефонный план нумерации СССР
Курсовая работа: "Критика чистого разума" И. Канта. Скачать бесплатно и без регистрации
Название Сочинения Про Женщин Войны
Курсовой Расчет Стропил Деревянные Конструкции
Анализ Ликвидности Баланса Курсовая Работа
Контрольная работа: Применение систем директ-кост и стандарт-кост в бухгалтерском учете
Ответ на вопрос по теме Глюкоза. Основные свойства
Реферат по теме Летучие мыши
Реферат Умный Дом 7 Класс
Курсовая работа по теме Электронный термометр
Реферат: Традиции и обычаи казахского народа. Скачать бесплатно и без регистрации
Линейная алгебра - Математика презентация
Место и функции культуры в обществе - Культура и искусство реферат
Жизнь и творчество художника И.Н. Крамского - Культура и искусство курсовая работа


Report Page