Massive Black Hole

Massive Black Hole




🛑 👉🏻👉🏻👉🏻 INFORMATION AVAILABLE CLICK HERE👈🏻👈🏻👈🏻




















































This is an ordered list of the most massive black holes so far discovered (and probable candidates), measured in units of solar masses (M☉), approximately 2×1030 kilograms.
A supermassive black hole (SMBH) is an extremely large black hole, on the order of hundreds of thousands to billions of solar masses (M☉), and is theorized to exist in the center of almost all massive galaxies. In some galaxies, there are even binary systems of supermassive black holes, see the OJ 287 system. Unambiguous dynamical evidence for SMBHs exists only in a handful of galaxies;[1] these include the Milky Way, the Local Group galaxies M31 and M32, and a few galaxies beyond the Local Group, e.g. NGC 4395. In these galaxies, the mean square (or root mean square) velocities of the stars or gas rises as ~1/r near the center, indicating a central point mass. In all other galaxies observed to date, the rms velocities are flat, or even falling, toward the center, making it impossible to state with certainty that a supermassive black hole is present.[1] Nevertheless, it is commonly accepted that the center of nearly every galaxy contains a supermassive black hole.[2] The reason for this assumption is the M–sigma relation, a tight (low scatter) relation between the mass of the hole in the ~10 galaxies with secure detections, and the velocity dispersion of the stars in the bulges of those galaxies.[3] This correlation, although based on just a handful of galaxies, suggests to many astronomers a strong connection between the formation of the black hole and the galaxy itself.[2]
Although SMBHs are currently theorized to exist in almost all massive galaxies, more massive black holes are rare; with only fewer than several dozen having been discovered to date. There is extreme difficulty in determining the mass of a particular SMBH, and so they still remain in the field of open research. SMBHs with accurate masses are limited only to galaxies within the Laniakea Supercluster and to active galactic nuclei.
Another problem for this list is the method used in determining the mass. Such methods, such as broad emission-line reverberation mapping (BLRM), Doppler measurements, velocity dispersion, and the aforementioned M–sigma relation have not yet been well established. Most of the time, the masses derived from the given methods contradict each other's values.
This list contains supermassive black holes with known masses, determined at least to the order of magnitude. Some objects in this list have two citations, like 3C 273; one from Bradley M. Peterson et al. using the BLRM method,[4] and the other from Charles Nelson using [OIII]λ5007 value and velocity dispersion.[5] Note that this list is very far from complete, as the Sloan Digital Sky Survey (SDSS) alone detected 200000 quasars, which likely may be the homes of billion-solar-mass black holes. In addition, there are several hundred citations for black hole measurements not yet included on this list. Despite this, the majority of well-known black holes above 1 billion M☉ are shown. Messier galaxies with precisely known black holes are all included.
New discoveries suggest that many black holes, dubbed 'stupendously large', could exceed 100 billion solar masses.[6]
Due to the very large numbers involved, listed black holes here have their mass values in scientific notation (numbers multiplied to powers of 10). Values with uncertainties are written in parentheses when possible. Note that different entries in this list have different methods and systematics in obtaining their mass values, and hence different levels of confidence in their masses. These methods are specified in their notes.
Estimated from quasar Hβ emission line correlation.
Mass specified obtained through orbit-based, axisymmetric Schwarzschild models. Earlier estimates range from ~310 billion M☉ down to 3 billion M☉, all relying on empirical scaling relations and are thus obtained from extrapolation and not from kinematical measurements.[9]
Estimated from properties of the host galaxy (Faber–Jackson relation); mass has not been measured directly.
A 2010 paper suggested that a funnel collimates the radiation around the jet axis, creating an optical illusion of very high brightness, and thus a possible overestimation of the black hole mass.[11]
Estimated using near-infrared spectroscopic measurements of the MgII emission line doublet.
Estimated from quasar MgII emission line correlation.
Value obtained as an indirect estimate using a model of minimum Eddington luminosity required to account for the Compton cooling of the surrounding cluster.[16]
Central galaxy of Abell 2199; notable for its hundred thousand light year long relativistic jet.
Based on velocity width of CO line from orbiting molecular gas,[18] and reverberation mapping using SiIV and CIV emission lines.[19]
Best fit: the estimate ranges from 6 billion to 37 billion M☉.[20][21]
Central galaxy of the Phoenix Cluster;[23] this black hole is continuously growing at the rate of ~60 M☉ per year.
Estimated from quasar MgII emission line correlation.
A smaller 100 million M☉ black hole orbits this one in a 12-year period (see OJ 287 secondary below). But this measurement is in question due to the limited number and precision of observed companion orbits.
Unprecedentedly massive in relation of its location: an elliptical galaxy host in a sparse environment.
Estimated from quasar MgII emission line correlation.
Estimated from quasar MgII emission line correlation.
Estimated from quasar Hβ emission line correlation.
Estimated from quasar MgII emission line correlation.
Estimated from the strong gravitational lensing of a background galaxy behind the BCG.[27] Beware of ambiguity between the BH mass determination and the galaxy cluster's dark matter profile.[28]
Estimated from quasar MgII emission line correlation. This object grew early in cosmic history (redshift 6.30).
Estimated from quasar MgII emission line correlation.
Elliptical galaxy located in the Perseus Cluster. Also is a low-luminosity AGN (LLAGN).[32]
Estimated from quasar Hβ emission line
Estimated from accretion disk spectrum modelling.[33]
There are actually two black holes, orbiting at each other in a close pair with a 542-day period. The largest one is quoted, while the smaller one's mass is not defined.[34]
Black hole of central elliptical galaxy of RX J1532.9+3021
Compact elliptical galaxy in the Perseus Cluster. Mass estimates range from 10 billion M☉ down to <5 billion M☉.[37]
Brightest galaxy in the Leo Cluster
Estimated from quasar MgII emission line correlation.
Estimated from quasar MgII emission line correlation.
Estimated from quasar Hβ emission line correlation.
Constitutes 10% of the total mass of its host galaxy. Estimated from quasar Hβ emission line correlation.
Estimated from quasar Hβ emission line correlation.
Estimated from quasar MgII emission line correlation.
Central galaxy of the Virgo Cluster; the first black hole directly imaged.
Estimated from the stellar velocity distribution. A secondary satellite SMBH may orbit around 70 parsecs.[42]
Estimated from quasar Hβ emission line correlation.
Estimated from quasar Hβ emission line correlation.
Estimated from quasar MgII emission line correlation.
Estimated from quasar Hβ emission line correlation.
Notable for its million light-year long relativistic jet.
Estimated from quasar Hβ emission line correlation.
Estimated from quasar MgII emission line correlation.
Estimated from quasar MgII emission line correlation.
Estimated from quasar MgII emission line correlation.
Estimated from quasar Hβ emission line correlation.
Estimated from quasar Hβ emission line correlation.
Estimated from quasar Hβ emission line correlation.
Once thought to harbor a black hole so large that it contradicted modern galaxy formation and evolutionary theories,[56] re-analysis of the data revised it downward to roughly a third of the original estimate.[57] and then one tenth.[55]
Black hole of central elliptical galaxy of MS 0735.6+7421
Produced a colossal AGN outburst after accreting 600 million M☉ worth of material. BH mass not explicitly stated; just a lower limit. Requires assumptions about the efficiencies of gas accretion and jet power.[58][59][60]
Brightest extrasolar radio source in the sky as seen at frequencies above 1 GHz
Bolometrically most luminous galaxy in the local universe and also the nearest billion-solar-mass black hole to Earth.
Brightest object in the sky in very high energy gamma rays.
Most distant quasar[64] − currently on record as the most distant quasar at z=7.54[64]
Central galaxy of the Fornax Cluster
Notable for its 88000 light-year long relativistic jet.[68]
Constitutes 1.4% of the mass of its host galaxy
Central galaxy of the Perseus Cluster
This black hole has a retrograde rotation.[74]
Nearest large galaxy to the Milky Way
The smaller black hole orbiting OJ 287 primary (see above).
Observed by the Chandra X-ray Observatory to be tidally disrupting a star.[76][77]
Also notable for its million light-year long relativistic jet.[83]
Estimates can be as low as 1.5 million solar masses
Constitutes 15% of the mass of its host galaxy.
A dwarf satellite galaxy of the Andromeda Galaxy.
The black hole at the center of the Milky Way.
^ a b Merritt, David (2013). Dynamics and Evolution of Galactic Nuclei. Princeton, NJ: Princeton University Press. p. 23. ISBN 978-0-691-15860-0.
^ a b King, Andrew (2003-09-15). "Black Holes, Galaxy Formation, and the MBH-σ Relation". The Astrophysical Journal Letters. 596 (1): L27–L29. arXiv:astro-ph/0308342. Bibcode:2003ApJ...596L..27K. doi:10.1086/379143. S2CID 9507887.
^ Ferrarese, Laura; Merritt, David (2000-08-10). "A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies". The Astrophysical Journal. The American Astronomical Society. 539 (1): L9–12. arXiv:astro-ph/0006053. Bibcode:2000ApJ...539L...9F. doi:10.1086/312838. S2CID 6508110.
^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Peterson, Bradley M. (2013). "Measuring the Masses of Supermassive Black Holes" (PDF). Space Science Reviews. 183 (1–4): 253. Bibcode:2014SSRv..183..253P. doi:10.1007/s11214-013-9987-4. S2CID 16464532.
^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Nelson, Charles H. (2000). "Black Hole Mass, Velocity Dispersion, and the Radio Source in Active Galactic Nuclei". The Astrophysical Journal. 544 (2): L91–L94. arXiv:astro-ph/0009188. Bibcode:2000ApJ...544L..91N. doi:10.1086/317314. S2CID 117449813.
^ September 2020, Paul Sutter 29. "Black holes so big we don't know how they form could be hiding in the universe". Space.com. Retrieved 2021-02-06.
^ Shemmer, O.; Netzer, H.; Maiolino, R.; Oliva, E.; Croom, S.; Corbett, E.; di Fabrizio, L. (2004). "Near-infrared spectroscopy of high-redshift active galactic nuclei. I. A metallicity-accretion rate relationship". The Astrophysical Journal. 614 (2): 547–557. arXiv:astro-ph/0406559. Bibcode:2004ApJ...614..547S. doi:10.1086/423607. S2CID 119010341.
^ Mehrgan, K.; Thomas, J.; Saglia, R.; Massalay, X.; Erwin, P.; Bender, R.; Kluge, M.; Fabricius, M. (2019). "A 40-billion solar mass black hole in the extreme core of Holm 15A, the central galaxy of Abell 85". The Astrophysical Journal. 887 (2): 195. arXiv:1907.10608. Bibcode:2019ApJ...887..195M. doi:10.3847/1538-4357/ab5856. S2CID 198899965.
^ López-Cruz, O.; Añorve, C.; Birkinshaw, M.; Worrall, D. M.; Ibarra-Medel, H. J.; Barkhouse, W. A.; Torres-Papaqui, J. P.; Motta, V. (2014). "The Brightest Cluster Galaxy in Abell 85: The Largest Core Known So Far". The Astrophysical Journal. 795 (2): L31. arXiv:1405.7758. Bibcode:2014ApJ...795L..31L. doi:10.1088/2041-8205/795/2/L31. S2CID 1140857.
^ Dullo, Bililign T.; Graham, Alister W.; Knapen, Johan H. (October 2017). "A remarkably large depleted core in the Abell 2029 BCG IC 1101". Monthly Notices of the Royal Astronomical Society. 471 (2): 2321–2333. arXiv:1707.02277. Bibcode:2017MNRAS.471.2321D. doi:10.1093/mnras/stx1635. S2CID 119000593.
^ a b c d e f g h i j k Ghisellini, G.; Ceca, R. Della; Volonteri, M.; Ghirlanda, G.; Tavecchio, F.; Foschini, L.; Tagliaferri, G.; Haardt, F.; Pareschi, G.; Grindlay, J. (2010). "Chasing the heaviest black holes in active galactic nuclei, the largest black hole". Monthly Notices of the Royal Astronomical Society. 405 (1): 387. arXiv:0912.0001. Bibcode:2010MNRAS.405..387G. doi:10.1111/j.1365-2966.2010.16449.x. S2CID 40214759.
^ Ghisellini, G.; Foschini, L.; Volonteri, M.; Ghirlanda, G.; Haardt, F.; Burlon, D.; Tavecchio, F.; et al. (14 July 2009). "The blazar S5 0014+813: a real or apparent monster?". Monthly Notices of the Royal Astronomical Society: Letters. v2. 399 (1): L24–L28. arXiv:0906.0575. Bibcode:2009MNRAS.399L..24G. doi:10.1111/j.1745-3933.2009.00716.x. S2CID 14438667.
^ Gaensler, Bryan (2012-07-03). Extreme Cosmos: A Guided Tour of the Fastest, Brightest, Hottest, Heaviest, Oldest, and Most Amazing Aspects of Our Universe. ISBN 978-1-101-58701-0.
^ Christopher A Onken, Fuyan Bian, Xiaohui Fan, Feige Wang, Christian Wolf, Jinyi Yang (August 2020), "thirty-four billion solar mass black hole in SMSS J2157–3602, the most luminous known quasar", Monthly Notices of the Royal Astronomical Society, 496 (2): 2309, arXiv:2005.06868, Bibcode:2020MNRAS.496.2309O, doi:10.1093/mnras/staa1635CS1 maint: uses authors parameter (link)
^ a b c d e f g h i j k l m n o p q r s t u v w x Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui; Green, Richard; Wang, Ran; Bian, Fuyan (2014). "Black Hole Mass Estimates and Rapid Growth of Supermassive Black Holes in Luminous $z \sim$ 3.5 Quasars". The Astrophysical Journal. 799 (2): 189. arXiv:1412.2438. Bibcode:2015ApJ...799..189Z. doi:10.1088/0004-637X/799/2/189. S2CID 73642040.
^ a b Walker, S. A.; Fabian, A. C.; Russell, H. R.; Sanders, J. S. (2014). "The effect of the quasar H1821+643 on the surrounding intracluster medium: Revealing the underlying cooling flow". Monthly Notices of the Royal Astronomical Society. 442 (3): 2809. arXiv:1405.7522v1. Bibcode:2014MNRAS.442.2809W. doi:10.1093/mnras/stu1067. S2CID 118724526.
^ Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.~M.; Gebhardt, K.; Green, R.; Grillmair, C.; Kormendy, J.; Lauer, T. (June 1998). "The Demography of Massive Dark Objects in Galaxy Centers". The Astronomical Journal. 115 (6): 2285–2305. arXiv:astro-ph/9708072. Bibcode:1998AJ....115.2285M. doi:10.1086/300353. S2CID 17256372.
^ a b Riechers, D. A.; Walter, F.; Carilli, C. L.; Lewis, G. F. (2009). "Imaging The Molecular Gas in a z = 3.9 Quasar Host Galaxy at 0farcs3 Resolution: A Central Sub-Kiloparsec Scale Star Formation Reservoir in APM 08279+5255". The Astrophysical Journal. 690 (1): 463–485. arXiv:0809.0754. Bibcode:2009ApJ...690..463R. doi:10.1088/0004-637X/690/1/463. S2CID 13959993.
^ a b Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M. (2016). "A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255. II. Emission- and absorption-line variability time lags". Astronomy and Astrophysics. 587: A43. arXiv:1512.03195. Bibcode:2016A&A...587A..43S. doi:10.1051/0004-6361/201527152. S2CID 118548618.
^ a b c McConnell, Nicholas J.; Ma, Chung-Pei; Gebhardt, Karl; Wright, Shelley A.; Murphy, Jeremy D.; Lauer, Tod R.; Graham, James R.; Richstone, Douglas O. (2011). "Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies". Nature. 480 (7376): 215–8. arXiv:1112.1078. Bibcode:2011Natur.480..215M. doi:10.1038/nature10636. PMID 22158244. S2CID 4408896.
^ a b c d McConnell, N. J.; Ma, C.-P.; Murphy, J. D.; Gebhardt, K.; Lauer, T. R.; Graham, J. R.; Wright, S. A.; Richstone, D. O. (2012). "Dynamical Measurements of Black Hole Masses in Four Brightest Cluster Galaxies at 100 Mpc". The Astrophysical Journal. 756 (2): 179. arXiv:1203.1620. Bibcode:2012ApJ...756..179M. doi:10.1088/0004-637X/756/2/179. S2CID 119114155.
^ McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bazin, G.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; De Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Egami, E.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; et al. (2012). "A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies". Nature. 488 (7411): 349–52. arXiv:1208.2962. Bibcode:2012Natur.488..349M. doi:10.1038/nature11379. PMID 22895340. S2CID 205230129.
^ https://www.researchgate.net/figure/The-luminosity-redshift-plane-for-BASS-DR1-AGN-The-black-circles-represent-our-sample-of_fig1_335319093. Missing or empty |title= (help)
^ a b Valtonen, M. J.; Ciprini, S.; Lehto, H. J. (2012). "On the masses of OJ287 black holes". Monthly Notices of the Royal Astronomical Society. 427 (1): 77–83. arXiv:1208.0906. Bibcode:2012MNRAS.427...77V. doi:10.1111/j.1365-2966.2012.21861.x. S2CID 118483466.
^ Thomas, J.; Ma, C.-P.; McConnell, N. J.; Greene, J. E.; Blakeslee, J. P.; Janish, R. (2016). "A 17-billion-solar-mass black hole in a group galaxy with a diffuse core". Nature. 532 (7599): 340–342. arXiv:1604.01400. Bibcode:2016Natur.532..340T. doi:10.1038/nature17197. PMID 27049949. S2CID 4454301.
^ Morrow, Ashley (5 April 2016). "Behemoth Black Hole Found in an Unlikely Place".
^ a b Smith, R. J.; Lucey, J. R.; Edge, A. C. (2017). "A counterimage to the gravitational arc in Abell 1201: Evidence for IMF variations or a 1010 Msun black hole?". Monthly Notices of the Royal Astronomical Society. 467 (1): 836–848. arXiv:1701.02745. Bibcode:2017MNRAS.467..836S. doi:10.1093/mnras/stx059. S2CID 59965783.
^ Smith, R. J.; Lucey, J. R.; Edge, A. C. (2017). "Stellar dynamics in the strong-lensing central galaxy of Abell 1201: A low stellar mass-to-light ratio a large central compact mass and a standard dark matter halo". Monthly Notices of the Royal Astronomical Society. 1706 (1): 383–393. arXiv:1706.07055. Bibcode:2017MNRAS.471..383S. doi:10.1093/mnras/stx1573. S2CID 54757451.
^ Wu, X.; Wang, F.; Fan, X.; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D.; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri (25 February 2015). "An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30". Nature. 518 (7540): 512–515. arXiv:1502.07418. Bibcode:2015Natur.518..512W. doi:10.1038/nature14241. PMID 25719667. S2CID 4455954.
^ "Astronomers Discover Record-Breaking Quasar". Sci-News.com. 2015-02-25. Retrieved 2015-02-27.
^ Ferré-Mateu, Anna; Mezcua, Mar; Trujillo, Ignacio; Balcells, Marc; Bosch, Remco C. E. van den (2015-07-21). "Massive Relic Galaxies Challenge the Co-Evolution of Super-Massive Black Holes and Their Host Galaxies". The Astrophysical Journal. 808 (1): 79. arXiv:1506.02663. Bibcode:2015ApJ
Julie High Heels
Hdt High Heels
Create Holes
Dog Hole
French Family Sex Videos
List of most massive black holes - Wikipedia
Supermassive black hole - Wikipedia
This ultra-massive black hole just broke a record | CNN
Supermassive black hole - Wikipedia
Supermassive Black Hole Sagittarius A* | NASA
From Super to Ultra: Just How Big Can Black Holes Get? | NASA
Massive Black Hole


Report Page