Магнитооптические методы защиты ценных бумаг - Физика и энергетика дипломная работа

Магнитооптические методы защиты ценных бумаг - Физика и энергетика дипломная работа




































Главная

Физика и энергетика
Магнитооптические методы защиты ценных бумаг

Выбор метода регистрации магнитограмм. Магнитооптический эффект Керра. Материалы для магнитооптических устройств и их характеристики. Выбор и обоснование конструкции оптико-электронного устройства регистрации магнитограмм. Крепление оптических элементов.


посмотреть текст работы


скачать работу можно здесь


полная информация о работе


весь список подобных работ


Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1.2 Выбор метода регистрации магнитограмм
1.2.2 Магнитная силовая микроскопия
1.2.3.1 Магнитооптический эффект Керра
1.2.3.2 Магнитооптический эффект Фарадея
1.2.4 Сравнение выбранного магнитооптического метода с другими методами регистрации.
1.4 Материалы для магнитооптических устройств и их основные характеристики
1.4.1.1 Кристаллическая структура и параметры решетки
1.4.1.4 Магнитооптическая добротность
1.4.3 Металлические аморфные пленки
1.4.3.1 Природа магнитного упорядочения и структура
2.1 Выбор и обоснование конструкции оптико-электронного устройства регистрации магнитограмм
2.5 Крепление магнитооптического кристалла и постоянного магнита
3.1 Выбор и обоснование оптической схемы
4.1 Требования к монокристаллической пленке феррит-граната
4.2 Изготовление магнитооптического кристалла
4.6 Эпитаксиальное выращивание Bi-содержашей МПФГ
4.7.1 Нанесение зеркального покрытия термическим испарением в вакууме
4.7.2 Нанесение просветляющего покрытия
4.8 Разрезание на заготовки 10x10 мм
4.8.2 Разламывание пластин на кристаллы
4.9 Контроль магнитооптических параметров
4.10 Анализ технологичности изготовления магнитооптического кристалла
5. Организационно-экономическая часть
5.2 Определение стоимости проектно-конструкторских работ
5.3 Расчёт простого срока окупаемости инвестиций
5.4 Расчёт дисконтированного срока окупаемости инвестиций
6.1 Анализ вредных и опасных факторов при производстве магнитооптического кристалла
6.5 Требования пожарной безопасности
6.10 Утилизация производственного брака
В начале 70-х годов ряд передовых стран проявили заметный интерес к магнитооптическим устройствам хранения, обработки и отображения информации. Это новое направление в оптоэлектронике обязано своим происхождением открытию магнитных материалов, обладающих одновременно достаточно высокой прозрачностью в видимом и ближнем ИК диапазоне, сильными магнитооптическими эффектами (Фарадея и Керра) и управляемой доменной структурой. Это вызвано большими успехами в технологии получения высокосовершенных кристаллов и пленок разнообразных магнетиков.
В сочетании с достигнутыми специальными наукоемкими технологиями, высокой чувствительностью и разрешающей способностью эти материалы позволяют производить:
исследования аудио- и видео записей на предмет подлинности и идентификации средств записи;
контроль подлинности денежных купюр и других ценных бумаг по магнитному признаку;
производить восстановление частично разрушенной или утраченной информации, например, с поврежденных высокими температурами и механическими воздействиями магнитных лент различного рода “черных ящиков”;
криминалистические исследования номеров агрегатов машин, выполненных из магнитных материалов.
Магнитооптические методы нашли широкое применение в физике, оптике и электронике:
- определение эффективной массы носителей заряда или их плотности в полупроводниках;
- амплитудная модуляция лазерного излучения в оптических линиях связи;
- изготовление оптических невзаимных элементов;
- визуализация доменов в ферромагнитных пленках.
Рассмотрим подробнее применение на примере контроля подлинности ценных бумаг по магнитному признаку.
Каждый документ обеспечен определенным комплексом средств, обычно называемых защитой. Защита документа - это совокупность особенностей, реализуемых при использовании визуальных характеристик и специальных технологий и позволяющих однозначно установить подлинность документа. При этом под технологией обычно понимают совокупность процессов, оборудования и материалов, обеспечивающих получение конкретного эффекта, наблюдаемого визуально либо с применением специальных приборов.
В таблице 1 представлена классификация методов защиты ценных бумаг:
Таблица.1. Классификация методов защиты ценных бумаг
Когда идет речь о магнитной защите, подразумевается наличие магнитных свойств материалов документа. Чаще всего это красящие вещества, но иногда в качестве защиты используются магнитные свойства защитных нитей. На рис. 1 приведены банкноты номиналом 1000 и 500 рублей 2010 года выпуска, имеющие магнитную защиту, выполненную в виде магнитных меток. Магнитная защита, связанная с красящими веществами, может быть двух типов. Первый тип предполагает наличие магнитных свойств у какого-либо отдельного реквизита документа - обычно это серийный номер. Защитой такого типа обладает большинство находящихся в обращении банкнот, некоторые из ценных бумаг и другие разновидности документов.
Рис. 1. Банкноты 2010го года выпуска - магнитные-метки: а) - 1000 рублей, б) - 500 рублей
Магнитная защита второго типа предполагает локальное распределение магнитных свойств в пределах изображения. При этом внешних (визуальных) различий не наблюдается. Например, изображения черного цвета на лицевой стороне банкнот долларов США как раз и снабжены магнитной защитой такого рода. Если изучить такое изображение при помощи специального прибора (детектора или визуализатора), можно обнаружить, что одни участки рисунка обладают магнитными свойствами, а другие - нет.
Для имитации магнитной защиты используются различные приемы, которые рассчитаны на применение в основном простых приборов. Детекторы первых поколений были рассчитаны только на определение наличия магнитных свойств, но не их локализации. Поэтому «обмануть» такие приборы было достаточно легко - для этого достаточно было изготовить документ при помощи электрофотографического аппарата или лазерного принтера, в котором красящее вещество обладает магнитными свойствами. Или же на участках изображения, которым надлежит «быть магнитными», наносили содержащее ферромагнетик вещество. Детектор в таком случае реагирует на наличие ферромагнитной компоненты в красящем веществе, но не может определить правильность его местоположения.
В случае имитации магнитной защиты в квалифицированных подделках стоит говорить не об имитации, а о воспроизведении этого вида защиты. Так, среди известных подделок долларов США, относящихся к этой категории, на многих достаточно правильно воспроизводится распределение магнитных и немагнитных участков. Тем не менее, практически во всех разновидностях «суперподделок» есть те или иные отклонения от подлинного «магнитного образа». Пример такого отличия показан на рис. 2. Здесь приведены фрагменты «магнитного образа» подлинной и поддельной банкнот номиналом 100 долларов США выпуска 1996 года, зафиксированные при помощи магнитооптического визуализатора типа «МАГ», снабженного видеокамерой. Видно, что в подлинных банкнотах надпись «SERIES 1996» не имеет магнитных свойств, а в поддельных - наоборот.
Рис. 2. Фрагменты «магнитного образа» банкнот номиналом 100 долларов США выпуска 1996 года:
Основными данными для расчета оптической системы устройства регистрации магнитограмм являются следующие параметры и характеристики:
Размер магнитограммы, не более - 10x10 мм.
Разрешающая способность, не менее - 100 лин/мм.
1.2 Выбор метода регистрации магнитограмм
Методы визуализации магнитных полей рассеяния носителей записи позволяют создавать визуальное представление рабочих поверхностей носителя с разрешением, достаточным для побитового исследования информации. Наиболее распространенные методы визуализации полей магнитными частицами (метод порошковых фигур; визуализации в коллоидном растворе; визуализации на ферромагнитной пленке и метод деформации (пластификации) рабочего слоя) являются разрушающими и, кроме того, носят качественный характер. Для визуализации применяют методы электронной микроскопии, использующие воздействие магнитных полей рассеяния исследуемого объекта на движение пучка электронов. Сообщалось о визуализации с помощью методов магнитооптики. Для этой цели были применены аморфные пленки GdFe, DyFe, TbFe. Пленки намагничивались полями рассеяния сигналограмм с изменением соответствующим образом направления плоскости поляризации отраженного от них света (эффект Керра) [1].
Миниатюрные датчики, применяемые для топографирования магнитных полей (Холла, индукционные и магниторезистивные), обладают невысоким пространственным разрешением и лишены свойств визуализации.
В отличие от принятого в технике магнитной записи трактования понятия «сигналограмма» как временного распределения амплитуд сигнала записи/ считывания, техника визуализации данных на магнитных носителях использует другой подход. Под магнитной сигналограммой понимается пространственное распределение амплитуд остаточной намагниченности М, что дает возможность «увидеть» данные на носителе [2]. Здесь рассмотрены те методы визуализации, которые наиболее часто используются для исследования магнитных полей рассеяния магнитных носителей.
Это самый старый из известных методов визуализации магнитных полей. Ф. Биттер использовал его для исследования магнитной структуры материалов еще в 1930г., когда еще не была сформирована теория магнитных доменов, поэтому в публикациях говорилось просто о неоднородностях в ферромагнетиках.
Рис. 1.1. Изображения доменов в монокристалле железа
То, что на полученных Биттером изображениях (рис. 1.1) были действительно домены, только в 1949г. доказали ученые одной из исследовательских лабораторий «Белл компани».
Чтобы понять суть метода, достаточно вспомнить известный школьный эксперимент, в котором на лист бумаги насыпают железных опилок, а внизу располагают магнит. В результате можно «увидеть» магнитное поле магнита, поскольку опилки выстраиваются вдоль его силовых линий.
Биттер усовершенствовал эту технологию, применив вместо опилок коллоидную суспензию магнитных частиц, каждая из которых по форме напоминает микроскопическую иглу размерами всего несколько микрон. Пребывая во взвешенном состоянии и практически не испытывая трения, такие частицы могут быстро переориентироваться в зависимости от направления приложенного поля. Если нанести на намагниченную поверхность тонкий слой суспензии, они концентрируются вдоль участков образца, где намагниченность меняет свой знак, формируя так называемые картины Биттера, которые можно наблюдать с помощью оптического микроскопа. Для достижения большего контраста образец иногда помещают в небольшое внешнее магнитное поле, направленное вдоль его поверхности [3].
Метод показан на рис.1.2. На образцах можно наблюдать изображения доменов. Для наблюдений можно используется металлографический микроскоп с увеличением 70150Ч.
Рис.1.2. Метод наблюдения порошковых фигур.
Для таких исследований очень хорошо иметь небольшой магнит типа показанного на рисунке 1.3. С его помощью можно создавать любое необходимое поле.
Рис.1.3. - Электромагнит, применяемый при наблюдении доменов.
Образец помещают над магнитом, наносят на него сверху с помощью пипетки одну - две капли суспензии и, наложив сверху покровное стекло, изучают образец под микроскопом (рис.1.2). Частицы суспензии притягиваются к границам между доменами, образуя здесь черные линии. На рисунке 6 приведено изображение доменов, наблюдавшихся таким способом на поверхности. Черные линии - границы доменов, а стрелки указывают направление намагниченности в отдельных доменах. Направление намагниченности проще всего определить, используя то, что она перпендикулярна полоскам, которые в большом количестве видны внутри доменов. Полоски могут появляться на неровностях или на неоднородностях концентрации сплава в образце, поскольку в этих местах возникают магнитные полюсы, или их еще называют линиями насыщения [4].
Рис. 1.4. Изображение доменов. Границы доменов обведены тушью (чёрные линии). Горизонтальной линией в середине рисунка показано, как выглядит царапина, сделанная механическим способом.
Разрешение метода определяется, в основном, размерами магнитных частиц и составом раствора, и в меньшей мере разрешающей способностью используемого микроскопа. Раньше приготовление суспензии было одним из сложнейших этапов подготовки и проведения эксперимента - получение продукта с заданными характеристиками требовало терпения и специальных навыков исследователя. Сейчас ее изготовление поставлено на промышленную основу. В лучших образцах коммерческих суспензий размеры магнитных частиц составляют порядка 10 нм, что лежит за пределом разрешающей способности оптических микроскопов. При проведении исследований с использованием таких суспензий оптические микроскопы заменяют электронными, а разрешение метода в этом случае достигает 100 нм.
Позволяя быстро и с достаточно высоким разрешением визуализировать магнитные поля, метод Биттера в то же время имеет существенный недостаток - удалить магнитную суспензию с намагниченной поверхности абсолютно невозможно, т.е. метод Биттера является разрушающим. Тем не менее, он широко применяется на практике в приложениях контроля и оценки эффективности уничтожения информации, хранящейся на магнитных носителях.
Таким образом, метод Биттера представляет собой недорогой и эффективный способ контроля уничтожения информации, обеспечивающий возможность работы даже с современными высокоплотными накопителями. К его достоинствам можно также отнести возможность визуализировать большие участки рабочих поверхностей магнитных носителей, что позволяет за один цикл измерений получить полное изображение пластины жесткого диска или дискеты. Практическое применение метода ограничивается его разрушающим воздействием, т.е. после «просмотра» носителя использовать его по прямому назначению (для хранения данных) уже нельзя.
1.2.2 Магнитная силовая микроскопия
Магнитная силовая микроскопия (МСМ) - это одна из самых «молодых» технологий визуализации магнитных полей и, в то же время, одна из наиболее перспективных. Несмотря на сложность используемых физических принципов, работу магнитного силового микроскопа можно легко объяснить, проведя аналогию с патефоном. Как и в патефоне, в таком микроскопе тонкая игла движется по некой «дорожке», цепляясь за «неровности» магнитного рельефа образца. Но, в отличие от патефона, отклонения иглы скрывают в себе не музыку, а картину поля рассеяния.
Магнитно-силовой микроскоп устроен следующим образом. Микромагнит (рис.1.5.) в виде заостренной иглы перемещают вблизи поверхности образца, регистрируя силы взаимодействия с образцом.
Рис.1.5. Схематическое изображение магнитно-силового микроскопа.
Для перемещения острия относительно исследуемой поверхности используется прецизионный трехкоординатный микроманипулятор. Обычно в зондовой микроскопии такой манипулятор изготавливают из пьезокерамической трубки с системой электродов. При подаче напряжения на электроды трубка может изгибаться, удлиняться или укорачиваться, производя тем самым перемещение образца (или иглы) по трем координатам X, Y и Z. В зависимости от размеров пьезотрубки максимальное перемещение образца может быть обеспечено в диапазоне от единиц до сотни микрон. Точность позиционирования такого манипулятора достигает сотых долей нанометра. Зондирующее острие располагают на упругой микроминиатюрной консоли (кантилевере), по изгибу которой, регистрируемому, например, с помощью оптической системы, можно определять силу взаимодействия между острием и поверхностью. В магнитносиловом микроскопе при сканировании образца игла проходит по одному и тому же месту дважды. Первый раз она движется по поверхности образцав контакте с ним, при этом компьютер запоминает ее траекторию, которая в этом случае соответствует профилю исследуемой поверхности. Магнитные свойства образца, если пренебречь деформациями поверхности (они обычно невелики), не оказывают влияния на наблюдаемую траекторию. Второй раз микроконсоль проходит по той же траектории над тем же участком поверхности, но на некотором удалении от нее. При таком движении на иглу, расположенную на микроконсоли, действуют уже не контактные силы, как в первом случае. Если иглу отвести на расстояние 10--50 нм, то универсальное ван-дер-ваальсово притяжение затухает и остаются только более дальнодействующие магнитные силы, так что отклонение иглы от заранее обусловленной траектории будет определяться именно магнитными свойствами образца (рис.1.6.) [5].
Рис.1.6. Получение «магнитного» изображения. 1 - запись профиля поверхности с помощью специальной иглы; 2 - при следующем проходе задается та же траектория, но на высоте 10 - 50 нм от поверхности образца; 3 - отклонение иглы от выбранной траектории в результате действия магнитных сил.
На пространственное разрешение магнитного силового микроскопа влияют множество факторов: выбор зонда, чувствительность электронной схемы, используемый режим измерений и др. Типичные магнитносиловые микроскопы имеют разрешение 30 нм, некоторые модели позволяют достичь значения 10 нм. Но такое высокое разрешение имеет и негативную сторону - довольно сложно позиционировать участок измерения на образце, а размеры получаемых изображений составляют всего от единиц до десятков микрон.
Рис. 1.7. МСМ изображение поверхности жесткого диска. Размер «скана» 70х70мкм.
Метод не обеспечивает высокую скорость получения результатов, но дает возможность их количественной оценки. Поскольку магнитная силовая микроскопия изображения содержит информацию как о топографии, так и о магнитных свойствах поверхности, то для правильной их интерпретации необходимо выделить из общей картины магнитную составляющую. Эта задача требует сложных вычислений, но в большинстве современных микроскопов она решается во встроенном контроллере.
В настоящее время благодаря высокой чувствительности и разрешению магнитная силовая микроскопия становится одним из наиболее популярных инструментов для исследования ферромагнитных материалов. Единственным сдерживающим фактором является высокая стоимость измерительных устройств, которая может доходить до полумиллиона долларов.
Магнитооптические методы визуализации основаны на явлении поворота плоскости поляризации отраженного от намагниченного материала (эффект Керра) или проходящего через магнитооптическую среду (эффект Фарадея) света. Среди них наиболее перспективными для исследования магнитных носителей являются методы визуализации магнитных полей носителей при использовании пленок феррит-гранатов [1].
Основным элементом устройства визуализации на феррит-гранатовых пленках является магнитооптический кристалл, осуществляющий преобразование магнитных полей рассеяния носителя в световое распределение, соответствующее их величине и положению в пространстве [6]. Его структура приведена на рис. 1.8.
Рис. 1.8. Структура магнитооптического кристалла
Пленка феррит-гранатов выращивается на подложке из галий-гадолиниевого граната, верхняя грань которого просветляется для увеличения контраста наблюдаемой картины. Снизу на кристалл наносится зеркальнозащитный слой для увеличения его износостойкости и коэффициента отражения. В отсутствие внешнего магнитного поля в магнитооптическом кристалле существует пространственная лабиринтная доменная структура, причем направления намагниченности в соседних доменах противоположны и перпендикулярны поверхности кристалла. Локальное намагничивание пленки феррит-гранатов во внешнем поле происходит путем вращения вектора магнитного момента. Поэтому при помещении кристалла в магнитное поле он быстро перестраивается в соответствии с его пространственными и амплитудными характеристиками, а после снятия поля возвращается в невозмущенное (исходное) состояние [7].
На рис. 1.9. представлен вариант схемы магнитооптической визуализации, работающей в отраженном свете.
Рис. 1.9. Магнитооптическая визуализация в отраженном свете
Свет от источника собирается конденсорной линзой, проходит через поляризатор и, отражаясь от полупрозрачного зеркала, попадает на магнитооптический кристалл, прижатый к поверхности исследуемого носителя. Его поле рассеяния воздействует на феррит-гранатовую пленку и перестраивает в ней лабиринтную доменную структуру в соответствии со структурой сигналограммы. Поэтому поляризованный свет, проходя через магнитооптический кристалл, вследствие эффекта Фарадея поворачивает плоскость поляризации в зависимости от того, через какой домен кристалла проходит свет. После отражения от зеркальнозащитного слоя свет снова проходит через кристалл, и плоскость его поляризации опять поворачивается на тот же угол и в ту же сторону, что и при первом прохождении. Таким образом, двойное прохождение света через магнитооптический кристалл удваивает угол поворота плоскости поляризации света, увеличивая тем самым чувствительность к магнитному полю. Отраженный от зеркальнозащитного слоя свет проходит через полупрозрачное зеркало и анализатор (поляризационный фильтр), преобразующий модуляцию света по плоскости поляризации в модуляцию света по интенсивности, которая затем регистрируется оптическим устройством наблюдения.
Пространственное разрешение магнитооптического метода визуализации на пленках феррит-гранатов лежит в пределах от долей до единиц микрон и достигает максимума при минимальном расстоянии между кристаллом и поверхностью носителя, что объясняется быстрым затуханием поля рассеяния при увеличении этого расстояния. Из-за достаточно высокой жесткости магнитооптического кристалла метод используется преимущественно для изучения низкоплотных гибких магнитных носителей, таких как дискеты и магнитные ленты.
1.2.3.1 Магнитооптический эффект Керра
Магнитооптический эффект Керра заключается в том, что при отражении падающего на намагниченный магнетик поляризованного света происходит поворот плоскости поляризации [1]. Рисунок 1.10 поясняет принцип действия установки для наблюдения доменов с помощью магнитооптического эффекта Керра. На рисунке 1.10 а изображена схема установки. Свет от источника, проходя поляризатор, поляризуется и, отразившись от полупрозрачного зеркала, падет на образец перпендикулярно его поверхности. Отраженный от поверхности образца поляризованный свет, пройдя полупрозрачное зеркало, попадает на анализатор, который пропускает только компоненту, параллельную оси анализатора. Затем поляризованный свет попадет в окуляр, через который производится визуальное наблюдение. Если ферромагнитный образец разбит, как показано на рисунке 1.10 б, на домены, в которых направление спонтанной намагниченности перпендикулярно поверхности образца, то благодаря магнитооптическому эффекту Керра в доменах с антипараллельной намагниченностью поворот плоскости поляризации произойдет в противоположных направлениях. Следовательно, изображение домена в отраженном свете будет светлым, если направление поляризации отраженного от него света совпадает с направлением оси пропускания анализатора, и темным в обратном случае [8].
Рис.1.10. а - установка для наблюдения доменов с помощью магнитооптического эффекта Керра; б - поворот плоскости поляризации света, отражённого доменами ферромагнитного образца, ось лёгкого намагничивания которого перпендикулярна поверхности.
На рисунке 1.11 показано изображение доменов MnBi в плоскости с, полученное этим методом. В MnBi ось с является легкой осью, причем константа анизотропии очень велика. Поэтому размагничивающее поле, создаваемое возникающими на поверхности магнитными полюсами, не оказывает заметного влияния и намагниченность доменов направлена перпендикулярно поверхности. На рисунке 1.11 а-в показаны домены в образцах разной толщины [9]. Как мы видим, изображение меняется сильно.
Рис.1.11. Изображение доменов с плоскости образца MnBi, полученное с помощью магнитооптического эффекта Керра. а - толстый образец; б, в - образцы с последовательно уменьшающейся толщиной.
Если направление намагниченности параллельно поверхности образца, метод, схема которого представлена на рисунке 1.10, не дает результатов. В этом случае для наблюдения доменов с помощью магнитооптического эффекта Керра свет посылают на поверхность образца под углом и используют то обстоятельство, что направление поворота плоскости поляризации зависит от знака проекции вектора намагниченности на направление распространения света (в такой геометрии проявляется меридиональный эффект Керра). Оптическая система, включающая анализатор и окуляр, очевидно, должно быть расположена зеркальносимметрично падающему лучу [4].
При отражении линейного поляризованного света от намагниченной поверхности плоскость поляризации света поворачивается на угол, величина которого зависит от направления намагниченности образца. Вращение плоскости поляризации света при отражении его от поверхности намагниченного ферромагнетика называется магнитооптическим эффектом Керра. В зависимости от взаимного расположения вектора намагничивания в плоскости ферромагнитного образца и плоскости падения света различают полярный, меридиональный и экваториальный эффекты Керра.
Полярный эффект Керра: вектор намагничения перпендикулярен поверхности ферромагнитного зеркала, но параллелен плоскости падения света (рисунок 1.12 а). Меридиональный (продольный) эффект Керра: вектор намагничения находится в плоскости зеркала и параллелен плоскости падения света (рисунок 1.12 б). Экваториальный (поперечный) эффект Керра: вектор намагничения расположен в плоскости зеркала, но перпендикулярен плоскости падения света (рисунок 1.12 в) [8].
Рис. 1.12. Эффект Керра: а) - полярный, б) - продольный, в) - поперечный.
1.2.3.2 Магнитооптический эффект Фарадея
Эффект Фарадея заключается в том, что при прохождении плоскополяризованного света через вещество, магнитное поле в котором не равно нулю, возникает вращение плоскости поляризации. Очевидно, эффект Фарадея можно использовать лишь для исследования прозрачных сред. При изучении доменной структуры он может быть применен для очень тонких прозрачных ферромагнитных пленок [1].
Направление вращения плоскости поляризации зависит от направления намагниченности в домене. Если при исследовании структуры с антипараллельными доменами поляризатор и анализатор скрещены для доменов одного из направлений намагниченности, т.е. свет от этих доменов не проходит, то для доменов противоположного направления намагничености вследствие различного направления вращения плоскости поляризации свет через анализатор пройдет. Таким образом, доменная структура будет видна в виде темных и светлых полос доменов противоположной намагниченности [10].
Характерно то, что здесь выявляются сами домены, а не границы между доменами, как в случае метода порошковых фигур.
На рисунке 1.13 приведена фотография доменной структуры ферромагнитной пленки толщиной 500?, выявленная с помощью эффекта Фарадея.
Рис.1.13. Доменная структура тонкой ферромагнитной пленки, выявленная с помощью эффекта Фарадея.
Угол поворота плоскости поляризации может быть вычислен по следующей формуле [11]:
где d - путь света в веществе, Н - напряженность магнитного поля, V - постоянная Верде, которая зависит от частоты света, свойств вещества и температуры. Принято постоянную Верде измерять в угловых минутах, деленных на эрстед и сантиметр (мин/Э?см). В оптической промышленности по значению V определяют состав стекла.
Направление вращения, т.е. знак V зависит от направления магнитного поля и не связано с направлением распространения света. Поэтому фарадеевское вращение условно принято считать положительным для наблюдателя, смотрящего по полю, если плоскость поляризации поворачивается по часовой стрелке (вправо).
Очевидно, что с феноменологической точки зрения эффект Фарадея, по аналогии с естественной активностью объясняется тем, что показатели преломления n+ и n- для света, поляризованного право- и левоциркулярно, становятся различными при помещении оптически неактивного вещества в магнитное поле. Детальная интерпретация эффекта Фарадея возможна лишь на основе квантовых представлений. Конкретный механизм явления может быть несколько различным в разных веществах и в разных областях спектра. Однако, с точки зрения классических представлений, эффект Фарадея всегда связан с влиянием на дисперсию вещества частоты , с которой оптические электроны совершают ларморовскую прецессию вокруг направления магнитного поля, и может быть получен на основе классической теории дисперсии. В диэлектриках в видимой области спектра дисперсия определяется связанными электронами, которые совершают вынужденные колебания под действием электрического поля световой волны. Вещество рассматривается как совокупность таких классических осцилляторов. Тогда, записав и решив уравнение движения электронов отдельно для лево- и правоциркулярно поляризованной волны, можно получить выражение для угла поворота плоскости поляризации в виде [12]:
здесь е - заряд электрона, m-масса электрона, N - концентрация электронов, щ - частота света, с- скорость света в вакууме, щ0 - собственная частота осциллятора.
Более высокого разрешения (до 100 нм) позволяет достичь микроскопия Керра. В таком микроскопе поворот плоскости поляризации светового пучка происходит не при прохождении магнитооптического кристалла, а при его отражении непосредственно от рабочей поверхности носителя. Однако полученные с помощью микроскопа Керра изображения имеют более низкий контраст, а стоимость оборудования значительно выше, поэтому на практике для исследования магнитных носителей чаще используют магнитооптический метод визуализации на феррит-гранатовых пленках.
Наиболее близким к решению поставленной задачи является способ визуализации магнитного поля, включающий помещение в это поле магнитооптического преобразователя, выполненного в виде нанесенной на прозрачную подложку висмутсодержащей монокристаллической пленки феррит-граната, и регистрацию распределения векторов намагниченности по ее площади с помощью магнитооптического эффекта Фарадея. Для визуализации неоднородного магнитного поля достаточно наблюдать в микроскоп или на экране компьютера магнитооптическое изображение, возникающее в индикаторной магнитной пленке, которое отображает картину полей рассеяния. Такое изображение несет качественную (опосредованную) информацию о распределении (рисунке) магнитного поля и может применяться для идентификации магнитных меток [13].
На сегодняшний день известны и уже успешно применяются для визуализации неоднородного магнитного поля Bi-содержащие пленки ферритов-гранатов. Bi обеспечивает большое магнитооптическое вращение плоскости поляризации (эффект Фарадея) и, соответственно, высокий контраст изображения.
1.2.4 Сравнение выбранного магнитооптического метода с другими методами визуализации
Сравнение магнитооптического способа визуализации магнитной записи с другими, известными ранее, позволяет сделать выводы об определенных его преимуществах. Если сравнивать магнитоо
Магнитооптические методы защиты ценных бумаг дипломная работа. Физика и энергетика.
Заполнение Дневника Практики Студента
Эссе Онлайн Бесплатно Написать
Конспекты лекций: Геоэкономика
Реферат По Физкультуре Конькобежный Спорт
Сочинение Пришла Осень
Реферат На Тему Хозяйственные Общества И Товарищества, Кооперативы В Предпринимательском Праве Российской Федерации
Реферат: Принцип динамического баланса как методологическая основа научного познания
Влияние Икт На Педагогические Технологии Реферат
Статья: Компютер на уроці математики
Замечания В Дипломной Работе
Учебное пособие: Методические указания к выполнению дипломного проекта для студентов специальности 08. 05. 02 65 «Экономика и управление на предприятии машиностроения» всех форм обучения
Как Правильно Писать Эссе По Истории
Реферат по теме Нормативно-правовой акт
Дипломная работа по теме Сервисная деятельность туристической фирмы
Реферат: Теория многочленной аппроксимации. Скачать бесплатно и без регистрации
Дипломная Работа На Тему Достоевский И Гюго
Егэ Русский Эссе
Реферат: Государственное регулирование в рыночной экономике
Контрольная работа по теме Причины и условия возвышения Москвы
Сочинение На Тему Характеристика Образа Лизы
Методика повышения эффективности управления педагогическим процессом в начальной школе - Педагогика дипломная работа
Музыкальный звук как феномен и композиторская практика ХХ в. - Музыка статья
Термостабилизированный логарифмический усилитель - Коммуникации, связь, цифровые приборы и радиоэлектроника контрольная работа


Report Page